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An informal tutorial on Joy1

Manfred von Thun

Abstract: Joy is a functional programming language which is not based on the
application of functions to arguments but on the composition of functions. It does not
use lambda-abstraction of expressions but instead it uses quotation of expressions. A
large number of combinators are used to perform dequotation, they have the effect of
higher order functions. Several of them can be used to eliminate recursive definitions.
Programs in Joy are compact and often look just like postfix notation. Writing
programs and reasoning about them is made easy because there is no substitution of
actual for formal parameters. This tutorial gives a pragmatic introduction without
reference to the theory of Joy.

Keywords: functional programming, higher order functions, composition of functions,
combinators, elimination of recursive definitions, variable free notation

Introduction
Although the theory of Joy is of interest, this tutorial exposition avoids theory as
much as possible.

The remainder of this paper is organised as follows: The next two sections introduce
the basic data types and operations on them. One section deals with the simple data
types: integers, characters and truth values. The other section deals with aggregate
data types: sets, strings and lists. The section after that returns to the central feature of
Joy: quotations of programs and their use with combinators. After a short section on
definitions the next section resumes the discussion of combinators, in particular those
that can eliminate the need for recursive definitions. In the final section several showrt
programs and one larger program are used to illustrate programming with aggregates
in Joy.

To add two integers, say 2 and 3, and to write their sum, you type the program

        2  3  +

This is how it works internally: the first numeral causes the integer 2 to be pushed
onto a stack. The second numeral causes the integer 3 to be pushed on top of that.
Then the addition operator pops the two integers off the stack and pushes their sum, 5.
The system reads inputs like the above and executes them when they are terminated
by a period ".", like this:
        2  3  + .

In the default mode there is no need for an explicit output instruction, so the numeral
5 is now written to the oputput file which normally is the screen. So, in the default
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mode the terminating "." may be taken to be an instruction to write the top element
of the stack. In what follows the terminating period will not be shown any further.

To compute the square of an integer, it has to be multiplied by itself. To compute the
square of the sum of two integers, the sum has to be multiplied by itself. Preferably
this should be done without computing the sum twice. The following is a program to
compute the square of the sum of 2 and 3:

        2  3  +  dup  *

After the sum of 2 and 3 has been computed, the stack just contains the integer 5. The
dup operator then pushes another copy of the 5 onto the stack. Then the multiplication
operator replaces the two integers by their product, which is the square of 5. The
square is then written out as 25. Apart from the dup operator there are several others
for re-arranging the top of the stack. The pop operator removes the top element, and
the swap operator interchanges the top two elements.

A list of integers is written inside square brackets. Just as integers can be added and
otherwise manipulated, so lists can be manipulated in various ways. The following
concatenates two lists:

        [1 2 3]  [4 5 6 7]  concat

The two lists are first pushed onto the stack. Then the concat operator pops them off
the stack and pushes the list [1 2 3 4 5 6 7] onto the stack. There it may be further
manipulated or it may be written to the output file.

Joy makes extensive use of combinators. These are like operators in that they expect
something specific on top of the stack. But unlike operators they execute what they
find on top of the stack, and this has to be the quotation of a program, enclosed in
square brackets. One of these is a combinator for mapping elements of one list via a
function to another list. Consider the program

        [1 2 3 4]  [dup *]  map

It first pushes the list of integers and then the quoted program onto the stack. The map
combinator then removes the list and the quotation and constructs another list by
applying the program to each member of the given list. The result is the list [1 4 9
16] which is left on top of the stack.

In definitions of new functions no formal parameters are used, and hence there is no
substitution of actual parameters for formal parameters. After the following definition

        square   ==   dup  *

the symbol square can be used in place of dup * .

