
security at work.

5.11.01 Folie 1

Presentation OODC EuroForth 2001

OODC: Forth OO Package for Embedded
Control

Munich, November 22nd 2001

security at work.

5.11.01 Folie 2

Presentation OODC EuroForth 2001

G&D: A security company

System bank note

� security paper
� bank note printing
� bank note processing

� systems and solutions

System card

� card assembly
� SW development: operating

systems/applications

� consulting
� systems and solutions

security at work.

5.11.01 Folie 3

Presentation OODC EuroForth 2001

Why another OO Package?

� A variety of OO packages in Forth competes for standardisation

� Not suitable for embedded systems application.

� Lack of documentation.

� Licensing conditions denying commercial use.

� Low profile error checking and error recovery.

There are exceptions to this.

security at work.

5.11.01 Folie 4

Presentation OODC EuroForth 2001

Our Aims

� We suggest to define a language extension that allows to hide the
internal mechanisms of OO packages.

� We want to promote our OO package as a powerful basis for API
development.

� We propose extensions to ISO15145 so that development of OO
packages gets easier.

� We propose OO for embedded systems, providing persistent and
volatile fields in objects.

security at work.

5.11.01 Folie 5

Presentation OODC EuroForth 2001

Overview

The presentation covers

� Classes − structure, definition, usage.

� Fields − structure, usage. Definition of field types.

� RAM Fields − usage, construction.

� Primitives.

� Exceptions − throwing and catching.

� Binding − early, late, multiple late. Visibility.

� Forward declarations, abstract classes and methods.

security at work.

5.11.01 Folie 6

Presentation OODC EuroForth 2001

Features of OODC

� Static (EEPROM) and dynamic (RAM) allocation of objects

� Some fields of static objects can be located in RAM, the content of
these fields is lost (intently!) at power off

� user defined field types, user defined methods to work with these
field types

� a class is an object of type CLASS or one of its subtypes.

� Static methods and fields can be defined using subclasses of CLASS
for creating a new class.

� The common superclass of everything is BASECLASS

� Methods can be immediate

security at work.

5.11.01 Folie 7

Presentation OODC EuroForth 2001

Change requests for ISO15145

We found the following problems in ISO15145:

� Interpreter and compiler can not be �called�, their behaviour can not
be changed. Suggestion: Defer.

� Endianness is a problem.

� Alignment is a problem.

� Wordlists can not be concatenated.

� DOES> part is never immediate.

� Deferred setting of DOES> part for CREATEd data not possible.

security at work.

5.11.01 Folie 8

Presentation OODC EuroForth 2001

Classes

Classes:

Structure, Definition, Usage

security at work.

5.11.01 Folie 9

Presentation OODC EuroForth 2001

Classes: Structures

BASECLASS
ClassPointer

CLASS
ClassPointer

MethodTable

SuperClassPointer

MethodCount

MethodWordlist

FieldWordlist

FieldSize

� BASECLASS describes the
structure common to all objects

� CLASS describes the structure
common to all classes

security at work.

5.11.01 Folie 10

Presentation OODC EuroForth 2001

Classes: Definition

Classes are defined in two steps.

� Interface definition

BASECLASS CLASS PROTOTYPE: MyClass

METHOD myMethod (param obj −− result)

;PROTOTYPE

� Implementation − includes field declaration

MyClass IMPLEMENTATION

T_INT FIELD: Counter

:: myMethod APPLY Counter GET + ;;

ENDIMPLEMENTATION

security at work.

5.11.01 Folie 11

Presentation OODC EuroForth 2001

Classes: Usage

Object creation is accomplished using

MyClass OBJECT: MyObject or

MyClass NEW

From the interpreter, only published methods can be applied to an object:

MyObject MyMethod

In compiling mode, there are various possible ways of applying a method to
an object. The reason is an attempt to use early binding or compile time
knowledge whereever possible. Functions involved are

SUPER THIS APPLY APPLY−DO CAST CAST−STRICT

security at work.

5.11.01 Folie 12

Presentation OODC EuroForth 2001

Fields

Fields:

Structure, Usage.

Definition of Field Types.

security at work.

