
A Web-Server in Forth

Bernd Paysan

October 27, 2001

Abstract

An HTTP-Server in Gforth is presented as an opportunity
to show that you can do string-oriented things with Forth as
well. The development time (a few hours) shows that Forth
is an appropriate tool for this kind of work and delivers fast
results.

This paper was originally presented at the Forth Tagung
2000 conference in Hamburg, later translated to English
(proofreading and corrections by Chris Jakeman), and for
the presentation on EuroForth 2001 I added the description
of the transparent proxy extension.

1 Introduction

Since I have always given bigFORTH/MINOS-related pre-
sentations in the last few years, I'll do something with
Gforth this time. Gforth is another tool you can do neat
things with, and in contrast to what you here elsewhere,
Forth is suitable for almost anything. Even a web-server.

In this age of the �new economy�, the Internet is impor-
tant. Everybody is �in there� except Forth, which hides in
the embedded control niche. There isn't any serious reason
for that. The following code was created in just a few hours
of work and mostly operates on strings. The old prejudice,
that Forth was good at biting bits, but has troubles with
strings, is thus disproved.

1.1 Motivation

What do you need a web-server for in Forth? Forth is used
for measurement and control in remote locations such as
the sea-bed or the crater of a volcano. Less remotely, Forth
may be used in a refrigerator and, if that stops working,
things soon get messy. So a communication thingy is built
in.

How much better would it be if instead of "some com-
munication thingy built in", there was a standard protocol.
HTTP is accessible from the web-cafe in Mallorca, or from
mobile yuppie toys such as PDAs or cell phones. Perhaps
one should build such a web-server into each stove and into
the bath, so that people can use their cell phone on hol-
idays to check repeatedly (every three minutes?) if they
really turned their stove o�.

Anyway, the customer, boss or whoever buys the product,
wants to hear that there is some Internet-thingy build in,
especially if one isn't in e-Business already. And the costs

must be zero too, because there's really no money in the
�new economy�.

But let's take this slowly, step by step.

2 A Web Server, Step by Step

Actually, you had to study the RFC1-documents. The
RFCs in question are RFC 945 (HTTP/1.0) and RFC 2068
(HTTP/1.1), which both refer to other RFCs. Since these
documents alone are much longer than the source code pre-
sented below (and reading them would take longer than
writing the sources), we will defer that for later. The web
server thus won't be 100% RFC conforming (i.e. imple-
ment all features), and conforms only as far as necessary
for a typical client like Netscape. However additions are
easy to achieve.

A typical HTTP-Request looks like this:

GET /index.html HTTP/1.1

Host: www.paysan.nom

Connection: close

(Note the empty line at the end). And the response is

HTTP/1.1 200 OK

Date: Tue, 11 Apr 2000 22:27:42 GMT

Server: Apache/1.3.12 (Unix) (SuSE/Linux)

Connection: close

Content-Type: text/html

<HTML>

...

This looks quite trivial, so let's start. The web server should
run under Unix/Linux. That takes one problem out of our
hands - how we get to our socket - since that's what inetd,
the Internet daemon, does for us. We only need to tell it
on which port our web server expects data, and enter that
into the �le /etc/inetd.conf:

Gforth web server

gforth stream tcp nowait.10000 wwwrun

/usr/users/bernd/bin/httpd

1Request For Comments � the documents of Internet standards

are called like that.

We won't replace the default web server just yet (something
might not work straight away), so we shall need a new port
and that one goes into the �le /etc/services:

gforth 4444/tcp # Gforth web server

When we do a restart or a killall -HUP inetd inetd
will realize the changes and starts our web server for all
requests on port 4444. What we need next is an executable
program. Gforth supports scripting with #!, as common for
scripting languages in Unix. In the line below, the blank is
signi�cant:

#! /usr/local/bin/gforth

warnings off

We better disable any warning. Let's load a small string
library (see attachment):

include string.fs

We shall need a few variables for the URL requested from
the server, the arguments, posted arguments, protocol and
states.

Variable url \ URL

Variable posted \ POST args

Variable url-args \ URL args

Variable protocol \ stores the protocol

Variable data \ true: return data

Variable active \ true for POST

Variable command? \ true: request line

A request consist of two parts, the request line and the
header. Spaces are separators. The �rst word in a line is
a �token� indicating the protocol, the rest of the line, or
one/two words are parameters.