As in other programming languages, definitions may be recursive, for example in the
definition of the factorial function. That definition uses a certain recursive pattern that
is useful elsewhere. In Joy there is a combinator for primitive recursion which has this
pattern built in and thus avoids the need for a definition. The primrec combinator
expects two quoted programs in addition to a data parameter. For an integer data
parameter it works like this: If the data parameter is zero, then the first quotation has
to produce the value to be returned. If the data parameter is positive then the second
has to combine the data parameter with the result of applying the function to its
predecessor. For the factorial function the required quoted programs are very simple:
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        [1]  [*]  primrec

computes the factorial recursively. There is no need for any definition. For example,
the following program computes the factorial of 5:
        5  [1]  [*]  primrec

It first pushes the number 5 and then it pushes the two short quoted programs. At this
point the stack contains three elements. Then the primrec combinator is executed. It
pops the two quotations off the stack and saves them elsewhere. Then primrec tests
whether the top element on the stack (initially the 5) is equal to zero. If it is, it pops it
off and executes one of the quotations, the [1] which leaves 1 on the stack as the
result. Otherwise it pushes a decremented copy of the top element and recurses. On
the way back from the recursion it uses the other quotation, [*], to multiply what is
now a factorial on top of the stack by the second element on the stack. When all is
done, the stack contains 120, the factorial of 5.

As may be seen from this program, the usual branching of recursive definitions is
built into the combinator. The primrec combinator can be used with many other
quotation parameters to compute quite different functions. It can also be used with
data types other than integers.

Joy has many more combinators which can be used to calculate many functions
without forcing the user to give recursive or non-recursive definitions. Some of the
combinators are more data-specific than primrec, and others are far more general.

Integers, characters and truth values
The data types of Joy are divided into simple and aggregate types. The simple types
comprise integers, characters and the truth values. The aggregate types comprise sets,
strings and lists. Literals of any type cause a value of that type to be pushed onto the
stack. There they can be manipulated by the general stack operations such as dup, pop
and swap and a few others, or they can be manipulated by operators specific to their
type. This section introduces literals and operators of the simple types.

An integer is just a whole number. Literals of this type are written in decimal
notation. The following binary operations are provided:

        +        -        *        /        %

The first four have their conventional meaning, the last is modulus. Operators are
written after their operands. Binary operators remove two values from the top of the
stack and replace them by the result. For example, the program
        20  3  4  +  *  6  -  100  %

evaluates to 34, and this value is left on top of the stack. There are also some unary
operators specific to integers like the abs operator which takes the absolute value, and
the signum operator which yields -1, 0 or +1, depending on whether its parameter is
negative, zero or positive.

A character is a letter, a digit, a punctuation character, in fact any printable character
or one of a few white space characters. Literals of type character are written as a
single quote followed by the character itself. Values of type character are treated very
much like small numbers. That means that other numbers can be added to them, for
example 32 to change letter from upper case to lower case. There are two unary
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operators which are defined on characters and on integers: pred takes the predecessor,
succ takes the successor. For example,

        'A  32  +  succ  succ

evaluates to 'c, the third lower case letter.

The type of truth values is what in some languages is called Boolean. The following
are the two literals, the unary negation operator and two binary operators for
conjunction and disjunction:

        true        false        not        and        or

For example, the program
        false  true  false  not  and  not  or

evaluates to false.

Values of type integer and character can be compared using the following relational
operators:

        =        <        >        #        <=        >=

As all other operators, they are written in postfix notation. The result is always a truth
value. For example,
        'A  'E  <  2  3  +  15  3  /  =  and

evaluates to true.

Sets, strings and lists
The aggregate types are the unordered type of sets and the ordered types of strings
and lists. Aggregates can be built up, combined, taken apart and tested for
membership. This section introduces literals and operators of the aggregate types.

A set is an unordered collection of zero or more small integers. Literals of type set are
written inside curly braces, and the empty set is written as an empty pair of braces.
For set literals the ordering of the elements is irrelevant and duplication has no effect.
The operators for conjunction and disjunction are also defined on sets. For example,
the two equivalent programs

        {1 3 5 7}  {2 4 6 8}  or  {}  or  {3 4 5 6 7 8 9 10}  and
        {3 7 5 1}  {2 4 6 8}  or  {}  or  {3 4 5 6 7 8 9 10 10} and

evaluate to {3 4 5 6 7 8}. The negation operator not takes complements relative to
the largest expressible set, which in most implementations will have a maximum of 32
members: from 0 to 31.

