
1

The Point to Point Protocol in Forth
2 Nov 2000

Howerd Oakford
Inventio Software Ltd
www.inventio.co.uk

The Point to Point Protocol is used by PC programs to connect to an Internet Service
Provider (ISP) so that applications can surf the web, or get email.
In this paper I describe an implementation of a PPP Peer in Forth.
English is not a good language to describe complex computer programs, so I have given
some examples of Forth source.
Paper is not a good medium to present Forth source - it is better to try out the program
interactively.

PPP is complicated. I have done everything I can to simplify it :

1. I captured the actual packets transferred between my PC and ISP when checking my
email using a well known email program. This converted the enormous range of
possible formats and options to the ones that are actually used.

2 I use a "flat architecture" and avoid the concept of an "IP-stack" or hierarchical layer of
protocols. This follows the Forth-like "direct action" approach, where Forth words
actually do something, rather than the C-like or operating system approach where
functions process and pass data structures to other functions.

3 The current implementation has four tasks (apart from the Operator task). Again the
tasks are used in a Forth-like way - each one defines an activity which is inherently
asynchronous to the other tasks. The C-like approach to tasks is to use them to isolate
functions written by different teams of people, so that each part of the software can
operate asynchronously to each other part without interfering with each other.

The Point to Point Protocol Peer has the properties of both a Client (issuing requests)
and Server (responding to requests). Each end of a PPP connection is identical to the
other.
However, the Client and Server parts of PPP are not independent, as the PPP Peer must
step through three levels to achieve an open PPP connection :
LCP Link Control Protocol level sets up the Maximum Transmission Unit (MTU) and
other parameters required to pass PPP packets between the two PPP Peers.
The PAP/CHAP level authenticates the other PPP Peer.
The IPCP sets up the Internet Protocol parameters such as IP addresses and
compression algorithms.

When all three levels have been achieved by both the Client and Server side, the PPP link
is open, and IP packets may be sent in either direction.

IP packets carry a payload of data in one of the higher level formats such as UDP and
TCP. A simple example of a UDP packet is given. TCP is more difficult and is my next
project!

This is "work in progress", and the source listed below is a only a small part of the current
system. I intend to publish a working system as soon as it can get my email…

2

First the easy bit, PPP Packet Output :

The basic unit of currency on a PPP connection is the packet - a string of characters
separated by a PPP Flag character : hex 7E.
The format of a PPP packet is well defined, and includes a PPP protocol field and CRC .

When sending a packet nothing except the payload is stored in an array, just as data on
the stack or as literals in the program. For example, executing IP actually sends the
payload as an IP packet, complete with PPP Flag, PPP header, IP header and checksum
and PPP CRC. PPP "escape" characters (hex 7D) are sent before certain characters,
these characters are XORd with hex 20 . See the code below for details.

In a conventional IP stack, the payload would be sent to each layer in turn to have another
header added to it, before being passed to an output function. Here we calculate the byte
stream as we need it and send it immediately. This is what is meant by a "flat
architecture".

(720)

(0) (Output) HEX \ PPP_ESC is the PPP "escape" character
(1) 7D CONSTANT PPP_ESC 7E CONSTANT PPP_FLAG \ PPP_FLAG is the PPP flag character
(2) \ ACCM = ASCII Control Character Map
(3) 2VARIABLE ACCM : \ACCM 00000000. ACCM 2! ; \ACCM \ ACCM has one bit set for each character from 0 to hex 1F if
(4) CREATE [2**] 1 C, 2 C, 4 C, 8 C, 10 C, 20 C, 40 C, 80 C, 100 C, \ that character must be escaped.
(5) : ?ACCM (c - f) DUP 07 AND [2**] + C@ \ ?ACCM looks up the bit for character c in the ACCM and
(6) SWAP 8 / ACCM + C@ AND ; \ returns true if it is set (meaning it must be escaped)
(7) \ ESC? returns true if c must be escaped.
(8) : ESC? (c - f) >R I PPP_FLAG = I PPP_ESC = OR \ The PPP escape character and the PPP flag character must
(9) I 0 20 WITHIN IF I ?ACCM OR THEN R> DROP ; \ also be escaped.
(10) \ HEMIT sends c as one or two characters. Certain characters
(11) : HEMIT (c) DUP [CRC-OUT] +CRC \ must not be sent in a PPP packet - they are XOR'd with 20
(12) DUP ESC? IF PPP_ESC REMIT 20 XOR THEN REMIT ; \ and preceded by a PPP escape character = 7D.
(13) \ HEMIT also accumulates the CRC of the un-escaped character
(14) : HTYPE (a n) ?DUP IF \ HTYPE sends an "escaped" string
(15) OVER + SWAP DO I C@ HEMIT LOOP ELSE DROP THEN ; \