Since we can process a request only once the whole header
has been parsed, we save all the information. Therefore we
de�ne two small words which take a word representing the
rest of a line and store it in a string variable:

: get (addr --) name rot $! ;

: get-rest (addr --)

source >in @ /string dup >in +!

rot $! ;

As told above, we have header values and request com-
mands. To interpret them, we de�ne two wordlists:

wordlist constant values

wordlist constant commands

But before we can really start, the URL might contain
spaces and other special characters, what to do with them?
HTTP advises to transmit these special characters in the
form %xx, where xx are two hex digits. We thus must re-
place these characters in the �nished URL:

: rework-% (add --) { url }

base @ >r hex

0 url $@len 0 ?DO

url $@ drop I + c@ dup '% = IF

drop 0. url $@ I 1+ /string

2 min dup >r >number r> swap - >r 2drop

ELSE 0 >r THEN over url $@ drop + c! 1+

r> 1+ +LOOP url $!len

r> base ! ;

So, that's done. But stop! URLs consist of two parts: path
and the optional arguments. Separator is `?'. So �rst split
the string into two parts:

: rework-? (addr --)

dup >r $@ '? $split url-args $! nip r> $!len ;

So we've de�ned the basics and can start. Each requests
fetches a URL and the protocol, splits the URL into path
and arguments and replaces the special character glyphs by
the real characters (but those in the arguments remain as
we don't yet know what should happen to them). Finally,
we must switch over to another vocabulary, since the header
follows after the request.

: >values (--) values 1 set-order command? off ;

: get-url (--) url get protocol get-rest

url rework-? url rework-% >values ;

So now we can de�ne the commands. According to the RFC,
we only need GET and HEAD, POST is then a bonus.

commands set-current

: GET get-url data on active off ;

: POST get-url data on active on ;

: HEAD get-url data off active off ;

And now for the header values. Since we need a string
variable for each value, and otherwise want only to store
the string, we build that with CREATE-DOES>. Again: we
need a variable and a word, which stores the rest of the line
there. In two di�erent vocabularies. The latter with a colon
behind.
Fortunately, Gforth provides nextname, an appropriate

tool for this. We construct exactly the string we need and
call VARIABLE and CREATE afterwards

: value: (--) name definitions

2dup 1- nextname Variable values set-current nextname

here cell - Create , definitions DOES> @ get-rest ;

And now we set to work and de�ne all the necessary vari-
ables:

value: User-Agent:

value: Pragma:

value: Host:

value: Accept:

value: Accept-Encoding:

value: Accept-Language:

value: Accept-Charset:

value: Via:

value: X-Forwarded-For:

value: Cache-Control:

value: Connection:

value: Referer:

value: Content-Type:

value: Content-Length:

There are some more (see RFC), but those are all we need
at the moment.

2.1 Parsing a Request

Now we must parse the request. This should be completely
trivial, we could just let the Forth interpreter chew it but
for one little caveat:

1. Each line ends with CR LF, while Gforth under Unix
expects lines to end with an LF only. We thus must
remove the CR. And

2. each header ends with an empty line, not some exe-
cutable Forth word. We thus must read line for line
with refill, remove CRs from the line end, and look
then if the line was empty.

Variable maxnum

: ?cr (--)

#tib @ 1 >= IF source 1- + c@ #cr = #tib +! THEN ;

: refill-loop (-- flag)

BEGIN refill ?cr WHILE interpret >in @ 0= UNTIL

true ELSE maxnum off false THEN ;

So, the key things are done now. Since we can't let the Forth
interpreter loose on the raw input stream stdin, we pre-
process the stream ourselves. We initialize a few variables
which we need to interpret anyway, and steal some code
from INCLUDED:

: get-input (-- flag ior)

s" /nosuchfile" url $! s" HTTP/1.0" protocol $!

s" close" connection $! infile-id push-file

loadfile ! loadline off blk off commands

1 set-order command? on ['] refill-loop catch

Waiiiit! The request isn't done here. The method POST,
which was added as bonus, expects the data now. The
length fortunately is stored as base 10 number in the �eld
�Content-Length:�.

