
Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

8'3�,3�29(5�(7+(51(7�)25���%,7
0,&52&21752//(56

Federico de Ceballos
Universidad de Cantabria

federico.ceballos@unican.es

September, 2002

$EVWUDFW
With the widespread of the ’net, connecting any system to a private or public
Ethernet network is nowadays considered as nearly essential. This has resulted in a
movement towards more powerful processors and to those programming languages
that provide the necessary libraries. However, connectivity is not something as
exclusive or complex as some people would like us to believe. In fact, it is well
suited for a lot of systems that can be programmed in Forth.

This paper presents a tiny UDP stack in Forth for the CS8900 Ethernet controller,
suitable for immediate use in many 8-bit micros.

,QWURGXFWLRQ
It is quite common for microcontrollers to be provided with one or more UARTs for serial
communication to the outside world. A channel of these characteristics offers limited
capabilities (the baud rate can be quite high, however), as well as a single connection (unless
other external systems are involved, as it is the case in PPP).

With the help of an external chip plus a few discrete components, it is possible to take a leap
forward and bring in Internet access. The new capabilities will be probably limited be the
resources available in the microcontroller, yet a simple subset of the protocols currently used
can be implemented in a wide range of system with moderate effort.

The coding described in this paper is geared to the Cirrus Logic CS8900A [1], one of the
several integrated solutions available.

The paper is divided into two parts. First of all, a short description of the protocols involved is
given. Next, the vocabulary developed for a Forth system is presented.

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

'HVFULSWLRQ�RI�WKH�SURWRFROV�DQG�PHVVDJHV�LQYROYHG
(WKHUQHW
In this paper we shall be studying Ethernet packets, made of a preamble and a frame with
control information and data. The packed travelling through the net are seen by every system
connected, therefore some sort of unique hardware addressing is needed. This is achieved by
MAC (Media Access Control) addresses.

)LHOG 6L]H 'HVFULSWLRQ
'$ � 0$&�GHVWLQDWLRQ�DGGUHVV
6$ � 0$&�VRXUFH�DGGUHVV
7\SH � PHVVDJH�W\SH
'DWD ������� PHVVDJH�GHSHQGDQW�LQIRUPDWLRQ
)&6 � IUDPH�FKHFN�VHTXHQFH

Table 1

With a normal configuration, we shall only receive packets addressed to us (with our MAC
address in '$) or broadcast messages (with all bits set in '$). If we want to respond to such a
message we have to write the data part with the response (taken from the other protocols),
move 6$ to '$, put our MAC address in 6$, change 7\SH if necessary and send the message
to the net ()&6 is computed by the network processor).

,3
Table 2 shows the fields of an IP packet. As it can be seen, the IP packet (if it isn’t long
enough) is encapsulated into an Ethernet frame.

)LHOG 6L]H 'HVFULSWLRQ
'$ � 0$&�GHVWLQDWLRQ�DGGUHVV
6$ � 0$&�VRXUFH�DGGUHVV
7\SH � PHVVDJH�W\SH�������
9HU/HQ � YHUVLRQ�DQG�KHDGHU�OHQJWK
726 � W\SH�RI�VHUYLFH
/HQJWK � WRWDO�,3�OHQJWK
,' � LGHQWLILFDWLRQ
)UDJPHQW � IUDJPHQW�RIIVHW�LQWR�D�ELJ�SDFNHW
77/ � WLPH�WR�OLYH
3URWRFRO � SURWRFRO�XVHG�LQ�WKH�GDWD�SRUWLRQ
&KHFNVXP � FKHFNVXP�RI�WKH�,3�SDUW
,3�6$ � ,3�VRXUFH�DGGUHVV
,3�'$ � ,3�GHVWLQDWLRQ�DGGUHVV
'DWD PHVVDJH�GHSHQGDQW�LQIRUPDWLRQ
)&6 � IUDPH�FKHFN�VHTXHQFH

Table 2

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

If we have received an IP packet and we want to respond to the sender, we have to write the
data part with the response (taken from other protocols), write 0 to &KHFNVXP, move ,3�6$ to
,3�'$, put our IP address into ,3�6$, put an adequate value in 77/, write the length of the IP
part into /HQJWK, calculate the checksum of the IP part and put the result into &KHFNVXP and
then do the Ethernet frame response as described above.

