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Abstract

Forth has been traditionally implemented as in-

direct threaded code, where the code for non-

primitives is the code-�eld address of the word. To

get the maximum bene�t from combining sequences

of primitives into superinstructions, the code pro-

duced for a non-primitive should be a primitive fol-

lowed by a parameter (e.g., lit addr for variables).

This paper takes a look at the steps from a tra-

ditional threaded-code implementation to superin-

structions, and at the size and speed e�ects of the

various steps. The use of superinstructions gives

speedups of up to a factor of 2 on large benchmarks

on processors with branch target bu�ers, but re-

quires more space for the primitives and the opti-

mization tables, and also a little more space for the

threaded code.

1 Introduction

Traditionally, Forth has been implemented using an

interpreter for indirect threaded code. However,

over time programs have tended to depend less on

speci�c features of this implementation technique,

and an increasing number of Forth systems have

used other implementation techniques, in particu-

lar native code compilation.

One of the goals of the Gforth project is to

provide competetive performance, another goal is

portability to a wide range of machines. To meet

the portability goal, we decided to stay with a

threaded-code engine compiled with GCC [Ert93];

to regain ground lost on the e�ciency front, we de-

cided to combine sequences of primitives into su-

perinstructions. This technique has been proposed

by Sch�utz [Sch92] and implemented by Wil Baden

in this4th [Bad95] and by Marcel Hendrix in a ver-

sion of eforth. It is related to the concepts of super-

combinators [Hug82] and superoperators [Pro95].

Non-primitives in traditional indirect threaded

code cannot be combined into superinstructions,

but it is possible to compile them into using prim-

itives that can be combined, and then into using

direct threading instead of indirect threading. This

�Correspondence Address: Institut f�ur Computer-

sprachen, Technische Universit�at Wien, Argentinierstra�e 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

header of foo
code field

body

header of x
code field

body

docol code

dovar code

@ code

;s code

code field

code field

Figure 1: Traditional indirect threaded code

paper describes the various steps from an indirect

threaded implementation to an implementation us-

ing superinstructions (Section 2), and evaluates the

e�ect of these steps on run-time and code size (Sec-

tion 4); these steps also a�ect cache consistency is-

sues on the 386 architecture, which can have a large

inuence on performance (Section 3).

2 Threaded code variations

We will use the following code as a running example:

variable x

: foo x @ ;

2.1 Traditional indirect threaded

code

In indirect threaded code (Fig. 1) the code of a colon

de�nition consists of a sequence of the code �eld ad-

dresses (CFAs) of the words contained in the colon

de�nition. Such a CFA points to a code �eld that

contains the address of the machine code that per-

forms the function of the word.

The reason for the indirection through the code

�eld is to support non-primitives, like the variable

x in our example: The dovar routine can compute

the body address by adding the code �eld size to

the CFA.
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Figure 2: Direct threaded code, traditional variant

2.2 Traditional-style direct threaded

code

For primitives the indirection is only needed be-

cause we do not know in advance whether the next

word is a primitive or not. So, in order to avoid

the overhead of the indirection for primitives, some

Forth implementors have implemented a variant of

this scheme using direct threaded code (see Fig. 2).

For primitives, the threaded code for a word points

directly to the machine code, and the execution to-

ken points there, too.

For non-primitives, the threaded code cannot

point directly to the machine-code routine (the

doer), because the doer would not know how to

�nd the body of the word. So the threaded code

points to a (variant of the) code �eld, and that �eld

contains a machine-code jump to the doer.

This change replaces a load in every word by a

jump in every non-primitive. Because only 20%{

25% of the dynamically executed words are non-

primitives, direct threading is faster on most proces-

sors, but not always on some popular processors

(see Section 3).

The main disadvantage of direct threading in

an implementation like Gforth is that it requires

architecture-speci�c code for creating the contents

of the code �elds (Gforth currently supports direct

threading on 7 architectures).

2.3 Primitive-centric threaded code

An alternative method to provide the body address

is to simply lay it down into the threaded code as

immediate parameter. Then the threaded code for

a non-primitive does not point to the \code �eld"

of the nonprimitive, but to a primitive that gets

the inline parameter and performs the function of

the non-primitive. For the variable x in our exam-

ple this primitive is lit (the run-time primitive for

literal).

This scheme is shown in Figure 3. The non-

primitives still have a code �eld, which is not used

in ordinary threaded code execution. But it is used

for execute (and dodefer), because execute con-
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Figure 3: Primitive-centric direct threaded code
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Figure 4: Compiling non-primitives for the

primitive-centric scheme (with the least number of

additional primitives)

sumes a one-cell execution token (represented by a

CFA), not a primitive with an argument.

Figure 4 shows how the various classes of non-

primitives can be compiled. Instead of using a se-

quence of several primitives for some classes, new

primitives could be introduced that perform the

whole action in one primitive. However, if we com-

bine frequent sequences of primitives into superin-

structions, this will happen automatically; explic-

itly introducing these primitives may actually de-

grade the e�cacy of the superinstruction optimiza-

tion, because the optimizer would not know without

additional e�ort that, e.g., our value-primitive is the

same as the lit @ combination it found elsewhere.

This scheme takes more space for the code of non-

primitives; this is the original reason for preferring

the traditional style when memory is scarce. There

probably is little di�erence from traditional-style

direct threading in run-time performance on most

processors: Only non-primitives are a�ected; in the

traditional-style scheme there is a jump and an ad-

dition to compute the body address, whereas in the

primitive-centric scheme there is a load with often

fully-exposed latency. For some popular processors

the performance di�erence can be large, though (see

Section 3).
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Figure 5: Hybrid direct/indirect threaded code

2.4 Hybrid direct/indirect threaded

code

With the primitive-centric scheme the Forth engine

(inner interpreter, primitives, and doers) is divided

into two parts that are relatively independent of

each other:

� Ordinary threaded code.

� Execute (and dodefer), code �elds and execu-

tion tokens.

Only execute (and dodefer) deals with execution

tokens and code �elds1, so we can modify these com-

ponents in coordinated ways. The modi�cation we

are interested in is to use indirect threaded code

�elds; of course this requires an additional indirec-

tion in the execute code, it requires adding code

�elds to primitives (see Fig. 5), and the execution

tokens are the addresses of the code �elds. How-

ever, the ordinary threaded code points directly to

the code of the primitives, and uses direct threaded

NEXTs.

The main advantage of this hybrid scheme is that

we do not need to create machine-code jumps in

the code �eld, which helps the portability goals of

Gforth and reduces the maintenance e�ort. An-

other advantage is that this allows us to separate

code and data completely, without incurring the

run-time cost of indirect threaded code for most of

the code.

The overall performance impact should be small,

because execute and dodefer account for only 1%{

1.6% of the executed primitives and doers; and it

should be a slight speedup on most processors, be-

cause most (70%{97%) of the executed or deferred

words are colon de�nitions, and indirect threaded

code is often faster for non-primitives (because a

jump is often more expensive than a @).

1Expanding ;code-de�ned words into lit cfa execute

ensures that this holds for uses of ;code-de�ned words, too.
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Figure 6: A does>-de�ned word with indirect and

double-indirect threaded code.

Another interesting consequence of the division

between ordinary threaded code and execute etc.

in primitive-centric code is that doers (e.g., docol)

can only be invoked by execute; therefore only

execute has to remember the CFA for use by the

doers. Unfortunately, the obvious way of expressing

this in GNU C leads to the conservative assump-

tion that this value is alive (needs to be preserved)

across all primitives, and this results in suboptimal

register allocation.

2.5 Double-indirect threaded code

For does>-de�ned words, the inner interpreter gets

the CFA and has to �nd the body, the code ad-

dress of dodoes, and the does-code (the Forth code

behind the does>). With indirect threaded code,

Gforth uses a two-cell code �eld that contains the

code address and the does-code. Therefore all code

�elds in Gforth are two cells wide.

An alternative would be to use a double indirec-

tion (@ @) to get from the code �eld to the code ad-

dress (double-indirect threaded code, see Fig. 6). In

this scheme, the code �eld for does>-de�ned words

points near the does-code, and the cell there points

to dodoes.

This allows to reduce the code �eld size to one

cell, but requires an additional indirection on every

use of the code �eld; using double-indirect thread-
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Figure 7: Combining primitives into superinstruc-

tions in hybrid direct/indirect threaded code

ing for all code would incur a signi�cant perfor-

mance penalty, but the penalty is small for a hybrid

with a primitive-centric direct threading scheme.

Double-indirect threaded code also requires one ad-

ditional cell for the additional indirection for every

primitive.

Forth systems using indirect threaded code and

one-cell code �elds usually use a scheme for im-

plementing does>-de�ned words that is similar to

our double-indirect threaded scheme, with one dif-

ference: instead of a pointer to dodoes there is a

machine-code jump to dodoes between (does>) and

the does-code. Gforth uses an appropriately mod-

i�ed variant of this approach for direct threaded

code on some platforms [Ert93].

2.6 Superinstructions

We can add new primitives (superinstructions) that

perform the action of a sequence of primitives.

These superinstructions are then used in place of

the original sequence; the immediate parameters to

the original primitives are just appended to the su-

perinstruction (see Fig. 7). In Gforth we select a

few hundred frequently occuring sequences as su-

perinstructions.

This optimization can be used with any of the

threading schemes explained earlier, but it gives

better results with the primitive-centric schemes,

because a traditional-style non-primitive cannot be

part of a superinstruction. However, it is possible

to use the traditional scheme and convert only the

invocations of those non-primitives into primitive-

centric style that are to be included in superinstruc-

tions.

Superinstructions reduce the threaded code size,

but require more native code. The main advantage

(and the reason for their implementation in Gforth)

is the reduction in run-time, mainly by reducing the

number of mispredicted indirect branches.

3 Cache consistency

This section discusses an issue that has a signi�cant

performance impact on most Forth implementation

techniques on the 386 architecture.

Modern CPUs usually split the �rst-level cache

into an instruction cache and a data cache. Instruc-

tion fetches access the instruction cache, loads and

stores access the data cache.

If a store writes an instruction, how does the in-

struction cache learn about that? On most archi-

tectures the program is required to announce this

to the CPU in some special way after writing the in-

struction, and before executing it. However, the 386

architecture does not require any such software sup-

port2, so the hardware has to deal with this problem

by itself. The various implementations of this ar-

chitecture deal with this problem in the following

ways:

� The Pentium, Pentium MMX, K5, K6, K6-2,

and K6-3 don't allow a cache line (32 bytes

on these processors) to be in both the instruc-

tion and the data cache. If the instruction

cache loads the line, the data cache has to evict

it �rst, writing back the modi�ed instruction.

Similarly, when the line is loaded into the data

cache, it is invalidated in the instruction cache.

The e�ect of this is that having alternating

data accesses and instruction executions in the

same cache line is relatively expensive (dozens

of cycles on each switch).

� The Pentium Pro, Pentium II, Pentium III,

Celeron, Athlon and Duron allow the same

cache line to be in both caches, in shared state

(i.e., read-only). As soon as there is a write to

the line, the line is evicted from the instruction

cache. The e�ect is that it is relatively expen-

sive to alternate writes to and instruction exe-

cutions from the same cache line (32 bytes on

the Intel processors, 64 bytes on the AMDs).

� According to the Pentium 4 optimization man-

ual [Int01], it is expensive on the Pentium 4

to alternate writes and instruction executions

from the same 1KB-region; actually the man-

ual recommends keeping code and data on sep-

arate pages (4KB).

How are various Forth implementation techniques

a�ected by that?

Indirect-threaded code. If primitives are im-

plemented as shown in Fig. 1, i.e., with code �elds

adjacent to the code, the data read from the code

�eld is soon followed by an instruction read nearby

(usually in the same cache line). This leads to low

performance on Pentium{K6-3; e.g., Win32Forth

su�ered heavily from this.

2Actually, the 486 requires a jump in order to ush the

pipeline, but that does not help with the cache consistency

problem.



Fortunately, this problem is easy to avoid by

putting the code into an area separate from the code

�elds. Gforth does this, and performs well on these

processors with indirect threaded code.

Direct-threaded code. Non-primitives have a

jump in the code �eld close to the data that usually

is accessed soon after executing the jump. So for

traditional-style direct-threaded code the Pentium{

K6-3 will slow down when executing non-primitives,

and the Pentium Pro{Pentium 4 will slow down

when writing to variables and values. There may

be additional slowdowns due to code �elds for

other words being in the same cache line as the

data, especially with the longer cache lines of the

Athlon/Duron, and the 1KB consistency checking

region of the Pentium 4. Note that these problems

do not show up when running some of the popular

small benchmarks, because their inner loops often

contain only primitives.

These problems can be avoided by using indirect

threaded code or by using primitive-centric direct-

threaded code; in the latter case execute still ex-

ecutes the jumps in the code �elds and will cause

slowdowns. This can be avoided by using a hybrid

direct/indirect-threaded code scheme.

Native code. Many Forth-to-native-code compil-

ers store the native code here, interleaving that

code with data for variables, headers, etc. This

can lead to performance loss due to cache consis-

tency maintenance in a somewhat erratic fashion

(depending on which data shares a cache line with

which code in a particular run). It also leads to bad

utilization of both caches.

This problem can be avoided by having separate

code and data memory areas.

4 Evaluation

This section compares the execution speed and

memory requirements of a number of variants of

Gforth:

trad Traditional-style threaded code.

doprims Primitive-centric threaded code using

special primitives for values, �elds, etc., such

that only one primitive is executed per non-

primitive.

0 Primitive-centric code, expanding some words

into multiple primitives, as shown in Fig. 4.

Equivalent to using 0 superinstructions.

50, 100, 200, 400, 800, 1600 Using 50, 100, ...

superinstructions representing the n most fre-

quently executed sequences in brainless (a

chess program written by David K�uhling).
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Figure 8: Execution time of bench-gc relative

to traditional-style indirect threaded code on an

800MHz Athlon
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Figure 9: Execution time of bench-gc relative

to traditional-style indirect threaded code on a

600MHz 21164a

We built and ran all of these variants with both

indirect and direct threaded code, making it possi-

ble to identify how various components of a scheme

contribute to performance. We did not run hybrid

schemes (they are not yet implemented in Gforth),

but we expect the performance to be very close to

direct threaded code. For technical reasons, the ker-

nel of Gforth (a part that contains, e.g., the com-

piler and text interpreter, but not the full wordlist

and search order support) is always compiled in

mostly Scheme 0 in these experiments.