active @ IF

s" " posted $! Content-Length $@ snumber? drop

posted $!len posted $@ infile-id read-file

throw drop

THEN only forth also pop-file ;

2.2 Answer a Request

OK, we've handled a request, and now we must answer. The
path of the URL is unfortunately not as we want it: we want
to be somehow Apache compatible, i.e. we have a �global
document root� and a subdirectory in the home directory of
each user, where he can put his personal home page. Thus
we can't do anything else but look at the URL again and
�nally check, if the requested �le really is available:

Variable htmldir

: rework-htmldir (addr u -- addr' u' / ior)

htmldir $!

htmldir $@ 1 min s" ~" compare 0=

IF s" /.html-data" htmldir dup $@

2dup '/ scan nip - nip $ins

ELSE s" /usr/local/httpd/htdocs/"

htmldir 0 $ins THEN

htmldir $@ 1- 0 max + c@ '/ =

htmldir $@len 0= or

IF s" index.html" htmldir dup $@len $ins THEN

htmldir $@ file-status nip ?dup ?EXIT

htmldir $@ ;

Next, we must decide how the client should render the �le
� i.e. which MIME type it has. The �le su�x is all we
need to decide, so we extract it next.

: >mime (addr u -- mime u')

2dup tuck over + 1- ?DO

I c@ '. = ?LEAVE 1- -1 +LOOP

/string ;

Normally, we'd transfer the �le as is to the client (transpar-
ent). Then you tell the client how long the �le is (otherwise,
we'd have to close the connection after each request). We
open a �le, �nd its size and report that to the client.

: >file (addr u -- size fd)

r/o bin open-file throw >r

r@ file-size throw drop

." Accept-Ranges: bytes" cr

." Content-Length: " dup 0 .r cr r> ;

: transparent (size fd --) { fd }

$4000 allocate throw swap dup 0 ?DO

2dup over swap $4000 min

fd read-file throw type

$4000 - $4000 +LOOP drop

free fd close-file throw throw ;

We do all the work with transparent, using TYPE to send
the �le in chunks to support �keep-alive� connections, which
modern web browsers prefer. The creation of a new connec-
tion is signi�cantly more �expensive� than to continue with
an established one. We bene�t on our side also, since start-
ing Gforth again isn't for free either. If the connection is
keep-alive, we return that, reduce maxnum by one, and re-
port to the client how often he may issue further requests.
When it's the last request, or no further are pending, we
send that back, too.

: .connection (--)

." Connection: "

connection $@ s" Keep-Alive"

compare 0= maxnum @ 0> and

IF connection $@ type cr

." Keep-Alive: timeout=15, max="

maxnum @ 0 .r cr -1 maxnum +!

ELSE ." close" cr maxnum off THEN ;

Now we just need some means to recognize MIME �le suf-
�xes and sned the appropriate transmissions. For the re-
sponse, we must also �rst send a header. We build it
from back to front here, since the top de�nitions add their
stu� ahead. To make the association between �le su�xes
and MIME types easy, we simply de�ne one word per suf-
�x. That gets the MIME type as string. transparent:

does all that for all the �le types that are handled using
transparent:

: transparent: (addr u --)

Create here over 1+ allot place

DOES> >r >file

.connection ." Content-Type: "

r> count type cr cr

data @ IF transparent

ELSE nip close-file throw THEN ;

There are hundreds of MIME types, but who wants to enter
all of them? Nothing could be easier than this, we steal the
MIME types that are already known to the system, say from
/etc/mime.types. The �le lists the mime type on the left
paired with the �le su�xes on the right (sometimes none).

: mime-read (addr u --)

r/o open-file throw push-file

loadfile ! 0 loadline ! blk off

BEGIN refill WHILE name

BEGIN >in @ >r name nip WHILE

r> >in ! 2dup transparent:

REPEAT

2drop rdrop

REPEAT

loadfile @ close-file pop-file throw ;

One more thing we need: for active content we want to use
server side scripting (in Forth, of course). Since we don't
know the size of these requests in advance, we don't report
it but close the connection instead. That relieves us of the
problem of cleaning up the trash the user is creating with
his active content (that's Forth code!).

