The Point to Point Protocol in Forth
2 Nov 2000

Howerd Oakford
Inventio Software Ltd
www.inventio.co.uk

The Point to Point Protocol is used by PC programs to connect to an Internet Service
Provider (ISP) so that applications can surf the web, or get email.

In this paper | describe an implementation of a PPP Peer in Forth.

English is not a good language to describe complex computer programs, so | have given
some examples of Forth source.

Paper is not a good medium to present Forth source - it is better to try out the program
interactively.

PPP is complicated. | have done everything | can to simplify it :

1. | captured the actual packets transferred between my PC and ISP when checking my
email using a well known email program. This converted the enormous range of
possible formats and options to the ones that are actually used.

2 | use a "flat architecture” and avoid the concept of an "IP-stack™" or hierarchical layer of
protocols. This follows the Forth-like "direct action" approach, where Forth words
actually do something, rather than the C-like or operating system approach where
functions process and pass data structures to other functions.

3 The current implementation has four tasks (apart from the Operator task). Again the
tasks are used in a Forth-like way - each one defines an activity which is inherently
asynchronous to the other tasks. The C-like approach to tasks is to use them to isolate
functions written by different teams of people, so that each part of the software can
operate asynchronously to each other part without interfering with each other.

The Point to Point Protocol Peer has the properties of both a Client (issuing requests)
and Server (responding to requests). Each end of a PPP connection is identical to the
other.

However, the Client and Server parts of PPP are not independent, as the PPP Peer must
step through three levels to achieve an open PPP connection :

LCP Link Control Protocol level sets up the Maximum Transmission Unit (MTU) and
other parameters required to pass PPP packets between the two PPP Peers.

The PAP/CHAP level authenticates the other PPP Peer.

The IPCP sets up the Internet Protocol parameters such as IP addresses and
compression algorithms.

When all three levels have been achieved by both the Client and Server side, the PPP link
is open, and IP packets may be sent in either direction.

IP packets carry a payload of data in one of the higher level formats such as UDP and
TCP. A simple example of a UDP packet is given. TCP is more difficult and is my next
project!

This is "work in progress”, and the source listed below is a only a small part of the current
system. | intend to publish a working system as soon as it can get my email...

First the easy bit, PPP Packet Output :

The basic unit of currency on a PPP connection is the packet - a string of characters
separated by a PPP Flag character : hex 7E.
The format of a PPP packet is well defined, and includes a PPP protocol field and CRC .

When sending a packet nothing except the payload is stored in an array, just as data on
the stack or as literals in the program. For example, executing IP actually sends the
payload as an IP packet, complete with PPP Flag, PPP header, IP header and checksum
and PPP CRC. PPP "escape" characters (hex 7D) are sent before certain characters,
these characters are XORd with hex 20 . See the code below for details.

In a conventional IP stack, the payload would be sent to each layer in turn to have another
header added to it, before being passed to an output function. Here we calculate the byte
stream as we need it and send it immediately. This is what is meant by a "flat
architecture”.

(720)

(0) (Qutput) HX \ PPP_EC is the PPP "escape" character

(1) 7D CONSTANT PPP_EC 7E GONSTANT PPP_FLAG \ PPP_HLAG is the PPP flag character

(2) \ AOM= A]| Qontrol Character Mp

(3) 2VARABLE ACOM : \AOOM 00000000. ACOM2! ; \ACM \ AOM has one bit set for each character from0 to hex 1F if
(4) GRATE[2**] 1 G 2C 4G 8C 10GC 20C 40C 80 G 100 G \ that character nust be escaped.

(5):?2AM(c-f) DP 07AD [2¢*] + C@ \ ?A00M looks up the bit for character ¢ in the AOOMand
(6) SMP 8 /| ACOM+ G@AND ; \" returns true if it is set (neaning it nust be escaped)
(7) \ ESC?returns true if ¢ nust be escaped.

(8):EBE(c-f) >R 1 PPHAG= | PPPEC=QR \ The PPP escape character and the PPP flag character nust
(9) 1 020 WTHNIF | 2AQOMR THEN R> DRCP; \ a so be escaped.