Of course, several other possibilities are available, all of them found in the corresponding
5HTXHVW�)RU�&RPPHQWV [2].

$53
The Address Resolution Protocol is used in order to obtain the hardware (MAC) address used
by a network card with a given IP address. A request is broadcasted so that the owner of the
IP address is able to identify itself. This IP address is then used in further correspondence
between the two systems.

An ARP message is encapsulated into the Data field of an Ethernet frame, giving the structure
shown in table 3.

)LHOG 6L]H 'HVFULSWLRQ
'$ � 0$&�GHVWLQDWLRQ�DGGUHVV��DOO�ELWV�VHW�
6$ � 0$&�VRXUFH�DGGUHVV
7\SH � PHVVDJH�W\SH�������
+DUGZDUH � KDUGZDUH�W\SH�LV���IRU���0E�(WKHUQHW
3URWRFRO � SURWRFRO�LV�����
+�/HQJWK � OHQJWK�RI�WKH�KDUGZDUH�DGGUHVV����
3�/HQJWK � OHQJWK�RI�WKH�SURWRFRO�DGGUHVV����
2SHUDWLRQ � ��IRU�DQ�$53�UHTXHVW
6HQGHU�+: � VHQGHU�0$&�DGGUHVV�� �6$�
6HQGHU�,3 � VHQGHU�,3�DGGUHVV
7DUJHW�+: � WDUJHW�0$&�DGGUHVV��DOO�ELWV�FOHDU�
7DUJHW�,3 � WDUJHW�,3�DGGUHVV
3DGGLQJ �� SDGGLQJ�LQ�RWKHU�WR�JHW�D�YDOLG�IUDPH
)&6 � IUDPH�FKHFN�VHTXHQFH

Table 3

We only have to process one kind of ARP message, a broadcast request in which 7DUJHW�,3 is
our assigned IP address. If this condition is fulfilled and the rest of the fields match the
indicated values in table 3, we have to do the following steps: move '$ to 7DUJHW�+:, move
6HQGHU�,3 to 7DUJHW�,3, move our IP address to 6HQGHU�,3, move our MAC address to 6HQGHU
+:, write 2 as 2SHUDWLRQ (ARP response) and then do the Ethernet frame response as
described above.

Further details of this protocol can be found in [4].

,&03
Even if the Internet Control Message Protocol is not strictly needed for UDP purposes, it is
nice to be able to find in a standard way whether a system is attached to the network. In order
to do this, a SLQJ message is sent ("are you there?") and a response is expected ("yes, I am").

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

The ICMP message is encapsulated into the IP data field with the information shown in table
4.

)LHOG 6L]H 'HVFULSWLRQ
'$ � 0$&�GHVWLQDWLRQ�DGGUHVV
6$ � 0$&�VRXUFH�DGGUHVV
7\SH � PHVVDJH�W\SH�������
9HU/HQ � YHUVLRQ�DQG�KHDGHU�OHQJWK
726 � W\SH�RI�VHUYLFH����
/HQJWK � WRWDO�,3�OHQJWK
,' � LGHQWLILFDWLRQ
)UDJPHQW � IUDJPHQW�RIIVHW�LQWR�D�ELJ�SDFNHW
77/ � WLPH�WR�OLYH
3URWRFRO � SURWRFRO�XVHG�LQ�WKH�GDWD�SRUWLRQ����
&KHFNVXP � FKHFNVXP�RI�WKH�,3�SDUW
,3�6$ � ,3�VRXUFH�DGGUHVV
,3�'$ � ,3�GHVWLQDWLRQ�DGGUHVV
,&03�7\SH � W\SH�RI�PHVVDJH����
&RGH � D�FRGH�DVLJQHG�WR�WKH�PHVVDJH��SUREDEO\��
,&03�&KHFN � FKHFNVXP�RI�WKH�,&03�SDUW
'DWD YDULHV VRPH�YDOXHV��SUREDEO\�IL[HG
)&6 � IUDPH�FKHFN�VHTXHQFH

Table 4

When we receive an IP message with 3URWRFRO set to 1 and ,&03�7\SH set to 8, we know that
an echo is being requested. All we have to do is: write 0 into ,&03�7\SH, write 0 into ,&03
&KHFN, calculate the checksum of the ICMP part and put the result into ,&03�&KHFN and then
do the IP response as described above.

Further details of this protocol can be found in [5].