: lastrequest

." Connection: close" cr maxnum off

." Content-Type: text/html" cr cr ;

So let's start with the de�nition of MIME types. Get a new
wordlist. Active content ends with shtml and is included.
We provide a few special types and the rest we get from the
system �le mentioned above. For unknown �le types, we
need a default type, text/plain.

wordlist constant mime

mime set-current

: shtml (addr u --) lastrequest

data @ IF included

ELSE 2drop THEN ;

s" application/pgp-signature" transparent: sig

s" application/x-bzip2" transparent: bz2

s" application/x-gzip" transparent: gz

s" /etc/mime.types" mime-read

definitions

s" text/plain" transparent: txt

2.3 Error Reports

Sometimes a request goes wrong. We must be prepared for
that and respond with an appropriate error message to the
client. The client wants to know which protocol we speak,
what happened (or if everything is OK), who we are, and in
the error case, a error report in plain text (coded in HTML)
would be nice:

: .server (--) ." Server: Gforth httpd/0.1 ("

s" os-class" environment? IF type THEN .")" cr ;

: .ok (--) ." HTTP/1.1 200 OK" cr .server ;

: html-error (n addr u --)

." HTTP/1.1 " 2 pick . 2dup type

cr .server 2 pick &405 =

IF ." Allow: GET, HEAD, POST" cr THEN

lastrequest

." <HTML><HEAD><TITLE>" 2 pick . 2dup type

." </TITLE></HEAD>" cr

." <BODY><H1>" type drop ." </H1>" cr ;

: .trailer (--)

." <HR><ADDRESS>Gforth httpd 0.1</ADDRESS>" cr

." </BODY></HTML>" cr ;

: .nok (--) command? @

IF &405 s" Method Not Allowed"

ELSE &400 s" Bad Request" THEN

html-error

." <P>Your browser sent a request that this server "

." could not understand.</P>" cr

." <P>Invalid request in: <CODE>"

error-stack cell+ 2@ swap type

." </CODE></P>" cr .trailer ;

: .nofile (--) &404 s" Not Found" html-error

." <P>The requested URL <CODE>" url $@ type

." </CODE> was not found on this server</P>"

cr .trailer ;

2.4 Top Level De�nitions

We are almost done now. We simply glue together all the
pieces above to process a request in sequence - �rst fetch the
input, then transform the URL, recognize the MIME type,
work on it including error exits and default paths. We need

to �ush the output, so that the next request doesn't stall.
And do that all over again times, until we reach the last
request. I added a feature to allow transparent redirects (i.e.
subdirectories are fetched from another web server using a
proxy).

: http (--)

get-input IF .nok ELSE

IF url $@ 1 /string rework-htmldir

dup 0< IF drop .nofile

ELSE .ok 2dup >mime

mime search-wordlist

0= IF ['] txt THEN

catch IF maxnum off THEN

THEN THEN THEN

outfile-id flush-file throw ;

: httpd (n --) maxnum !

BEGIN ['] http catch

maxnum @ 0= or UNTIL ;

To make Gforth run that at the start, we patch the boot
message and then save the result as a new system image.

script? [IF] :noname &100 httpd bye ;

is bootmessage [THEN]

2.5 Scripting

As a special bonus, we can process active content. That's
really simple: We just write our HTML �le as usual and
indicate the Forth code with �<$� and �$> � (the space
for the closing parenthesis is certainly intentional!). Let's
de�ne two words, $>, and to get the whole thing started,
<HTML>:

: $> (--)

BEGIN source >in @ /string s" <$" search 0= WHILE

type cr refill 0= UNTIL EXIT THEN

nip source >in @ /string rot - dup 2 + >in +! type ;

: <HTML> (--) ." <HTML>" $> ;

That's quite enough, we don't need more. The rest is all
done by Forth, as in the following example:

<HTML><HEAD>

<TITLE>GForth <$ version-string type

$> presents</TITLE></HEAD><BODY>

<H1>Computing Primes</H1><$ 25 Constant #prim $>

<P>The first <$ #prim . $> primes are: <$

: prim? 0 over 2 max 2 ?DO

over I mod 0= or LOOP nip 0= ;

: prims (n --) 0 swap 2

swap 0 DO dup prim? IF swap

IF ." , " THEN true swap

dup 0 .r 1+ 1 ELSE 1+ 0 THEN

+LOOP drop ;

#prim prims $> .</P>

</BODY>

</HTML>

3 Redirection via a Proxy

A feature that was added later was redirecting accesses to
certain directories to another web host. The intention was
to create a web-page that allowed to take a snapshot of
all online resources about Forth with a simple wget on the
top-level. The changes to the toplevel word are minimal �
we just add a check for redirection, and perform a redirect
word if that check succeeds.

Defer redirect? (addr u -- t / f)

Defer redirect (--)

:noname 2drop false ; IS redirect?

: http (--)

get-input IF .nok ELSE

IF url $@ 1 /string 2dup

redirect? IF redirect 2drop ELSE

rework-htmldir

dup 0< IF drop .nofile

ELSE .ok 2dup >mime

mime search-wordlist

0= IF ['] txt THEN

catch IF maxnum off THEN

THEN THEN THEN THEN

outfile-id flush-file throw ;

The �rst thing we need is a open-socket (addr u port

-- fd) function. It will take a hostname and a port, and
delivers a �le descriptor.

require unix/socket.fs

Since the HTTP protocol expects carriage return and line
feed, write-line is not su�cient. I add a writeln that
provides the necessary line end.

Create crlf #cr c, #lf c,

: writeln (addr u fd --)

dup >r write-file throw crlf 2 r> write-file throw ;

3.1 Requesting a Page

We will only pass the user agent through, not the other
variables. A more advanced variant would do that, too.

: request (host u request u proxy-host u port -- fid)

open-socket >r r@ write-file throw

s" HTTP/1.1" r@ writeln

s" Host: " r@ write-file throw r@ writeln

s" Connection: close" r@ writeln

s" User-Agent: " r@ write-file throw

User-Agent @ IF

User-Agent $@ r@ write-file throw

s" via Gforth Proxy 0.1"

ELSE s" Gforth Proxy 0.1" THEN

r@ writeln s" " r@ writeln r> ;

There are two ways to access a web page: Either directly,
or via a proxy. Many �rewalls prevent people from direct
access, so we have to support a intermediate proxy. Fortu-
nately, the request is the same, just the target is replaced:

instead of directly calling the target on port 80, we call
the proxy on it's port (typically 3128). A good sysop will
provide the proxy under the name proxy, if yours is less
friendly, replace the string in the proxy variable. Also, the
typical port used varies, 3128 is default for squid, 8080 is
another commonly used port.

Variable proxy s" proxy" proxy $!

Variable proxy-port 3128 proxy-port !

The two possible ways to talk just di�er in how they call
request.

: proxy-open (host u request u -- fid)

proxy $@ proxy-port @ request ;

: http-open (host u request u -- fid)

2over 80 request ;

3.2 Gathering the Response

Now we have to gather the response. It's the same format
our own server delivers, but there can be more answers.
Most of the responses will be �ltered out, too. I use the
same technique to digest the response as I used above to
digest a request. There's a wordlist for the �rst line of
the response, and a second one for the variables. They are
de�ned with response: hnamei, and just like the normal
protocol variables, they will be visible with : for assignment
in the response-values wordlist, and without (for access)
in the standard wordlist.

wordlist Constant response

wordlist Constant response-values

Variable response$

: response: (--) name

Forth definitions 2dup 1-

nextname Variable

response-values set-current

nextname here cell - Create ,

DOES> @ get-rest ;

: >response response-values 1 set-order ;

The responses we expect are either HTTP version 1.0 or
1.1:

response set-current

: HTTP/1.1 response$ get-rest >response ;

: HTTP/1.0 response$ get-rest >response ;

And the following are the accepted variables:

Forth definitions

response: Allow:

response: Age:

response: Accept-Ranges:

response: Cache-Control:

response: Connection:

response: Proxy-Connection:

response: Content-Base:

response: Content-Encoding:

response: Content-Language:

response: Content-Length:

response: Content-Location:

response: Content-MD5:

response: Content-Range:

response: Content-Type:

response: Date:

response: ETag:

response: Expires:

response: Last-Modified:

response: Location:

response: Mime-Version:

response: Proxy-Authenticate:

response: Proxy-Connection:

response: Public:

response: Retry-After:

response: Server:

response: Transfer-Encoding:

response: Upgrade:

response: Via:

response: Warning:

response: WWW-Authenticate:

response: X-Cache:

response: X-Powered-By:

Forth definitions

I now can reuse some of the code from above to han-
dle the response, since the basics are already de�ned in
refill-loop.