(10) \ HEMT sends c as one or two characters. Certain characters
(11) : HEBMT (¢c) DP [RCAJ] +RC \'" nust not be sent in a PPP packet - they areX.®Rd with 20
(12) DP ESC? IF PPPECREMT 20 X(R THEN REMT ; \ and preceded by a PPP escape character = 7D

(13) \ HEMT also accumil ates the CRC of then-escaped character
(14): H'YFE(an) ?DPIF \ HIYPE sends an "escaped' string

(15) OER+ SMP DO | CQHEMT LGP HSE DRP THN; \

(721)

(0) (Qitput) HX \

(1):wW(n DPDP ><OFFADHMT OFF ADHEMT > +1CS; \ W sends a 16 bhit Wrd in B gEndian fornat

(2) \

(1 3):20(clc) SWP><®RW; \ 2C sends two 8 hit Characters, cl first then c2

(4) \ D> sends a 32 bit Wrd in Bidndian fornat
(5):D>(d W W,; \

(6) \ @ sends the 16 bit Wrd at a in B gndian fornat
(7):@(a @WwW; \ 2@ sends the 32 bit Wrd at a in B dndian fornat

(8) \

(9):2@(a 2@D>; \ PP< >PPP send a formatted PPP packet

(10) \ PP sends the initial Hag, address and control bytes
(11) : PP SRA QI GT PPPHAGREMT \QRGAJT \ >PPP sends the accumul ated GRC and terninating Hag

(12) F HMT 03 HMT; \

(13) \ Note that since the checksumis 16 bits it is nore efficient
(14) : >PPP [(RCAJ] @-1 XR >< W PP HAGREMT \ to send bytes two atat tine, hence 2C and no C.

(15) SER AL QUT RELEASE ; \ The 1CS word does take care of odd |ength strings though.
(722)

(0) (LCP Qutput) HEX \

(1) DWBEERAVWREIP 74 ISR SOREPRT \ AR CEIP the source | P address

(2) 76 WSERDEST.INIP 7A USER DESTINPRT \ SORCEPRT the source port nunber

(3) \ The IP address and port define a unique 48 bit socket

(4): LP(ancodeseq PPP< @21 W (code seq) 2C \

(5) (lengthy DP(n) 4 +W (an) HI'YFE >PPP; \ CEST.INIP the destination | P address

(6) \ CESTINPRT the destination port nunber
(7):LPMU(MY PP @21 W (REQcode) 1(seq 12C \

(8) (lengthy AW (MU W >PPP; \ LGP sends an LCP packet of code and sequence nunberseq

\

—
o ©
——

(1 \ LCP MU sends an LCP request with Metup option.

(723)

(0) (IPCP Qutput) HEX \

(1) :IPCPCPT>(dopt) ><06RW D>; \ | PCPopt send a six byte | PGP option. Mst options consist
(2) \ of an option type, length and 4 data bytes.

(3) : IPCP(|Paddr code seq) PPP< \

(4) 8021 W (code seq) 2C \" nly one option is sent here : the |P addresses, code 3.
(5) (options length +2) 0A W \

(6) (I Paddr) 3 | PCPCPT> \

(7)\ (DS)O0 81IPCPP> 0. 82 |PCRCPT> \

(8)\ (NB\NS) O 8IPCPCPP 0. 84 | PGPCPT> \

(9) >PPP ; \

(10) \

(724)

(0) (IPQtput) HEX \

(1) : PPIP(prot fragid#) PPP< (PPPporot=IP) 0021 W \ PPP<:IP sends an Internet Protocol packet, an I P header plus a
(2) \1CS 4500 W 2>R OER(n) 14 + W 2R \ payl oad.

(3) (id#) W (frag) W (prot) (TIL) 40 < RW \ an define the payl oad string

(4) (add in the I P addresses' checksuns in advance :) \" prot is the payload protocol :

(5) N WR CEIP2@+1CS +1CS CE ST.IN P 2@+1CS +1CS \ 1is QW Internet Qontrol Message Protocol

(6) 1C5@-1 XR W \ 2is 1GWP Internet Gontrol Mssage Protocol

(7) NWREIP20D> ESLINIP2@D> ; \ 6 is TGP Transnission Qontrol Protocol

(8) \ hex 11 is WP Usebatagra Protocol
(9):IP(anprot fragid#) PPP<IP (an) HIYFE >PPP; \ frag is the payload s offset in 8 byte units, wth

(10) \ bit 13 zero, bit 14 as "do not fragment" and bit 15 as
(11) : TESTIP PADO11011P; \ "more fragnents".

(12) \ id# isthis |P packet's nunber.

(13) \ (calculate the I P header checksum

(14) \

(15) \ IP sends n bytes at a as the payl oad of an IP packet

(725)

(0) (WP Qutput) HEX \

(1):wP(an (WPprot) 11 (frag) O (id#) 1 PPP<IP \ Alarge payl oad can be delivered by using many | P packets by
(2) SOREPRT @W DESTINPRT @W \" breaking it up into fragments, the frag value being set so
(3) (n 28+W 20P1CS 1CS@-1 XRW \ that the receiving conputer can reassenble it.

(4) >PPP ; \

(5) \ UDP sends the sinplest WP packet, one |P fragment only.

(6) \' nnust beless than the Mxi mum Transnission Lhit (MU).
(7) \ The MU defaults to 1500 bytes, but may beetup by the LCP.

A bit more difficult is PPP input :
Again "direct action" is taken, rather than buffering and passing of pointers.