5.11.01 Folie 13

Presentation OODC EuroForth 2001

Fields: Structure

FIELDBASE
ClassPointer

FIELDCLASS
ClassPointer

MethodTable

SuperClassPointer

MethodCount

MethodWordlist

FieldWordlist

FieldSize

� FIELDBASE describes the
structure common to all field
instances

� FIELDCLASS describes the
structure common to all field
defining classes

Size

Offset

CLASS

security at work.

5.11.01 Folie 14

Presentation OODC EuroForth 2001

Fields: Usage

Fields of the basic field types (T_INT, T_POBJ, T_PMEM) are added to a
class definition as shown here:

MyClass IMPLEMENTATION

T_INT FIELD: MyCounter

MyClass T_POBJ FIELD: NextInstance

ENDIMPLEMENTATION

Field values are accessed using the GET or PUT methods of the field types
via APPLY.

For T_POBJ fields the APPLY−DO function is a means of invoking a method
in the object pointed to by the field.

security at work.

5.11.01 Folie 15

Presentation OODC EuroForth 2001

Fields: Relationships

MyObjPtr

ClassPointer

Offset: 16

: GetOffset

: GET

: PUT

Class

: GetClass

T_POBJ
ClassPointer

MethodTable

SuperClassPointer

MethodCount

MethodWordlist

FieldWordlist

FieldSize: 3 cells

Size: 1 cell

: INIT

FIELDCLASS SomeCLASS

SomeObj
ClassPointer

...

MyClass *MyObjPtr

MyCLASS

16

Instance of

...APPLY MyObjPtr GET...

security at work.

5.11.01 Folie 16

Presentation OODC EuroForth 2001

Fields: Defining Field Types

Basic field types: Define field type as an instance of FIELDCLASS.

Provide parameters as required by INIT method of FIELDCLASS, e.g.

1 FIELDBASE FIELDCLASS PROTOTYPE: T_UBYTE

;PROTOTYPE

The INIT, GET and PUT methods can be inherited from FIELDBASE.

GET and PUT are immediate:

:: GET

 THIS GetOffset POSTPONE Literal

 POSTPONE THIS+ POSTPONE C@ ;; immediate

security at work.

5.11.01 Folie 17

Presentation OODC EuroForth 2001

RAM Fields

RAM Fields:

Usage, Construction.

security at work.

5.11.01 Folie 18

Presentation OODC EuroForth 2001

RAM Fields: Usage
Static objects are allocated in EEPROM.

There may be reasons to store some fields of these objects in RAM.

DISTRIBUTEDCLASS, a subclass of CLASS has the provisions to create
distributed objects.

Example:
RAMBASECLASS DISTRIBUTEDCLASS PROTOTYPE: myRAMClass

;PROTOTYPE

myRAMclass IMPLEMENTATION

 T_UBYTE Field: field1 \ EEPROM

 T_XRSTATE Field: state \ uninitialized RAM field

 FILE T_IRPOBJ Field: Selection \ initialised RAM field

ENDIMPLEMENTATION

security at work.

5.11.01 Folie 19

Presentation OODC EuroForth 2001

RAM Fields: Structure

MyObj
ClassPointer

OBJRAMSTART

field1

field2

field4

field3

field4

EEPROM RAM

security at work.

5.11.01 Folie 20

Presentation OODC EuroForth 2001

Primitives

Primitives

security at work.

5.11.01 Folie 21

Presentation OODC EuroForth 2001

Primitives

Target : Gain speed while allowing flexible implementation of OO systems.

THIS@ returns THIS pointer, THIS+ return THIS pointer + offset.

>THIS saves old THIS to return stack and moves TOS to THIS.

R>THIS restores THIS from return stack.

THIS_X executes a method by method id on THIS object
: ExecVirtualMethodById (method_id obj −−)

 >this

 this_x

 r>this ;

security at work.

5.11.01 Folie 22

Presentation OODC EuroForth 2001

Exceptions

Exceptions:

Throwing and catching.

security at work.

5.11.01 Folie 23

Presentation OODC EuroForth 2001

Exceptions

In an OO environement, the xt of a method is not directly accessible.

CATCHING is a prefix to CAST, THIS, APPLY, APPLY−DO, SUPER
making these words catch exceptions from the method called.