A string is an ordered sequence of zero or more characters. Literals of this type string
are written inside double quotes, and the empty string is written as two adjacent
double quotes with nothing inside: "". Note that this is different from the string
containing just the blank: " ". Two strings can be concatenated, and a string can be
reversed. For example,

    "dooG"  reverse  " morning"  " "  concat concat  "world"  concat

evaluates to "Good morning world".
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A list is an ordered sequence of zero or more values of any type. Literals of type list
are written inside square brackets, the empty list is written as an empty pair of
brackets. Lists can contain lists as members, so the type of lists is a recursive data
type.

Values of the aggregate types, namely sets, strings and lists can be constructed from
existing ones by adding a new member with the cons operator. This is a binary
operator for which the first parameter must be a possible new member and the second
parameter must be an aggregate. For sets the new member is added if it is not already
there, and for strings and lists the new member is added in front. Here are some
examples. The programs on the left evaluate to the literals on the right.

        5  3 {2 1}  cons  cons  3  swap  cons               {1 2 3 5}
        'E  'C  "AB"  cons  cons  'C  swap  cons              "CECAB"
        5  [6]  [1 2]  cons  cons  'A  swap  cons      ['A 5 [6] 1 2]

As the examples show, the cons operator is most useful for adding elements into an
aggregate which are already on the stack below the aggregate. To add new elements
that have just been pushed, the new elements and the aggregate have to be swapped
first before the new element can be consed into the aggregate. To facilitate this, Joy
has another operator, swons, which first performs a swap and then a cons.

Whereas the cons and swons operators builds up aggregate values, the two unary
operators first and rest take them apart. Both are defined only on non-empty
aggregate values. For the two ordered aggregate types, strings and lists, the meaning
is obvious: the first operator returns the first element and the rest operator returns the
string or list without the first element:

        "CECAB"  first                                             'C
        "CECEB"  rest                                          "ECAB"
        ['A 5 [6] 1 2]  first                                      'A
        ['A 5 [6] 1 2]  rest                              [5 [6] 1 2]

But sets are unordered, so it does not make sense to speak of their first members as
sets. But since their members are integers, the ordering on the integers can be used to
determine what the first member is. Analogous considerations apply to the rest
operator.
        {5 2 3}  first                                              2
        {5 2 3}  rest                                           {3 5}

For all three types of aggregates the members other than the first can be extracted by
repeatedly taking the rest and finally the first of that. This can be cumbersome for
extracting member deep inside. An alternative is to use the at operator to index into
the aggregate, by extracting a member at a numerically specified position. For
example, the following are two equivalent programs to extract the fifth member of
any aggregate:

        rest  rest  rest  rest  first
        5  at

There is a unary operator which determines the size of any aggregate value. For sets
this is the number of members, for strings its is the length, and for lists it is the length
counting only top level members. The size operator yields zero for empty aggregates
and a positive integer for others. There is also a unary null operator, a predicate
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which yields the truth value true for empty aggregates and false for others. Another
predicate, the small operator, yields true just in case the size is 0 or 1.

Apart from the operators which only affect the stack, there are two for explicit input
and output. The get operator reads an item from the input file and pushes it onto the
stack. The put operator pops an item off the stack and writes it to the screen or
whatever the output file is. The next program reads two pairs of integers and then
compares the sum of the first pair with the sum of the second pair.

        get  get  +  get  get  +  >  put

The two get operators attempt to read two items and push them onto the stack. There
they are immediately added, so they have to be integers. This is repeated for the
second pair. At this point the stack contains the two sums. Then the comparison
operator pops the two integers and replaces them by a truthe value, true or false,
depending on whether the first sum is less than the second sum. The put operator
pops that truth value and writes it. The stack is now as it was before the program was
run, only the input file and the output file are changed.

For another example, the following conducts a silly little dialogue:

        "What is your name?" put "Hello, " get concat put

First the question string is pushed on the stack and then popped to be written out to
the screen. Then the '"Hello, "' string is pushed. Next, the get operator reads an
item from the keyboard and pushes it onto the stack. That item has to be another
string, because it will be concatenated with what is below it on the stack. The
resultant string is then written out. So, if in answer to the question a user types
'"Pat"', the program finally writes out '"Hello, Pat"'.