4.1 Speed

Figure 8 and 9 show how the bench-gc benchmark

behaves on an Athlon and a 21164a (Alpha archi-

tecture), respectively. Other benchmarks behave in

similar ways, although the magnitude of the e�ects



varies with the benchmark and with the processor.

For the traditional-style scheme, indirect thread-

ing is faster than direct threading on current 386

architecture processors (by up to a factor of 3), be-

cause of cache consistency issues; on other architec-

tures direct threading beats indirect threading also

for the traditional-style scheme, but not by as much

as in the other schemes (because of the additional

jumps).

The primitive-centric scheme gives about the

same performance as the traditional-style scheme

for indirect threaded code. For direct threaded code

it produces a good speedup on the 386 architecture,

mainly due to the elimination of cache invalidations.

On the Alpha it gets a little faster, because of the

elimination of the jumps through the code �elds.

Overall, the combination of the primitive-centric

scheme and direct threading runs faster than tra-

ditional indirect threaded code on all processors.

Expanding non-primitives into multiple primi-

tives (Scheme 0) costs some performance, but intro-

ducing superinstructions recovers that right away.

On the Athlon, the Pentium III, and the 21264 the

speedup from superinstructions is typically up to a

factor of 2 for large benchmarks, and up to a fac-

tor of 5.6 on small benchmarks (matrix ). A large

part of this speedup is caused by the improved in-

direct branch prediction accuracy of the BTB on

these CPUs. The speedup from superinstructions

is quite a bit less on processors without BTB like

the 21164a and the K6-2 (e.g., for bench-gc a factor

of 1.38 on the K6-2 vs. 1.86 for the Athlon).

Having a large number of superinstructions gives

diminishing returns. On the 21164a, there are also

slowdowns from more superinstructions in some

con�gurations; this is probably due to conict

misses in the small (8KB) direct-mapped instruc-

tion cache.

Using a large number of superinstructions also

poses some practical problems: Compiling Gforth

with 800 superinstructions requires about 100MB

virtual memory on the 386 architecture, compil-

ing it with 1600 superinstructions requires about

300MB and 1.5 hours on a 800MHz Athlon with

192MB RAM. So, in the release version Gforth will

probably use only a few hundred superinstructions.

4.2 Size

Figure 10 shows data about the sizes of various com-

ponents of Gforth:

Threaded code is the non-kernel part of the

threaded code of Gforth for the 386 architec-

ture; it contains, e.g., the full wordlist and

search order support, see, and the assembler

and disassembler. The shown size includes

threaded code
native code

engine data

bytes

trad
doprims

0
50

100
200

400
800

1600
0

50000

100000

Figure 10: The sizes of Gforth's primitives (native

code), engine data (mainly peephole optimization

tables), and threaded code a�ected by the di�erent

schemes

everything that appears in the dictionary, not

just the threaded code. The code grows quite

a bit by going to the primitive-centric scheme,

and the savings incurred by superinstructions

cannot fully recover that cost.

Native code is the text size of the Gforth binary,

which consists mainly of the code for the prim-

itives. For large numbers of superinstructions,

this grows signi�cantly.

Engine data is the data size of the Gforth binary,

which contains superinstruction optimization

tables, among other things. These, of course

grow with the number of superinstructions.

Overall, superinstructions as currently imple-

mented in Gforth cannot reduce the code size;

other techniques, like converting only those non-

primitives into a primitive-centric form that are

combined into a superinstruction, or eliminating

code �elds, and switching to byte code might change

the picture for su�ciently large programs. On the

other hand, the increase in memory consumption

from primitive-centric schemes and superinstruc-

tions should not be a problem in desktop and server

systems. But for many embedded systems, the tra-

ditional scheme will continue to be the threaded-

code method of choice.

5 Conclusion

Switching from traditional-style threaded code to a

primitive-centric scheme opens up a number of op-

portunities, most notably a wider applicability of

superinstructions, but it also makes direct threaded

code viable on 386 architecture processors, and en-

ables a hybrid direct/indirect (or direct/double-



indirect) threading scheme that o�ers the perfor-

mance of direct-threaded code without requiring

any (non-portable) machine-code generation. The

price paid is a moderate increase in threaded-code

size.

Superinstructions o�er good speedups on proces-

sors with BTBs, moderate speedups on proces-

sors without BTBs, and a moderate reduction in

threaded code size (but not enough to fully recover

the increase through primitive-centric code), but re-

quire more space for the primitives.
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