Additional primitive THIS_C required, providing the functionality of
THIS_X but using CATCH instead of EXECUTE

Throw may be �misused� to throw object addresses.

:: MyMethod (params obj −−)

 CATCHING APPLY MyField GET

 0<> IF .� exc.� THEN

;;

security at work.

5.11.01 Folie 24

Presentation OODC EuroForth 2001

Binding

Binding:

Early, late, multiple late.

Visibility.

security at work.

5.11.01 Folie 25

Presentation OODC EuroForth 2001

Early binding

Target : Gain speed

SUPER invoke method of super class on THIS.

CAST−STRICT invoke method of given class on object if object is a direct
instance of that class.

APPLY executes a field accessor method at compile time, if it is immediate.

Benefits: No method table lookups, no class hierarchy searches at runtime.

:: INIT (params obj −−)

 SUPER INIT

 APPLY MyField GET

;;

security at work.

5.11.01 Folie 26

Presentation OODC EuroForth 2001

Late binding

Necessary for polymorphism

THIS invokes method on THIS. No class hierarchy search required, no
swapping of THIS required, method id can be retrieved at compile time.

CAST invokes method of given class on TOS object if object is a instance of
that class or of a child class. Method id can be retrieved at compile time.

APPLY−DO retrieves object via T_POBJ field in THIS and executes method
on that object. No class hierarchy search required, method id can be retrieved
at compile time. PUT method of T_POBJ fields must check type, APPLY−
DO must check for NULL pointer at runtime.

security at work.

5.11.01 Folie 27

Presentation OODC EuroForth 2001

Late binding Sample Code

\ search for list element with the given search key

:: List−Search (key obj −− obj | false)

 THIS GetKey over

 [Key] CAST Equals

 IF DROP THIS@

 ELSE CATCHING

 APPLY−DO NextElement List−Search

 NULLPOINTER−EXCEPTION = IF FALSE THEN

 THEN

;;

security at work.

5.11.01 Folie 28

Presentation OODC EuroForth 2001

Multiple late binding
(public methods)

Methods of similar name can be PUBLISHed from disjunct classes.

The published part of the method determines the object type at runtime and searches
its body for an applicable method.

ANNOUNCE publishes methods before they are defined. They can be used in colon
definitions then. Their content is set lateron using PUBLISH.

The run time cost for using published methods is high. Reasons:

� class hierarchy search at runtime

� method id retrieval at runtime

� swapping of THIS required

Note: Parameters must be compatible for published methods of same name

security at work.

5.11.01 Folie 29

Presentation OODC EuroForth 2001

Multiple Late Binding
Sample Code
\ two disjunct classes publishing Method1

CLASS1 IMPLEMENTATION

 :: Method1 (n obj −− n) dup * ;;

 PUBLISH Method1

ENDIMPLEMENTATION

CLASS2 IMPLEMENTATION

 :: Method1 (n obj −− n) dup + ;;

 PUBLISH Method1

ENDIMPLEMENTATION

15 CLASS2 new Method1

security at work.

5.11.01 Folie 30

Presentation OODC EuroForth 2001

Forward declarations

Forward declarations,

abstract classes and methods.

security at work.

5.11.01 Folie 31

Presentation OODC EuroForth 2001

Forward declarations

Class stubs permit definition of T_POBJ fields before class definitions are
complete.

Method stubs allow compiling calls to methods before actually implementing
them.

If a method stub remains unchanged until the class implementation is
finalised, this method becomes an abstract method, meaning the class can not
be instantiated.

security at work.

5.11.01 Folie 32

Presentation OODC EuroForth 2001

Future options

� Interpretation of stack diagrams (�Method signature�) and
optimisation/verification on basis of these.

� Extension of :: to detect field accesses and compile APPLY or APPLY−
DO in that case. Further extension detecting a sequence <class>
<method> and compiling CAST in that case.

� Dynamic wordlists, allowing to load/unload classes on demand.

� Locals scheme, providing stack framing and method signatures.

� Providing enough type information to avoid type casts and type
checks at run time.

security at work.

5.11.01 Folie 33

Presentation OODC EuroForth 2001

Thank you very much for
taking the time!

And now:

To your questions �

