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Abstract

Stack-processors, which abandon register files
and instead work directly on the stack content
have recently enjoyed a resurgence of interest
in conjunction with higher level languages.
However, the way in which local variables are
handled by typically stack-targeted compilers
leaves much room for improvement. These
issues are not restricted to stack architectures
using a C-compiler, although this is the focus
here.

The elimination of troublesome local variable
references has been investigated in several
studies [Koop92], [Maierhofer97], with some
interesting trade-offs for stack instruction set
design noted [Bailey97]. These studies have so
far been limited to optimisation of memory
dependencies only within each basic-block of
object code.

Further development would have benefits in
such areas as real-time systems where caching
may be restricted, and memory penalties
increased, whilst any move toward instruction-
level parallelism in a stack-based environment
would be severely handicapped if these issues
are not first alleviated.

This paper presents a new technique for
optimisation of local-variable references,
“inter-boundary scheduling”, which extends
the scope of optimisation beyond the basic-
block boundary and allows local variable
content to remain on the computation stack
even when control-flow operations are
encountered. Results presented suggest that the
method can eliminate 10 to 20% of local
variable references remaining after the existing
intra-block techniques are applied. Data
presented is based upon compilation of C
source to a stack-based target architecture,
however the method is open to application in
wider areas including FORTH.

1. Introduction

The zero-operand computational model has
received a rather unfair reputation as an
outdated and inefficient technology which has
had its day. However, many of the criticisms
can now be either shown to be misconceived,
or overtaken by improvements in stack-
processor technology. Stack buffers, for
example, can eliminate the argument that
stacks extending into main memory create
stack-thrashing and traffic bottlenecks
[Bell70]. Meanwhile, the complaint that stack-
based programs spend too much time
manipulating stack content [Amdahl64], can
largely be addressed through a more
orthogonal stack management scheme
[Bailey97].

However, as old arguments have been swept
aside, new problems have emerged. In
particular the need to effectively support
referencing of operands such as local variables
has been an obstacle in achieving higher
performance with HLL’s such as C. The issue
may to some extent be minimised in FORTH
systems, since the hand-coding for most
FORTH code tends to assist in optimisation of
stack usage. However, the interest in
automatically generated FORTH from front-
end tools, and the work being conducted in
areas such as C-to-Forth compilation, suggest
that this is an area which needs further thought.

Recent progress has been made, with the
development of  algorithms for optimisation of
repetitive local variable references within basic
blocks of code (i.e. linear bocks of instructions
bounded by call, or branch events). Whilst
work by Phil Koopman indicated substantial
performance benefits for this limited ‘intra-
block’ scheduling [Koop92], there remain
‘unoptimisable’ local references which span
basic block boundaries, and so lie beyond the
scope of that method. Koopman alluded to
hand-coded optimisations across block
boundaries, and indicated further gains would
be possible. Therefore an algorithm capable of



performing this task as a back-end optimisation
tool would be highly beneficial.

This paper presents the results of a newly
devised algorithm, proposed by the author,
which allows locals to be optimised even
across block boundaries, and handles the
problems associated with multiple execution
paths.  The results show that further significant
gains can be made in the elimination of local
variable references, and highlights many new
avenues which should lead to a far more in the
future.

2. Existing Scheduling algorithms

The Intra-Block Scheduling technique, as
proposed by Phil Koopman, exploits the fact
that repeated references to local variables
within a single block of code can generally be
eliminated if a copy is kept on the computation
stack when the first reference is made. In the
following example “@loc 2” indicates fetches
to local variable 2, and highlights the option to
eliminate repeated fetches.

@loc 2 @loc 2
@loc 1 dup
add @loc 1
@loc 2 add
sub swap

sub

We can see in the example that the first fetch is
followed by an extra instruction ‘dup’ which
duplicates the local content. Later it is brought
to the top of stack by the ‘swap’ instruction, as
it has by then been buried under the result of
the preceding addition. The Intra-Block
technique attempts to identify such pairs and,
by ranking them, optimises the innermost pairs
first wherever nesting of these pairs occurs.
Often the extra instructions needed are
eliminated later by peep-hole optimisation,
particularly when several locals are optimised
in the same block.