First the start of a PPP packet is detected, then the protocol type is used to calculate the
header size, and the header is directed to the Header array and the payload (the rest of
the packet) is directed to the Buffer array.

The Header array is a small 64 byte array used to save the current header and any other
non-payload data. It is destroyed when the next PPP packet arrives.

The Buffer is a large (16K byte) circular linked list which retains the most recent
payloads. Only the oldest payloads are destroyed, and only when the Buffer is full.

The CRC is accumulated during this process, and is checked when the end of the packet
is detected.

Detection of the start of packet of a PPP packet is tricky, because there may be one or
more PPP Flag characters between any two packets.

The first character of a packet is the first non-Flag character after one or more Flag
characters have been received.

(733)

(0) (PPPinput) HEX \

(1) VARABLE ALAGREQD \ FLAGREQD s set true when a PPP Hag character is received
(2) VARABLE LASTTCRGIN \

(3) \ LASTTGRGIN saves the accumul ated i ncomng data GRC _before_
(4): HKEY(-c¢) REY \ the Hag character resets it.

(5) DP PPP_ALAG = IF (the flag character) \

(6) [RGIN @LASTIGRGIN ! \CGRGIN -1 FLAGREQD ! \ HKEY waits for one "un-escaped’ char fromthe serial Port
(7) BLSE (any other character, naybe "escaped") \ It waits for a second character if an escape character (7D)
(8) DP PPPEC = IF [RP REY 20 XR THN \" is received.

(9) DP[CRGIN +RC \ HKEY al so accunul ates the PPP | ayer CRC and clears the
(10) THEN \ RCif a Hag character is received.

(11) \

(12) \

(13) \

(14) \

(15) \

(735)

(0) (PPPinput) HEX \PPPstart waits for a PPP header and returns the Protocol type
(1) : PPrstart (-n O \

(2) BEGN DRP \ If FLAGRECWD is true the end of the last frane's PPP Hag
(3) HEY DP PPPHAG=0= (thisoneis not aHag) \ character was the last one received, and this counts as the
(4) AAGREOD @ AD (but we have had a Hag) \ first PPP Hag character of the next frane.

(5) WML 0 AAGREQD ! \ The start of the PPP packet is when the first non-Hag
(6) DP FF =1F (an address byte, so renove the control byte) \ character received after one or nore Hag characters.
(7) DRP HKEY DRCP (and get the first protocol byte) HKEY \ (i.e enpty frames are discarded)

(8) THEN (otherwise it was the first protocol byte) \ If first char.is not hex FF it is assuned that Address
(9) DP1ADO=IF > HE R THN \ and Gode Field Gonpression is enabled, soit wll be
(10) SAVEBLF ; \ the first of the Protocol (one or two) bytes, the last
(11) \" byte being marked by hit 0 being true. This always decodes
(12) \ Protocol Feld Gonpression (pfc), even if it has not been
(13) \ selected.

Having directed the incoming data stream to its rightful places, the data can now be
processed. Four tasks are currently used to handle the Point to Point Protocol.

The tasks allow the functionality of the protocol to be expressed clearly, without getting
bogged down in the details of packet parsing and creation.

(773)

(0) (Peer state) \

(1) : CALCPPPPHEHR STATE \ CALC PPP_PHER STATE changes our PPP peer state only when both
(2) PPPQIBNT_STATE @1 = PPP_SEHRVER STATE @1 = AD \ the client and server tasks have conpleted the current |evel.
(3) IF(LCP) 1PPPERSIATE! .PPP.STATE THN \

(4) PPPQIBNT_STATE @2 = PPP_SERER STATE @2 = A\D \

(5) IF(PAMQHP) 2 PPP_PEER STATE ! .PPP_STATE THEN \

(6) PPP.QIBNT_STATE @3 = PPP_SER/ER STATE @3 = A\D \

(7) IF(IPP) 3 PPPPEERSTATE! .PPP_STATE THN \

(8) PPP.QIBNT_STATE @4 = PPP_SERER STATE @4 = A\D \

(9) IF(Qen) 4 PPPPEERSTATE! .PPP_STATE THN \

(10); \

(774)

(0) (Potocals) HEX \

(1) : PPPpacket PPPstart DUP PPP_PROT ! \ PPPpacket receives PPP packets and parses them

(2) CASE \ The header (of size determned by the protocol type) is
(3) 0021 - PPPIP BNDOF \" put into the Header, then the payl oad into the Buffer.
(4) 8021 F PPPIPCP BNDOF \

(5) @21 F PPPLCP BNDCF \

(6) @23 OF PPPPAP BENDCF \

(7) @23 F PPP.CGHAP BNDOF \

(8) PPP_UNKNOMN \

(9) ENDCASE ; \

(10) \

(11) \

(775)