Quotations and Combinators
Lists are really just a special case of quoted programs. Lists only contain values of the
various types, but quoted programs may contain other elements such as operators and
some others that are explained below. A quotation can be treated as passive data
structure just like a list. For example,
        [ +  20  *  10  4  - ]

has size 6, its second and third elements are 20 and *, it can be reversed or it can be
concatenated with other quotations. But passive quotations can also be made active by
dequotation.

If the above quotation occurs in a program, then it results in the quotation being
pushed onto the stack - just as a list would be pushed. There are many other ways in
which that quotation could end up on top of the stack, by being concatenated from its
parts, by extraction from a larger quotation, or by being read from the input. No
matter how it got to be on top of the stack, it can now be treated in two ways:
passively as a data structure, or actively as a program. The square brackets prevented
it from being treated actively. Without them the program would have been executed:
it would expect two integers which it would add, then multiply the result by 20, and
finally push 6, the difference between 10 and 4.
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Joy has certain devices called combinators which cause the execution of quoted
programs that are on top of the stack. This section describes only a very small
proportion of them.

One of the simplest is the i combinator. Its effect is to execute a single program on
top of the stack, and nothing else. Syntactically speaking, its effect is to remove the
quoting square brackets and thus to expose the quoted program for execution.
Consequently the following two programs are equivalent:

        [ +  20  *  10  4  - ]  i
          +  20  *  10  4  -

The i combinator is mainly of theoretical significance, but it is used occasionally. The
many other combinators are essential for programming in Joy.

One of the most well-known combinators is for branching. The ifte combinator
expects three quoted programs on the stack, an if-part, a then-part and an else-part, in
that order, with the else-part on top. The ifte combinator removes and saves the
three quotations and then performs the following on the remainder of the stack: It
executes the if-part which should leave a truth value on top of the stack. That truth
value is saved and the stack is restored to what it was before the execution of the if-
part. Then, if the saved truth value was true, the ifte combinator executes the then-
part, otherwise it executes the else-part.

In most cases the three parts would have been pushed in that order just before the
ifte combinator is executed. But any or all of the three parts could have been
constructed from other quotations.

In the following example the three parts are pushed just before the ifte combinator is
executed. The program looks at a number on top of the stack, and if it is greater than
1000 it will halve it, otherwise it will triple it.

        [1000 >]  [2 /]  [3 *]  ifte

Some combinators require that the stack contains values of certain types. Many are
analogues of higher order functions familiar from other programming languages: map,
filter and fold. Others only make sense in Joy. For example, the step combinator
can be used to access all elements of an aggregate in sequence. For strings and lists
this means the order of their occurrence, for sets it means the underlying order. The
following will step through the members of the second list and swons them into the
initially empty first list. The effect is to reverse the non-empty list, yielding [5 6 3 8
2].

        []  [2 8 3 6 5]  [swons]  step

The map combinator expects an aggregate value on top of the stack, and it yields
another aggregate of the same size. The elements of the new aggregate are computed
by applying the quoted program to each element of the original aggregate. An
example was already given in the introduction.

Another combinator that expects an aggregate is the filter combinator. The quoted
program has to yield a truth value. The result is a new aggregate of the same type
containing those elements of the original for which the quoted program yields true.
For example, the quoted program ['Z >] will yield truth for characters whose
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numeric values is greater than that of Z. Hence it can be used to remove upper case
letters and blanks from a string. So the following evaluates to "ohnmith":

        "John Smith"   ['Z >]   filter

Sometimes it is necessary to add or multiply or otherwise combine all elements of an
aggregate value. The fold combinator can do just that. It requires three parameters:
the aggregate to be folded, the quoted value to be returned when the aggregate is
empty, and the quoted binary operation to be used to combine the elements. In some
languages the combinator is called reduce (because it turns the aggregate into a single
value), or insert (because it looks as though the binary operation has been inserted
between any two members). The following two programs compute the sum of the
members of a list and the sum of the squares of the members of a list. They evaluate
to 10 and 38, respectively.