: get-response (fid -- ior) push-file

loadfile ! loadline off blk off

response 1 set-order

['] refill-loop catch

only forth also pop-file ;

3.3 Handling the Respose Data

After getting in the header, I have to handle the data. Un-
like our web-server, we can not be sure that the target will
deliver the data just as is. It's possible that it transfers it
with a given size or until the connection is closed (just like
we do), or with a chunked protocol, where each chunk is
preceeded by a line specifying the size. The dispatcher is
read-data, it selects between the three methods depending
on Content-Length and Transfer-Encoding.

Variable data-buffer

: clear-data (--)

s" " data-buffer $! ;

: add-chunk (u fid -- u')

swap data-buffer $@len dup >r +

data-buffer $!len

data-buffer $@ r@ /string

rot read-file throw

dup r> + data-buffer $!len ;

: read-sized (u fid --)

add-chunk drop ;

: read-to-end (fid --)

>r BEGIN $1000 r@ add-chunk

$1000 <> UNTIL rdrop ;

: read-chunked (fid --)

base @ >r hex >r

BEGIN pad $100 r@ read-line throw

WHILE

pad swap s>number drop dup

WHILE r@ add-chunk drop

pad 1 r@ read-line throw

nip 0= UNTIL

ELSE drop THEN THEN

rdrop r> base ! ;

: read-data (fid --) clear-data >r

Content-Length @ IF

Content-Length $@ s>number drop

r> read-sized EXIT THEN

Transfer-Encoding @ IF

Transfer-Encoding $@

s" chunked" compare 0= IF

r> read-chunked EXIT THEN

THEN

r> read-to-end ;

3.4 Forwarding the Response

After receiving the data from the original site, we forward
it (as a single piece with a now de�ned size) to the receiver.
First, we write the header, second, we write the data.

: write-response (--)

.ok

." Connection: close" cr

." Accept-Ranges: bytes" cr

." Content-Type: "

Content-Type $@ type cr

." Content-Length: "

data-buffer $@len 0 .r cr cr ;

: write-data (--)

data-buffer $@ type ;

The toplevel de�nition to handle a request then takes the
�le handle to the proxy or the web-server, asks it to deliver
the page, and forwards the result.

: handle-request (fid --)

dup >r get-response throw

r@ read-data r> close-file throw

write-response write-data ;

3.5 Redirection De�nitions

Redirects also use a vocabulary structure to convert pseudo-
directories into real target addresses. You can add a sub-
directory by using a vocabulary, and a tail directory (that
marks a redirection) with redirect:. This word takes a
server name and a request string (the request string typi-
cally contains the server name, I leave the work to extract it
to the user). There's a trick to parse '/' as separator for the
interpreter: I just replace it with the line-feed character,
which is treated as white-space, but impossible to embed
into any normal line. It must therefore be reverted to '/'
again to form the rest of the path.

wordlist Constant redirects

Variable redir$

Variable host$

: redirect: ("path" host<"> url<"> --)

Create

'" parse here over char+ allot place

'" parse here over char+ allot place

DOES> (-- addr u)

data @ IF s" GET " ELSE s" HEAD " THEN

redir$ $!

count 2dup host$ $! +

count redir$ $+!

source >in @ /string dup >in +!

2dup bounds ?DO

I c@ #lf = IF '/ I c! THEH LOOP

redir$ $+! redir$ $@ ;

I have deferred two words above, the one asking if there's a
redirection necessary, and the other to perform the redirec-
tion itself. The �rst converts the '/' to line-feeds (as said
above), and evaluates the resulting string in the redirects
context. If there's a redirection found, the redir$ variable
will contain something. If the line can't be interpreted, we
can stop here. There's a bit of a danger here, because liter-
als still might be converted.