0) (PPP nain task) \

1) : PPPMAN PPPMINNGACTVATE 15 ATTT >H 20 24 WN \ PPP_MAN repeatedy recei ves PPP packets and parses them
2) BEGN \" for the other tasks to pick up fromthe Header and Buffer
3) . PPP_STATE PPPpacket \" It also updates the display of our PPP state

4) AAIN; \

5) \

A~~~ e~~~

(776)

) (PPPclient task) HEX \

) : PPP.ALIENT PPP.QLIENTING ACTIVATE 1F ATT! >H 1 9 WN \ PPP.QLIENT initiates requests to the remote PPP peer.
) BEAN PAEE \

) NEWPPP_PROT @CASE \

) 8021 G- |PCclient PAUSE BNDOF
) @21 &F LCclient PABE BENDGF
) @23 ¢ BENDCF

) Q23 ¢ ENDCF

) CRP BNDCASE

) AAN;

)

NSNS NS S~~~ o~
QWO ~NOoOUWNEO
———— -

=

(777)

(PPP server task) HEX \
. PPP.SRER PPP_SERER NG ACTIVATE 5F ATTT >H 0C 13 WN \ PPPpacket receives PPP packets and parses them

BEGN PASE \

NEWPPP_PROT @CASE \
8021 CF | PCPserver PAUBE B\NDCF
@21 G- LCPserver PABE BNDOF
@23 ¢ BENDCF
@23 F BNDCF

DRP BENDCASE

AGAN ;

e e e T T T T T e e N
QOWoO~NOOUOWNEO
— e
—————

=

(778)

(PPP kicking task) HEX \
. LGP BAKGRF 400 ?M5; @ PAP BACKGFF 400 M8 \ LGP BAKCGHF waits for a timeout period
. | PCP_BACKGAF 400 M5 \ PAP BAKORF waits for a tineout period
\ |PCP BAKOH waits for a tineout period
D PPPKK PPPKIGKING ACTIVATE 70 ATTT >H 0C 13 WN \
BEGN PALBE \ PPPKICK perforns tineout retries
CALC PPP_PEER STATE \
PPP_PEER STATE @CASE \
-1 G (term) LGP TERV LCP BAKOF B\DOF \
00 G- (idle) BNDOF \
01 F(L) LPKXK LGP BAXGF B
02 F (PAPCHP) PAP KK PAP BAKOHF BNDCF \
03 GF (LGP and AUTH ok) IPCP KKK | PP BAKGFF BNDOF |\
04 CF (PPP open) BENDCF \
CRP BENDCASE
AAN; ' PPPKX '"PPPKX! \

e L e e L e N T e T T PN
GOBRWNRFPOOVONOOUR~WNEO
— e e e e e e e

el

And finally the top level user interface :

(779)

(0) (Protocals) \

(1): RN QM 9600 BAD (115200. JBALD) HEX PAGE \ RN starts the PPP peer

(2) 0. MIPaddr 2! HslPaddr 2TALLY \

(3) 23 0 TAB 20 24 WN \PPP_STATE .PPP_STATE \ VEW starts the PPP peer in display only node (no Qient

(4) \BUF PPP.MNN PPP.AIENT PPP.SRRER PPP KK \ actions)

(5) 24 0 TAB DEOML ; \

(6) \ @ opens a PPP [ink

(7): MEW RN \PPPKX; \" Note that only one PPP peer needs to issue a GO conmand, as
(8) \" the other PPP peer will be started by the receipt of an LCP
(9): @ 1PPAIBNTSTATE! 1 PPP.SRERSTATE! ; \ configure request.

(10) \

(11) : \Q® -1 PPP.QAIBNT_STATE! ; \ B closes the PPP link

(12) \

(13) :run RN; :go Q; : view MBEW; : \tasks \TAXKS; \'run is alower case alias for RNetc...

(14) : Kl R." FL=Hlp, R =@, F3 =FReset, M =Soptasks" ; \ Kl, K, K3 and K4 are the actions of function keys F1 to F4
(15): KR &@; K RN; : K& \TAKS; \ Press F1 for Hlp

The Forth program is written in 8086 polyForth. This is a 16 bit LittleEndian Forth with built
in multitasking and uses blocks for the Forth source.

The current state of the program is that two PCs connected together with a null modem
cable, and both running the program will open a PPP connection.

PAP and CHAP are not supported yet, although they are there in outline form and the
MD5 algorithm (for CHAP) is complete and tested.

The LCP and IPCP options are defined at compile time, except for the IPCP IP address
option which handles an IPCP configure request with a zero IP address option field by
returning a NAK and new IP address.

The Buffer array circular queue does not support linked lists yet. This is only relevant to IP
and higher protocols.

The PPP packet parsing and display functions correctly show the packets captured from
the PC during fetching of email, and correctly calculate the PPP packet CRC and IP and
UDP header checksums.

Howerd Oakford 2 Nov 2000