(721)

(0) (Output) HEX \
(1) : W> (n) DUP DUP >< 0FF AND HEMIT 0FF AND HEMIT >< +1CS ; \ W> sends a 16 bit Word in Big Endian format
(2) \
(3) : 2C> (c1 c2) SWAP >< OR W> ; \ 2C> sends two 8 bit Characters, c1 first then c2.
(4) \ D>> sends a 32 bit Word in Big Endian format
(5) : D>> (d) W> W> ; \
(6) \ @> sends the 16 bit Word at a in Big Endian format
(7) : @> (a) @ W> ; \ 2@> sends the 32 bit Word at a in Big Endian format
(8) \
(9) : 2@> (a) 2@ D>> ; \ PPP< >PPP send a formatted PPP packet
(10) \ PPP< sends the initial Flag, address and control bytes
(11) : PPP< SERIAL_OUT GET PPP_FLAG REMIT \CRC-OUT \ >PPP sends the accumulated CRC and terminating Flag
(12) FF HEMIT 03 HEMIT ; \
(13) \ Note that since the checksum is 16 bits it is more efficient
(14) : >PPP [CRC-OUT] @ -1 XOR >< W> PPP_FLAG REMIT \ to send bytes two at at time, hence 2C> and no C>.
(15) SERIAL_OUT RELEASE ; \ The 1CS word does take care of odd length strings though.

(722)

(0) (LCP Output) HEX \
(1) 70 USER SO.UR.CE.IP 74 USER SOURCEPRT \ SO.UR.CE.IP the source IP address
(2) 76 USER DE.ST.IN.IP 7A USER DESTINPRT \ SOURCEPRT the source port number
(3) \ The IP address and port define a unique 48 bit socket
(4) : LCP (a n code seq) PPP< C021 W> (code seq) 2C> \
(5) (length) DUP (n) 4 + W> (a n) HTYPE >PPP ; \ DE.ST.IN.IP the destination IP address
(6) \ DESTINPRT the destination port number
(7) : LCP_MTU (MTU) PPP< C021 W> (REQ code) 1 (seq) 1 2C> \
(8) (length) 0A W> (MTU) W> >PPP ; \ LCP sends an LCP packet of code and sequence number seq

3

(9) \
(10) \ LCP_MTU sends an LCP request with MTU setup option.

(723)

(0) (IPCP Output) HEX \
(1) : IPCPOPT> (d opt) >< 06 OR W> D>> ; \ IPCPopt send a six byte IPCP option. Most options consist
(2) \ of an option type, length and 4 data bytes.
(3) : IPCP (IPaddr code seq) PPP< \
(4) 8021 W> (code seq) 2C> \ Only one option is sent here : the IP addresses, code 3.
(5) (options length + 2) 0A W> \
(6) (IPaddr) 3 IPCPOPT> \
(7) \ (DNS) 0. 81 IPCPOPT> 0. 82 IPCPOPT> \
(8) \ (NBNS) 0. 83 IPCPOPT> 0. 84 IPCPOPT> \
(9) >PPP ; \
(10) \

(724)