        [2 5 3]  0  [+]  fold
        [2 5 3]  0  [dup * +]  fold

To compute the average or arithmetic mean of the members of a set or a list, we have
to divide the sum by the size. (Because of the integer arithmetic, the division will
produce an inaccurate average.) The aggregate needs to be looked at twice: once for
the sum and once for the size. So one way to compute the average is to duplicate the
aggregate value first with the dup operator. Then take the sum of the top version. Then
use the swap operator to interchange the position of the sum and the original
aggregate, so that the original is now on top of the stack. Take the size of that. Now
the stack contains the sum and the size, with the size on top. Apply the division
operator to obtain the average value.

        dup  0  [+]  fold  swap  size  /

One nice feature of this little program is that it works equally for set values as for list
values. This is because the constituents fold and size work for both types.

But there are two aspects of this program which are unsatisfactory. One concerns the
dup and swap operators which make the program hard to read. The other concerns the
sequencing of operations: The program causes the computation of the sum to occur
before the computation of the size. But it does not matter in which order they are
computed, in fact on a machine with several processors the sum and the size could be
computed in parallel. Joy has a combinator which addresses this problem: there is one
one data parameters, the aggregate, which is to be fed to two functions. From each of
the functions a value is to be constructed. Because of the one datum and the two
functions, the combinator is called constr12. The program for the average looks like
this:

        [0 [+] fold]   [size]   constr12   /

There are several similar combinators with different combinations of trailing digits.

Definitions
In conventional languages the definition of a function of one or more arguments has
to name these as formal parameters x, y ... For example, the squaring function might
be defined by some variation of any of the following:
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        square(x)  =  x * x
        (defun (square x)  (* x x))
        square  =  lambda x.x * x

In Joy formal parameters such as x above are not required, a definition of the squaring
function is simply
        square   ==   dup  *

This is one of the principal differences between Joy and those languages that are
based on the lambda calculus. The latter include (the purely functional subsets of)
Lisp, Scheme, ML, Miranda2 and Haskell. All of these are based on the application of
functions to arguments or actual parameters.

In definitions and abstractions of functions the formal parameters have to be named -
x, y and so on, or something more informative. This is different in Joy. It is based on
the composition of functions and not on the application of functions to arguments. In
definitions and abstractions of functions the arguments do not need be named and as
formal parameters indeed cannot be named. One consequence is that there are no
environments of name-value pairs. Instead the work of environments is done by
higher order functions called combinators.

Finally, the concrete syntax of the language is an integral part of the language and
aids in reasoning about Joy programs in the metalanguage.

Suppose it is required to transform a list of numbers into the list of their cubes. The
cube of a single number is of course computed by

        dup  dup  *  *

It would be possible to introduce a definition of the cube function. But that would
introduce another name, cube. If the cube function is used only once for computing
the cubes of a list of numbers, then it may not be desirable to give a definition of it at
all. In Joy the list of cubes is computed by the first line below, but it is also possible to
give an explicit definition as in the second line.
        [dup dup * *]  map
        cubelist   ==   [dup dup * *] map

In a language that is based on the lambda calculus both would need a lambda
abstraction with a variable, say x, for the number to be cubed. And of course the
second line would need an additional formal parameter, say l, or a lambda abstraction
with a variable l for the list to which the cubelist function is to be applied.

Suppose now that it is required to transform a list of lists of numbers into the list of
lists of their cubes. One might give the definition

        cubelistlist   ==   [ [dup dup * *] map ]  map

Of course, if that function is only to be used once, one might not bother to give a
definition at all but use the right hand side directly. In languages based on abstraction,
at least two formal parameters are needed just for the right hand side, and another for
the definition itself. For example, in Scheme the definition looks like this:

                                                
2 "Miranda" is a trademark of Research Software Ltd.
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        (define (cubelistlist ll)
                (map (lambda (l)
                     (map (lambda (n) (* n (* n n)))
                           l ) )
                 ll )

Here the two formal parameters are n for the number and l for the list of numbers on
the right hand side, and ll for the list of lists of numbers in the definition itself.

As in other languages, definitions can be recursive in Joy. In the first line below is a
recursive definition of the factorial function in one of many variants of conventional
notation. In the second line is a recursive definition in Joy.

        factorial(x)  =  if x = 0 then 1 else x * factorial(x - 1)
        factorial  ==  [0 =] [pop 1] [dup 1 - factorial *] ifte

Again the Joy version does not use a formal parameter x. It works like this: The
definition uses the ifte combinator immediately after the if-part, the then-part and
the else-part have been pushed.