After repeating the implementation of Intra-
Block Scheduling, the method was applied to a
range of test benchmarks, revealing that
reductions ranging from 10% to 40% of all
local references in a program file could be
expected. This is illustrated in Figure 1.

owever, the real objective is to eliminate
dynamic instances of local references. Hence a
simulation tool was developed to execute
benchmark object code and measure dynamic
effects. This indicated that the impact upon
code execution was even more significant,

with between 10% and 50% of local references
being eliminated from running programs, as
shown in Figure 2.

However, whilst Intra-block scheduling is
clearly an effective optimisation, there is still
significant remaining local-variable traffic to
be eliminated. Recent work has shown that
Koopman’s algorithm is near-optimal in its
ability to eliminate locals [Maierhofer 97],
thus further work in this area would yield
minimal advantage. It is therefore necessary to
extend beyond optimisation within basic-
blocks, as will be detailed in the next section.

3. New Block-Boundary algorithm

In order to overcome the limitations of intra-
block scheduling, a new technique, ‘Inter-
Boundary Scheduling’, was developed and
tested. A full description is given in section 7.

The new technique is still limited in some
respects, and does not provide a complete
solution to redundant local variable
referencing. However, the new technique is
capable of optimising local variables across
any parent-child block boundary, even when
there are multiple parents and children
involved in the relationship of  the basic
blocks.  It is intended to be applied as an
additional optimisation, not a replacement for
intra-block scheduling.

Fig.1   Reduction in locals - static code.

Fig.2  Reduction in locals -  dynamic code.
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The algorithm operates by identifying an
‘inheritance context’, a subset of local
variables common to all the related blocks at a
given boundary, which can be successfully
placed or retrieved by all those related blocks.

The inheritance-context is used as a model to
form a portion of stack space residing below
the space utilised locally by the blocks
themselves This is suggested as the ‘sub-stack
inheritance-context’ or ‘SSIC’. The locally
utilised stack-space is assumed to have the
same stack-depth at the beginning and end of a
block in the current algorithm implementation.

As a result, the SSIC can be used as a channel
between the parent and child blocks, through
which information can be passed. This is
illustrated in Figure 3.

Fig. 3, Illustration of sub-stack inheritance

Once the SSIC has been formulated and
verified, it may be used to validate the
possibility of extracting and using its contents
within each subject block, assuming tuck and
dup type of operators to build the SSIC at the
parent node, and rot and swap variants to
extract its content in the child.

It is actually the case that the SSIC is
somewhat similar to the approach taken for
optimisation within basic blocks (intra-block
scheduling). However, the novelty of the new
approach is the fact that it can maintain this
sub-stack across block boundaries even when
multiple branch targets exist.

The availability of appropriate stack-
management operators is an important factor in
successful optimisation, as has already been
demonstrated for intra-block-Scheduling
[Bail97].

An orthogonal and scalable stack management
scheme has been developed by the author, and
provides an efficient model for support of this
mechanism [Bailey 97]. This model is
assumed for the remainder of this paper.  One
of the complications which the algorithm must
consider, is the possibility that any block may
have more than one parent and each parent
may have more than one child. In some cases a
child may loop back upon itself to give it the
status of a parent of itself. Consider the
example shown in Figure 4:-

Fig. 4, Parent & child block relationships

Fig. 5, Boundary relationships

We can see that block 3 has three possible
parents (one of which is actually itself). It has
two possible children (again, one of which is
itself). In order for a variable to be inheritable,
from block 1, by block 3, it must also be
inheritable from block 2, and from block 3
itself.  Because block-3 participates in this
donor role, its child-block (block-4) must also
be able to inherit the local, otherwise block 4
will receive a local it does not expect.
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One can see that the issue of optimisation is
rather complex. However, we can visualise two
possible boundary relationships for block 3,
(see Fig. 5) one as a parent, and one as a child.

Block 3 can be viewed in a child context,
where it inherits variables from blocks 1,2, and
3, or as a parent context, where blocks 3 and 4
inherit variables from it. The sub-stack
inheritance-context will only include variables
that all parents can donate, and all
child/siblings can successfully inherit.
As a result of this analysis, each block
encountered when parsing the code on the
second pass can be optimised for its parent and
child status in turn, and written to the output
stream.

Hence, wherever the same variables are
utilised by all branch targets, then the repeated
references to those local variables is
eliminated. The technique should be
particularly useful in optimising loop indices
and so-on, and will thus be expected to yield
performance speed-ups whenever memory-
latency, or referencing,  is a bottleneck.