(0) (IP Output) HEX \
(1) : PPP<:IP (prot frag id#) PPP< (PPPprot=IP) 0021 W> \ PPP<:IP sends an Internet Protocol packet, an IP header plus a
(2) \1CS 4500 W> 2>R OVER (n) 14 + W> 2R> \ payload.
(3) (id#) W> (frag) W> (prot) (TTL) 40 >< OR W> \ a n define the payload string
(4) (add in the IP addresses' checksums in advance :) \ prot is the payload protocol :
(5) SO.UR.CE.IP 2@ +1CS +1CS DE.ST.IN.IP 2@ +1CS +1CS \ 1 is ICMP Internet Control Message Protocol
(6) 1CS@ -1 XOR W> \ 2 is IGMP Internet Control Message Protocol
(7) SO.UR.CE.IP 2@ D>> DE.ST.IN.IP 2@ D>> ; \ 6 is TCP Transmission Control Protocol
(8) \ hex 11 is UDP User Datagra Protocol
(9) : IP (a n prot frag id#) PPP<:IP (a n) HTYPE >PPP ; \ frag is the payload's offset in 8 byte units, with
(10) \ bit 13 zero, bit 14 as "do not fragment" and bit 15 as
(11) : TEST_IP PAD 0 11 0 1 IP ; \ "more fragments".
(12) \ id# is this IP packet's number.
(13) \ (calculate the IP header checksum
(14) \
(15) \ IP sends n bytes at a as the payload of an IP packet

 (725)

(0) (UDP Output) HEX \
(1) : UDP (a n) (UDP prot) 11 (frag) 0 (id#) 1 PPP<:IP \ A large payload can be delivered by using many IP packets by
(2) SOURCEPRT @ W> DESTINPRT @ W> \ breaking it up into fragments, the frag value being set so
(3) (n) 28 + W> 2DUP 1CS 1CS@ -1 XOR W> \ that the receiving computer can reassemble it.
(4) >PPP ; \
(5) \ UDP sends the simplest UDP packet, one IP fragment only.
(6) \ n must be less than the Maximum Transmission Unit (MTU).
(7) \ The MTU defaults to 1500 bytes, but may be setup by the LCP.

A bit more difficult is PPP input :

Again "direct action" is taken, rather than buffering and passing of pointers.

First the start of a PPP packet is detected, then the protocol type is used to calculate the
header size, and the header is directed to the Header array and the payload (the rest of
the packet) is directed to the Buffer array.
The Header array is a small 64 byte array used to save the current header and any other
non-payload data. It is destroyed when the next PPP packet arrives.
The Buffer is a large (16K byte) circular linked list which retains the most recent
payloads. Only the oldest payloads are destroyed, and only when the Buffer is full.

The CRC is accumulated during this process, and is checked when the end of the packet
is detected.

Detection of the start of packet of a PPP packet is tricky, because there may be one or
more PPP Flag characters between any two packets.

4

The first character of a packet is the first non-Flag character after one or more Flag
characters have been received.

(733)

(0) (PPP input) HEX \
(1) VARIABLE FLAG-RECVD \ FLAG_RECVD is set true when a PPP Flag character is received
(2) VARIABLE LAST[CRC-IN] \
(3) \ LAST[CRC-IN] saves the accumulated incoming data CRC _before_
(4) : HKEY (- c) RKEY \ the Flag character resets it.
(5) DUP PPP_FLAG = IF (the flag character) \
(6) [CRC-IN] @ LAST[CRC-IN] ! \CRC-IN -1 FLAG-RECVD ! \ HKEY waits for one "un-escaped" char from the serial Port
(7) ELSE (any other character, maybe "escaped") \ It waits for a second character if an escape character (7D)
(8) DUP PPP_ESC = IF DROP RKEY 20 XOR THEN \ is received.
(9) DUP [CRC-IN] +CRC \ HKEY also accumulates the PPP layer CRC and clears the
(10) THEN \ CRC if a Flag character is received.
(11) ; \
(12) \
(13) \
(14) \
(15) \

(735)