The ifte combinator then does this: it executes the if-part, in this case [0 =], which
tests whether the (anonymous) integer parameter is equal to zero. If it is, then the else-
part is executed, in this case [pop 1], which pops the parameter off the stack and
replaces it by one. Otherwise the else-part is executed, in this case [dup 1 -
factorial *]. This uses dup to make another copy of the parameter and subtracts
one from the copy. Then the factorial function is called recursively on that. Finally
the original parameter and the just computed factorial are multiplied.

The definition could be shortened and made a little more efficient by using the inbuilt
predicate null which tests for zero and the pred operator which takes the predecessor
of a number. But these changes are insignificant.

For more complex functions of several arguments it is necessary to be able to access
the arguments anywhere in the definition. Joy avoids formal parameters altogether,
and hence in general arbitrary access has to be done by mechanisms more
sophisticated than dup, swap and pop.

Here are some more definitions that one might have:

        sum   ==   0  [+]  fold
        product   ==   1  [*]  fold
        average   ==   [sum]  [size]  constr12  /
        concatenation   ==   ""  [concat]  fold

The last definition is for an operator which yields a single string which is the
concatenation of a list of strings.

Recursive Combinators
If one wanted to compute the list of factorials of a given list, this could be done by
        [ factorial ]  map

But this relies on an external definition of factorial. It was necessary to give that
definition explicitly because it is recursive. If one only wanted to compute factorials
of lists of numbers, then it would be a minor nuisance to be forced to define factorial
explicitly just because the definition is recursive.
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A high proportion of recursively defined functions exhibit a very simple pattern:
There is some test, the if-part, which determines whether the ground case obtains. If it
does, then the non-recursive then-part is executed. Otherwise the recursive else-part
has to be executed. In the else-part there is only one recursive call, and there can be
something before the recursive call and something after the recursive call. It helps to
think of the else-part to have two components, the else1-part before the recursive call,
and the else2-part after the recursive call. This pattern is called linear recursion, and it
occurs very frequently.

Joy has a useful device, the linrec combinator, which allows computation of
anonymous functions that might have been defined recursively using a linear
recursive pattern. Whereas the ifte combinator requires three quoted parameters, the
linrec combinator requires four: an if-part, a then-part, an else1-part and an else2-
part. For example, the factorial function could be computed by

        [null]  [succ]  [dup pred]  [*]  linrec

There is no need for a definition, the above program can be used directly.

Very frequently the if-part of a linear recursion tests for a simple base condition
which depends on the type of the parameter. For numbers that condition tends to be
being zero, for sets, strings and lists that condition tends to be being empty. The else1-
part frequently makes the parameter smaller in some way. For numbers it decrements
them, for sets, strings and lists it takes the rest.

Joy has another useful combinator which has the appropriate if-part and else1-part
built in. This is the primrec combinator, which only has to be supplied with two
quotation parameters, the (modified) then-part and the else2-part of linear recursion.
For the factorial function the two quotation parameters are very simple:

        [1]  [*]  primrec

computes the factorial function. So, if one wanted to compute the list of factorial of a
given list of numbers this can be done by either of the following:
        [ [null]  [succ]  [dup pred]  [*]  linrec ]   map
        [ [1]  [*]  primrec ]   map

The factorial of a number is the product of successive natural numbers up to the actual
parameter. The following compute instead their sums and the sum of their squares:
        [0]  [+]  primrec
        [0]  [dup * +]  primrec

Many of the Joy combinators are polymorphic in the sense that they can be applied to
parameters of quite different types. The combinator primrec can be applied not only
to numbers but also to lists. For example, applied to the list [1 2 3] the program
        [[]]  [[] cons cons]  primrec

produces the list [1 [2 [3 []]]]. Lisp programmers will recognise a similarity to
"dotted pairs". In the following, the first turns a set of numbers into a list, the second
turns a list of numbers into a set:
        [[]]  [cons]  primrec
        [{}]  [cons]  primrec

In fact, the first can also be applied to a list and the second can also be applied to a
set. But in that case they just compute the identity. They can even be applied to
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numbers - and then they produce a list or a set of numbers from the parameter down
to 1.