: (redirect?) (addr u -- t / f)

htmldir $! htmldir $@ bounds ?DO

I c@ '/ = IF #lf I c! THEN LOOP

redirects 1 set-order redir$ $off

htmldir $@ ['] evaluate catch

IF false ELSE redir$ @ 0<> THEN ;

The remaining request is simple. Just call proxy-request,
and turn o� maxnum, so that the handler will stop. And we
have to assign the deferred words.

: (redirect) (--)

host$ $@ redir$ $@ proxy-request

maxnum off ;

' (redirect?) IS redirect?

' (redirect) IS redirect

The example given below will add subdirectory systems to
the web directory. There, the subdirectory bigforth will
redirect requests to bigforth.sourceforge.net.

redirects set-current

get-order redirects swap 1+ set-order

Vocabulary systems

also systems definitions

redirect: bigforth bigforth.sourceforge.net"

...http://bigforth.sourceforge.net/"

previous previous definitions

4 Outlook

That was a few hundred lines of code � far too much. I
have delivered an �almost� complete Apache clone. That
won't be necessary for the sea-bed or the refrigerator. Er-
ror handling is ballast, too. And if you restrict to single
connection (performance isn't the goal), you can ignore all
the protocol variables. One MIME type (text/html) is suf-
�cient � we keep the images on another server. There is
some hope that one can get a working HTTP protocol with
server-side scripting in one screen.

Appendix: String Functions

Certainly we need some string functions, it doesn't work
without. The following string library stores strings in ordi-
nary variables, which then contain a pointer to a counted
string stored allocated from the heap. Instead of a count
byte, there's a whole count cell, su�cient for all normal
use. The string library originates from bigFORTH and I've
ported it to Gforth (ANS Forth). But now we consider the
details of the functions. First we need two words bigFORTH
already provides:

: delete (addr u n --)

over min >r r@ - dup 0>

IF 2dup swap dup r@ + -rot swap move

THEN + r> bl fill ;

delete deletes the �rst n bytes from a bu�er and �lls the
rest at the end with blanks.

: insert (string u buffer u --)

rot over min >r r@ - (left over)

over dup r@ + rot move r> move ;

insert inserts as string at the front of a bu�er. The re-
maining bytes are moved on.
Now we can really start:

: $padding (n -- n')

[6 cells] Literal + [-4 cells] Literal and ;

To avoid exhausting our memory management, there are
only certain string sizes; $padding takes care of rounding
up to multiplies of four cells.

: $! (addr1 u addr2 --)

dup @ IF dup @ free throw THEN

over $padding allocate throw over ! @

over >r rot over cell+ r> move 2dup !

+ cell+ bl swap c! ;

$! stores a string at an address. If there was a string in
before, this string will be released.

: $@ (addr1 -- addr2 u) @ dup cell+ swap @ ;

$@ returns the stored string.

: $@len (addr -- u) @ @ ;

$@len returns just the length of a string.

: $!len (u addr --)

over $padding over @ swap resize throw

over ! @ ! ;

$!len changes the length of a string. Therefore we must
change the memory area and adjust address and count cell
as well.

: $del (addr off u --)

>r >r dup $@ r> /string r@ delete

dup $@len r> - swap $!len ;

$del deletes u bytes from a string with o�set off .

: $ins (addr1 u addr2 off --) >r

2dup dup $@len rot + swap $!len

$@ 1+ r> /string insert ;

$ins inserts a string at o�set off .

: $+! (addr1 u addr2 --) dup $@len $ins ;

$+! appends a string to another.

: $off (addr --) dup @ free throw off ;

$off releases a string.
As a bonus there are functions to split strings up.

: $split (addr u char -- addr1 u1 addr2 u2)

>r 2dup r> scan dup >r dup IF 1 /string THEN

2swap r> - 2swap ;

$split divides a string into two, with one char as separator
(e.g. '? for arguments)

: $iter (.. $addr char xt -- ..) { char xt }

$@ BEGIN dup WHILE char $split

>r >r xt execute r> r> REPEAT 2drop ;

$iter takes a string apart piece for piece, also with a char-
acter as separator. For each part a passed token will be
called. With this you can take apart arguments � sepa-
rated with '& � at ease.