(0) (PPP input) HEX \ PPPstart waits for a PPP header and returns the Protocol type
(1) : PPPstart (- n) 0 \
(2) BEGIN DROP \ If FLAG-RECVD is true the end of the last frame's PPP Flag
(3) HKEY DUP PPP_FLAG = 0= (this one is not a Flag) \ character was the last one received, and this counts as the
(4) FLAG-RECVD @ AND (but we have had a Flag) \ first PPP Flag character of the next frame.
(5) UNTIL 0 FLAG-RECVD ! \ The start of the PPP packet is when the first non-Flag
(6) DUP FF = IF (an address byte, so remove the control byte) \ character received after one or more Flag characters.
(7) DROP HKEY DROP (and get the first protocol byte) HKEY \ (i.e empty frames are discarded)
(8) THEN (otherwise it was the first protocol byte) \ If first char. is not hex FF it is assumed that Address
(9) DUP 1 AND 0= IF >< HKEY OR THEN \ and Code Field Compression is enabled, so it will be
(10) SAVE-BUF ; \ the first of the Protocol (one or two) bytes, the last
(11) \ byte being marked by bit 0 being true. This always decodes
(12) \ Protocol Field Compression (pfc), even if it has not been
(13) \ selected.

Having directed the incoming data stream to its rightful places, the data can now be
processed. Four tasks are currently used to handle the Point to Point Protocol.
The tasks allow the functionality of the protocol to be expressed clearly, without getting
bogged down in the details of packet parsing and creation.

(773)

(0) (Peer state) \
(1) : CALC_PPP_PEER_STATE \ CALC_PPP_PEER_STATE changes our PPP peer state only when both
(2) PPP_CLIENT_STATE @ 1 = PPP_SERVER_STATE @ 1 = AND \ the client and server tasks have completed the current level.
(3) IF (LCP) 1 PPP_PEER_STATE ! .PPP_STATE THEN \
(4) PPP_CLIENT_STATE @ 2 = PPP_SERVER_STATE @ 2 = AND \
(5) IF (PAP/CHAP) 2 PPP_PEER_STATE ! .PPP_STATE THEN \
(6) PPP_CLIENT_STATE @ 3 = PPP_SERVER_STATE @ 3 = AND \
(7) IF (IPCP) 3 PPP_PEER_STATE ! .PPP_STATE THEN \
(8) PPP_CLIENT_STATE @ 4 = PPP_SERVER_STATE @ 4 = AND \
(9) IF (Open) 4 PPP_PEER_STATE ! .PPP_STATE THEN \
(10) ; \

(774)

(0) (Protocols) HEX \
(1) : PPPpacket PPPstart DUP PPP_PROT ! \ PPPpacket receives PPP packets and parses them
(2) CASE \ The header (of size determined by the protocol type) is
(3) 0021 OF PPP_IP ENDOF \ put into the Header, then the payload into the Buffer.
(4) 8021 OF PPP_IPCP ENDOF \
(5) C021 OF PPP_LCP ENDOF \
(6) C023 OF PPP_PAP ENDOF \
(7) C223 OF PPP_CHAP ENDOF \
(8) PPP_UNKNOWN \
(9) ENDCASE ; \
(10) \

5

(11) \

(775)

(0) (PPP main task) \
(1) : PPP_MAIN PPP_MAINING ACTIVATE 15 ATT! >H 20 24 WIN \ PPP_MAIN repeatedly receives PPP packets and parses them
(2) BEGIN \ for the other tasks to pick up from the Header and Buffer
(3) .PPP_STATE PPPpacket \ It also updates the display of our PPP state
(4) AGAIN ; \
(5) \

(776)

(0) (PPP client task) HEX \
(1) : PPP_CLIENT PPP_CLIENTING ACTIVATE 1F ATT! >H 1 9 WIN \ PPP_CLIENT initiates requests to the remote PPP peer.
(2) BEGIN PAUSE \
(3) NEW_PPP_PROT @ CASE \
(4) 8021 OF IPCPclient PAUSE ENDOF \
(5) C021 OF LCPclient PAUSE ENDOF \
(6) C023 OF ENDOF \
(7) C223 OF ENDOF \
(8) DROP ENDCASE \
(9) AGAIN ; \
(10) \

(777)