When a call is encountered in a basic block,
this presents an obstacle over which locals
cannot be scheduled. However, the tail end of a
block which is preceded by a call can still act
as a parent if the stack depth after the call is
established by back-tracking from the end of
the block.  Similarly, a child can inherit locals
up to the point where a call occurs within its
body.

4. Limitations and Variants.

The algorithm presented here has limitations,
in that it may only optimise a variable for re-
use across a basic-block boundary at one level
at a time. As a result of applying the algorithm
to the whole program, block-by-block, a
variable used in several sequentially entered
basic-blocks will eventually be carried forward
across multiple blocks. However when an
intervening block does not use the variable
then such ‘incremental inheritance’ of a local
cannot occur.

4.2 Forced Inheritance

There are also many cases where a parent
block could donate a variable beneficially to
one child, but not to another of its siblings.
This may happen when a block references
itself as a child, as in the case of loop
constructs. Here the inheritance of a variable is

of high priority since its impact is amplified by
the loop.

Forced inheritance could be used selectively in
some cases, for instance loops may be
identified and then all siblings which do not
use the key locals in question will be forced to
inherit them, but will discard them when
reached by simply dropping appropriate stack
cell contents. The penalty this leads to will be
outweighed if the loop itself is repeated more
than a few times. This was one of the
observations made by Koopman in his original
study using manual optimisation [Koop92]. In
this paper we do not present results for this
approach however.

4.3 Optimal Sub-stack Ordering

The order of elements in the sub-stack
inheritance context may well have some
impact upon the successfulness of local
variable elimination. This is because each
block involved will preserve or retrieve sub-
stack content in differing order to the next, so
that one ordering might offer higher success
rates than another in scheduling all of the
subject variables.

An attempt has already been made to
investigate this issue, by applying all possible
permutations of the order of variables in the
inheritance context in turn, and identifying the
best case. This is not ideal, since the number of
iterations increases rapidly for larger numbers
of variables. With the limited benchmarks
utilised in this preliminary study, no
advantages were observed as a result of this
method.  However, advantages will only
reasonably be observed if numbers of variables
spill into the deep-stack areas (in this case
assumed to be anything deeper than 4 cells),
since it is then that ordering becomes critical.
In this case of ‘scheduling congestion’ there
may be a case for a more directed approach,
selecting variables used heavily in loops for
example, and ignoring other less critical ones.

5.  Preliminary Results

The effectiveness of the proposed algorithm
was tested with a set of relatively simple
benchmarks, partly based on the Stanford suite
used by Koopman. At the time of the initially
study, the work was being conducted with a
rather limited compiler, but we now have
access to a more robust platform, which will
result in a more detailed study in the next stage
of this research. The benchmarks chosen were
as follows:-



BSORT              – Bubble sort of  200 integers
ACKERMAN   – deeply nested call behaviour
LIFE                     – Conway’s Life simulation
IMAGE            – smooths a 20x20 pixel image
FACT           – calculates factorial of a number
MATRIX               – multiply two 2D matrices

Benchmarks were compiled from C-source
code into object code targeted to a stack-
processor model used in previous studies
[Bailey 96 & 93].

Object code was first optimised with the
existing intra-block scheduling algorithm, and
simulated, then additionally optimised by the
new method to eliminate further local variable
references, before repeating simulations.

In each case peephole optimisation was applied
to eliminate redundant stack manipulations
before simulation. This is an important step,
since scheduling techniques can create a lot of
stack manipulations, most of which can be
eliminated by peephole optimisation to reduce
static and dynamic instruction counts.

Results for the two algorithms are presented as
follows; Figure 6, shows reductions achieved
for each algorithm, and the combined effect;
Figure 7 shows the resulting execution time of
benchmarks relative to the unoptimised case;
and Figure 8 shows dynamic instruction count.

5.1 A Brief Note on the Presentation of Data

Results presented here relate to the reduction
in all local variable references, which is a more
direct measure of  how benchmark code will
improve. It is important to appreciate the
difference between this, and Phil Koopmans
approach of quoting reductions in
‘optimisable’ references., which measures the
effectiveness of the algorithm, rather than its
contribution to performance improvement.
Koopman found that his algorithm would
remove 90 to 95% of all such ‘optimisable’
local references [Koop92].

5.2 Effectiveness of algorithms

Studying Figure 6, it is apparent that the
original intra-block scheduling algorithm, as
proposed by Phil Koopman, was capable of
eliminating an average of about 35% of all
dynamic local variable references normally
present during execution.
However, one can also see from Figure 6, that
when Inter-Boundary scheduling is applied
after locals within basic blocks have been
optimised, the percolation of  local variable

operands between parent and child blocks
results in a further significant removal of Local
variable references.

Benchmark results vary, but the average yield
is approximately 25% removal of dynamic
variable references  left alone by the existing
intra-block algorithm.  It is rather interesting to
note that in some cases, such as the factorial
benchmark, the intra-block algorithm could
offer no optimisation, since factorial is
dominated by a single variable and short
conditional blocks. However the inter-
boundary scheduler is able to percolate
operands across the conditional block
boundaries and eliminate repeated references
in some cases.

The opposite is the case for MATRIX, which
has few blocks, most of which contain lengthy
linear sequences. Here some intra-block
optimisation is possible, but nothing significant
is gained for inter-boundary scheduling.  This
implies that the two algorithms are
complementary in their operation and
advantages.

The combined case, where both of the two
algorithms are employed, shows that an
average of over 50% of local variable
references can be eliminated by applying both
optimisation algorithms, compared to the 35%
for intra-block scheduling alone.

5.3 Code expansion & Instruction Counts

Figure 8, shows relative instruction counts for
execution of the benchmarks. Interestingly, the
impact upon instruction counts gives a
reduction on average. Some programs suffer
code expansion as a result of extra instructions
needed to manage the stack content. However
many programs obtain a reduction, which is
explained by the fact that a several adjacent
stack management operations can be peephole
optimised to fewer, instructions, or even
removed completely.

It is also notable that the application of Inter-
boundary scheduling never causes code
expansion for the benchmark set given here,
and typically results in further reductions,
again a result of enhanced peep-hole
opportunities.

The ability to reduce instruction counts has
additional importance. To date it has been
assumed that local variable scheduling is only
worthwhile where memory reference cost is
high compared to that of an instruction.



Fig. 6. Reduction in local references for each algorithm, and their combined effect

Fig 7. Execution times after optimisation with old and new algorithms

Fig. 8, Instruction counts, relative to unoptimised  benchmarks
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However, even if locals are held on-chip and
accessible in a single cycle, as in some recent
Java architectures [Sun97, Sun99, Turley96],
the ability to reduce overall instruction counts
(by as much as 20% in one case) could still
yield performance gains.

5.4 Execution Times

Having considered the impact of the
algorithms themselves, the more important
figure of execution time should be examined.

Figure 7 shows the relative execution times of
the same set of benchmarks where the
execution time relative to the unoptimised case
, representing 100%, is plotted.

Execution Speedups of as much as 15% are
observed in some cases, with the average
figure, inclusive of MATRIX, being only 5%.
However it has already been noted that
MATRIX has nothing significant to exploit for
the new algorithm, and excluding this
benchmark yields an average closer to 10%
speedup.

Whilst the speedups associated with inter-
boundary scheduling seem relatively small,
these are improvements delivered on top of the
existing improvement offered by the old
algorithm, and raises the average speedup from
1.2 to 1.33 for the benchmark set excluding
MATRIX.

One should also remember the preliminary
nature of these results. A more complex
implementation of the intra-boundary
scheduler might include some of the
enhancements discussed earlier, such as forced
inheritance, and selectivity of variables
optimised. This will undoubtedly result in
more improvements, especially with a more
suitable and robust test suite of benchmarks.

5.3 Possible trade-offs

In the authors previous studies, which focussed
on intra-block scheduling, it was found that
optimisation of local variable references will
alter the behaviour of the stack, and in turn, the
behaviour of stack-buffers present in the
system [Bailey 95a]. This indicated that
slightly larger stack-buffers would be needed
in systems where optimisations is applied.

Whilst it is only speculation at this stage, it
seems likely that a further increase in active
stack depth will be observed with the new

technique proposed in this paper, and
subsequently the impact upon stack buffers
will again be felt. A follow up study is
intended by the author in the near future, to
assess these effects.

6. Conclusions and further work

The removal of local variable references from
stack-based object code is an important step in
overcoming bottlenecks often cited as
disadvantageous for stack architectures.

There are wider implications for this work.
There have been few well documented foray’s
into instruction-level parallelism in stack-
organised architectures: The Transputer T9000
and SC32 architectures are both models which
employ restricted ILP paradigms, however,
[May et al; Hayes 89].

As any superscalar architect knows, data
dependencies are a performance-killer. The
elimination of local variables may not only be
a method of reducing unwanted memory
accesses, but may well prove to be an enabling
medium for superscalar techniques to be
applied in the next generation of stack
architectures.

Gains reported so far are modest, but worth the
effort, given the right arena. Particular interest
might emerge from development of C-to-
FORTH systems, where library code could be
optimised after compilation in ways which
would be inconsistent and laborious if done by
hand.

In real-time systems, squeezing more
performance out of a system is often a boon to
the engineer with hard-pressed timing margins,
but there are cautions to be observed [Bailey
2000].

A more in depth study will be the next stage
for this research, using better compiler and
benchmark suites, and covering aspects such as
buffer behaviour and instruction set
complexity, as reflected in earlier studies by
the author [Bailey 97].

With further refinement, the intra-boundary
scheduling algorithm shows significant
promise for the elimination of a major
performance bottleneck, and one which has to
date allows stack-processors to be rated as
inferior to its register based relatives.



7.  Description of the algorithm

FIRST PASS:

1 Parse each block in input stream in turn
and record the following :-

1.1   The position of each local reference
1.2   The stack depth at each position
1.3   Whether it is a load or store
1.4   All branch targets (Child-Blocks)

Each block record should have a duplicate,
which will not be altered in the second pass.

SECOND PASS

As each block is parsed from input stream :-

2 BOUNDARY MAPPING

2.1  Build a list of all parents
2.2  Build a list of all siblings
2.3  Build a list of all children
2.4  Build a list of all co-parents

* See note 1 following the algorithm.

3 CHILD SCHEDULING

3.1  Build a list of locals common to all
child blocks, and co-parents.

3.2  Build Sub-stack Inheritance context
A list of  common locals in order of
appearance in the subject block.

3.3  Test each co-parent to see if it can
create the same SSIC.

3.4  Test each child to see if it can
retrieve locals from the SSIC.

* see note 2 at the end.

3.5  Any local failing steps 3.3 and 3.4 is
removed from the common locals
list and analysis restarts at 3.3

3.6  When a valid SSIC is available,
each reference to a common local in
the subject block is followed by an
instruction pushing a copy into the
sub-stack area at the required depth.

3.7  Each inserted instruction causes an
update of the modifiable block
record, but not the duplicate record.
The update modifies instruction
position and stack depth preceding
an inheritance point.

4 PARENT SCHEDULING

4.1  Build a list of locals common to all
parent blocks, and all  siblings.

4.2  Build Sub-stack Inheritance context
A list of  common locals in order of
appearance in the subject block.

4.3  Test each parent to see if it can
create the same SSIC.

4.4  Test each sibling to see if it can
retrieve locals from the SSIC.

4.5  Any local failing steps 3.3 and 3.4 is
removed from the common locals
list and analysis restarts at 3.3

4.6  Ech reference to a common local in
the subject block is replaced by an
instruction which retrieves (moves)
the associated SSIC operand to the
top of stack, and following
instructions have position & depth
records altered.

NOTES

1. A subject block will have at least one parent.
Where there are more than one parent, each
parent may have other children, which are
classed as the siblings. The donation of a
local from the subjects parents must also be
inheritable by all of their children (i.e. the
siblings). The subject is classed as a sibling.

A subject block will have one or more
children. The children may have other
parents (the co-parents). When a subject
block donates a local to its children, this
local must be inheritable by all children of
the co-parents, and capable of donation by
all co-parents.

2. Validating the ability to donate or inherit a
local is achieved by emulating the sub-stack
as it is constructed I the parent or
deconstructed by the child.

A local is able to be donated when the
current stack depth plus the current sub-
stack depth is within reach of an operation
that can copy the top of stack cell into the
sub-stack.

A local is inheritable if its sub-stack depth,
plus the depth of the blocks local stack space
is within reach of an operation that can move
it to the top of stack.
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