In many recursive definitions there are two recursive calls of the function being
defined. This is the pattern of binary recursion, and it is used in the usual definitions
of quicksort and of the Fibonacci function. Joy has a facility that eliminates the need
for a recursive definition, the binrec combinator.

The following will quicksort a list whose members can be a mixture of anything
except lists. The program easily fits onto one line, but for reference it is here written
over several numbered lines:

    1           [small]
    2           []
    3           [uncons [>] split]
    4           [[swap] dip cons concat]
    5           binrec

This is how it works: Lines 1..4 each push a quoted program. In line 5 the binrec
combinator is called, and it will make use of the four quoted programs and below that
the list to be sorted. The four quoted programs are saved elsewhere, and the binrec
combinator begins by executing the program from line 1. This tests whether the list to
be sorted is small, i.e. has at most one member. If indeed it is small, then it is sorted
already.

The binrec combinator now executes the program from line 2, which does nothing
and hence leaves the small list as it is. On the other hand, if the list is not small, then
the programs in lines 3 and 4 will be executed. The program in line 3 removes the first
element from the list and uses it as a pivot to split the rest of the list into two sublists,
by using the comparison function in [>] and the split combinator.

At this point the binrec combinator calls itself recursively on the two sublists and
sorts them both. Finally the program in line 4 combines the two sorted versions and
the original pivot into a single sorted list. The three items are not quite in the required
order, so the [swap] dip part puts the pivot in between the two sorted lists.

Then cons puts the pivot in front of the topmost string or list, and finally concat
combines everything into one single sorted list. Since all operations in the program
also work on strings, the program itself can equally well be used to sort a string.

In fact, the program can be used on sets too, but this of course is pointless. The
program is useful, it is part of the Joy system library under the name of qsort.

Many other functions are often defined by recursive definitions that use binary
recursion. In Joy they can all be computed with the binrec combinator without the
need for a definition. For example, the following computes the Fibonacci function; it
implements the usual inefficient algorithm:

        [small]  []  [pred dup pred]  [+]  binrec

The system library of course contains the well known efficient algorithm.

There are only a few second order combinators, ones which require a first order
combinator as parameter. One of the is treerec for recursing through trees. These are
either anything but a list, or lists of trees. For example, in the following treerec is
given [map] as a parameter, which in turn will be given [dup *] as a parameter when
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treerec encounters a list. The function to be applied to numbers possibly deeply
embedded within lists is the squaring function [dup *].

Here is an example:

        [ 1 [2 3] [[[4]]] 5 ]  [dup *]  [map]  treerec

produces
        [ 1 [2 9] [[[16]]] 25 ]

All of these combinators can be defined in other functional languages, but they are
less useful there. This is because their parameters have to be abstractions with
variables, and not quotations as in Joy.

Programming with aggregates
The aggregate types of Joy are lists, sets and strings. There are several unary
operators which take an aggregate as parameter and produce as value a list of
subaggregates. One of these is the powerlist operator. For an aggregate of size N it
produces a list of all the 2^N subaggregates.

Here is an example:

        [1 2 3]  powerlist

produces as result
        [ [1 2 3] [1 2] [1 3] [1] [2 3] [2] [3] [] ]

If the ordering does not suit, the result list can always be rearranged, for example it
can be reversed. For another example, one can sort the list according to size. The
mk_qsort combinator expects an aggregate and a quoted operator as parameters and it
applies the operator to each member of the aggregate to use as the basis for sorting
them.
        [1 2 3]  powerlist  [size]  mk_qsort

produces as a result
        [ [] [1] [2] [3] [1 2] [1 3] [2 3] [1 2 3] ]

The powerlist operators can also be applied to a string. The result is a list of all
substrings. In the following the result list is filtered to retain only those substrings
whose size is greater than 3. This is achieved by the filter combinator which
expects an aggregate and a quoted predicate. The first line is the program, the second
line is the result:

        "abcde"  powerlist  [size 3 >]  filter
        [ "abcde" "abcd" "abce" "abde" "acde" "bcde" ]

The powerlist operators can also be applied to a set. In the program on the first line
below the list of subsets is then filtered to retain only those of size 3; the result is the
list of subsets in the second line:

        {1 2 3 4}  powerlist  [size 3 =]  filter
        [ {1 2 3} {1 2 4} {1 3 4} {2 3 4} ]