(0) (PPP server task) HEX \
(1) : PPP_SERVER PPP_SERVERING ACTIVATE 5F ATT! >H 0C 13 WIN \ PPPpacket receives PPP packets and parses them
(2) BEGIN PAUSE \
(3) NEW_PPP_PROT @ CASE \
(4) 8021 OF IPCPserver PAUSE ENDOF \
(5) C021 OF LCPserver PAUSE ENDOF \
(6) C023 OF ENDOF \
(7) C223 OF ENDOF \
(8) DROP ENDCASE \
(9) AGAIN ; \
(10) \

(778)

(0) (PPP kicking task) HEX \
(1) : LCP_BACKOFF 400 ?MS ; : PAP_BACKOFF 400 ?MS ; \ LCP_BACKOFF waits for a timeout period
(2) : IPCP_BACKOFF 400 ?MS ; \ PAP_BACKOFF waits for a timeout period
(3) \ IPCP_BACKOFF waits for a timeout period
(4) : PPP_KICK PPP_KICKING ACTIVATE 70 ATT! >H 0C 13 WIN \
(5) BEGIN PAUSE \ PPP_KICK performs timeout retries
(6) CALC_PPP_PEER_STATE \
(7) PPP_PEER_STATE @ CASE \
(8) -1 OF (term) LCP_TERM LCP_BACKOFF ENDOF \
(9) 00 OF (idle) ENDOF \
(10) 01 OF (LCP) LCP_KICK LCP_BACKOFF ENDOF \
(11) 02 OF (PAP/CHAP) PAP_KICK PAP_BACKOFF ENDOF \
(12) 03 OF (LCP and AUTH ok) IPCP_KICK IPCP_BACKOFF ENDOF \
(13) 04 OF (PPP open) ENDOF \
(14) DROP ENDCASE \
(15) AGAIN ; ' PPP_KICK 'PPP_KICK ! \

6

And finally the top level user interface :
(779)

(0) (Protocols) \
(1) : RUN COM1 9600 BAUD (115200. JBAUD) HEX PAGE \ RUN starts the PPP peer
(2) 0. MyIPaddr 2! HisIPaddr 2TALLY \
(3) 23 0 TAB 20 24 WIN \PPP_STATE .PPP_STATE \ VIEW starts the PPP peer in display only mode (no Client
(4) \BUF PPP_MAIN PPP_CLIENT PPP_SERVER PPP_KICK \ actions)
(5) 24 0 TAB DECIMAL ; \
(6) \ GO opens a PPP link
(7) : VIEW RUN \PPP_KICK ; \ Note that only one PPP peer needs to issue a GO command, as
(8) \ the other PPP peer will be started by the receipt of an LCP
(9) : GO 1 PPP_CLIENT_STATE ! 1 PPP_SERVER_STATE ! ; \ configure request.
(10) \
(11) : \GO -1 PPP_CLIENT_STATE ! ; \ \GO closes the PPP link
(12) \
(13) : run RUN ; : go GO ; : view VIEW ; : \tasks \TASKS ; \ run is a lower case alias for RUN etc...
(14) : K1 CR ." F1 = Help, F2 = Go, F3 = Reset, F4 = Stop tasks " ; \ K1 , K2 , K3 and K4 are the actions of function keys F1 to F4
(15) : K2 GO ; : K3 RUN ; : K4 \TASKS ; \ Press F1 for Help

The Forth program is written in 8086 polyForth. This is a 16 bit LittleEndian Forth with built
in multitasking and uses blocks for the Forth source.

The current state of the program is that two PCs connected together with a null modem
cable, and both running the program will open a PPP connection.
PAP and CHAP are not supported yet, although they are there in outline form and the
MD5 algorithm (for CHAP) is complete and tested.
The LCP and IPCP options are defined at compile time, except for the IPCP IP address
option which handles an IPCP configure request with a zero IP address option field by
returning a NAK and new IP address.
The Buffer array circular queue does not support linked lists yet. This is only relevant to IP
and higher protocols.
The PPP packet parsing and display functions correctly show the packets captured from
the PC during fetching of email, and correctly calculate the PPP packet CRC and IP and
UDP header checksums.

Howerd Oakford 2 Nov 2000