14

Suppose it is required to find the list, in ascending order, of all sums of any three
distinct numbers taken from a given set of numbers. We already know how to get the
list of all three-membered subsets. Each should be replaced by its sum, and that can
be done with the map combinator applied to the whole list. The resulting list of sums
then needs to be sorted. The example in the first line does just that, giving the result in
the second line:

        {1 2 3 4 5}  powerlist  [size 3 =] filter  [sum] map  qsort
        [6 7 8 8 9 9 10 10 11 12]

In the remainder of this section a small program is to be constructed which takes one
sequence as parameter and returns the list of all permutations of that sequence. Here
is a first draft:

1 If S has only zero or one member
2 then it has only one permutation, so take its unit list
3 else take the first and rest of S,

recurse to construct the permutations of the rest
4 insert the first in all positions in all permutations

The recursion pattern is linear, so we can use the linrec combinator to arrive at this
first incomplete program:

1 [ small ]
2 [ unitlist ]
3 [ uncons ]
4 [ "insert the first in all positions in all permutations" ]
5 linrec

The anonymous recursion between steps 3 and 4 will have left a list of permutations
of the rest of S on top of the stack.

Next, it is necessary to insert the original first of S into all positions into all these
resulting permutations. This involves replacing each single permutation by a list of
permuations with the original first inserted in all places.

This calls for the map combinator to apply a constructed program to each permutation.
The original first is currently the second item on the stack. to make it available to the
program to be constructed, it is swapped to the top. The required program consists of
a constant part and a variable part.

The constant part now has to be pushed onto the stack. Then the first is consed into
the required program. Then map will create a list of list of permutations. But this is a
two-level list, and it should be one-level. So the two level list has to be flattened to a
one-level list.

4.1 [ swap
4.2 [ "the constant part of the program" ]
4.3 cons map
4.4 "flatten the resulting list of lists of sequences" ]

The constant part of the constructed program has to be written next. The constructed
program will be used to map all permutations of the rest, and in each case it will begin
by pushing the original first on top of the current permutation being mapped. It then
has to insert this first into all positions of the current permutation.
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This again calls for a linear recursion with linrec. One way to do this is to give this
anonymous recursive function just one parameter, the current permutation with the
original first swons in as an initial element. So the task is now to insert this inital
element into all positions in the remainder which is the current permutation.

4.2.2.1 If the current sequence is small
4.2.2.2 then return just its unit list
4.2.2.3 else keep 1. a copy

2. its second and
3. the sequence without its second

anonymously recurse on 3.
4.2.2.4 construct a program to insert the second

use map to do the insertion
use cons to add the copy from 1.

So the constant part 4.2 looks like this:
4.2.1 [ swons
4.2.2.1 [ small ]
4.2.2.2 [ unitlist ]
4.2.2.3 [ dup unswons [uncons] dip swons ]
4.2.2.4 [ swap [swons] cons map cons ]
4.2.2.5 linrec ]

The only other part that needs to be written is for flattening. This should be trivial by
now: If the list is small, then take its unit list else take its first and its rest
anonymously recurse on the rest, concatenate the saved first into the result.

Here is the required program:

4.4 [ null ] [ ] [ uncons ] [ concat]  linrec

The entire program now is the following:
1 [ small ]
2 [ unitlist ]
3 [ uncons ]
4.1 [ swap
4.2.1 [ swons
4.2.2.1 [ small ]
4.2.2.2 [ unitlist ]
4.2.2.3 [ dup unswons [uncons] dip swons ]
4.2.2.4 [ swap [swons] cons map cons ]
4.2.2.5 linrec ]
4.3 cons map
4.4 [null] [] [uncons] [concat] linrec ]
5 linrec.

An essentially identical program is in the Joy library under the name permlist. It is
considerably shorter than the one given here because it uses two subsidiary programs
insertlist and flatten which are useful elsewhere. The program given above is an
example of a non-trivial program which uses the linrec combinator three times and
the map combinator twice, with constructed programs as parameters on both
occasions.

Of course such a program can be written in lambda calculus languages such as Lisp,
Scheme, ML or Miranda, but it would need many recursive definitions with attendant
named formal parameters.