8'3
Finally, an UDP message is also encapsulated into an IP message with the information shown
in table 5.

If we decide to answer an UDP message directed to us from some port in some remote
system, we have to swap the contents of 63 and '3, copy the data and set /HQJWK to the
appropriate value, write 0 into 8'3�&KHFN, calculate the checksum of the UDP part and put
the result into 8'3�&KHFN and then do the IP response as described above.

Further details of this protocol can be found in [3].

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

)LHOG 6L]H 'HVFULSWLRQ
'$ � 0$&�GHVWLQDWLRQ�DGGUHVV
6$ � 0$&�VRXUFH�DGGUHVV
7\SH � PHVVDJH�W\SH�������
9HU/HQ � YHUVLRQ�DQG�KHDGHU�OHQJWK
726 � W\SH�RI�VHUYLFH
/HQJWK � WRWDO�,3�OHQJWK
,' � LGHQWLILFDWLRQ
)UDJPHQW � IUDJPHQW�RIIVHW�LQWR�D�ELJ�SDFNHW
77/ � WLPH�WR�OLYH
3URWRFRO � SURWRFRO�XVHG�LQ�WKH�GDWD�SRUWLRQ
&KHFNVXP � FKHFNVXP�RI�WKH�,3�SDUW
,3�6$ � ,3�VRXUFH�DGGUHVV
,3�'$ � ,3�GHVWLQDWLRQ�DGGUHVV
63 � VRXUFH�SRUW
'3 � GHVWLQDWLRQ�SRUW
/HQJWK � WRWDO�8'3�OHQJWK
8'3�&KHFN � FKHFNVXP�RI�WKH�8'3�SDUW
'DWD YDULHV PHVVDJH�GHSHQGDQW�LQIRUPDWLRQ
)&6 � IUDPH�FKHFN�VHTXHQFH

Table 5

$FFHVVLQJ�WKH������IURP�)RUWK
This part describes some sets of words used to access the CS8900 chip. The source code
(AVR assembler for the low-level words and Forth for the rest) is available from the author.

/RZ�OHYHO�ZRUGV
These words allow the user to physically access the chip using seven output signals (/IOR,
/IOW, /CHIP-SELECT and a four bit data bus) and eight bi-directional signals that compose
the data bus.

-IOR clear /IOR signal
-IOW clear /IOW signal
-SEL clear /CHIP-SELECT signal
+IOR set /IOR signal
-IOW set /IOW signal
-SEL set /CHIP-SELECT signal
ADDR (a) set the addr bus
DATA! (c) write an 8bit value to the data bus
DATA@ (c) read an 8bit value from the data bus
DIN set the data bus as input
DOUT set the data bus as output
(INIT) set the direction of the ports at start-up

:ULWLQJ�WKH�,2�UHJLVWHUV
The low-level words presented before are only needed to allow the user to write to or read
from the different registers that compose the IO space.

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

IO! (c a) write a value to an 8bit register
IO@ (a -- c) read a value from an 8bit register

$FFHVVLQJ�WKH�FKLS
With this baggage, we can define words to access the individual 16-bit registers, including
those available from the PacketPage memory.

RXTX! (x) write to the transmit-receive data register
RXTX@ (-- x) read from the transmit-receive data register
TX-CMD! (x) write to the transmit command register
TX-LEN! (x) write to the transmit length register
PTR! (x) set the packet data pointer
PACKET! (x) write to the packet data register
PACKET@ (-- x) read from the packet data register

PP! (x a) set the contents of a packet data register
PP@ (a -- x) fetch the contents of a packet data register

8VLQJ�WKH�8'3�YRFDEXODU\
Finally, this last set of words allows high level access to the UDP protocol. Please note that
ARP and ICMP processing is hidden into UDP@.

/8900 (-- flag)
initialise the chip, return true if OK

UDP (-- addr)
return the address of the data part in the message buffer

UDP@ (-- size true | false)
check whether a new message is available. If so, copy the
message into the buffer and return its size and true.
Otherwise, return false

UDP! (size)
reply to the previous received message

UDP-CLIENT-IP (-- dx)
return the client IP address

UDP-CLIENT-PORT (-- x)
return the client UDP port number

UDP-SERVER (-- x)
return the destination UDP port number

UDP-SERVER! (x)
change the destination UDP port number

The meaning of each word should be clear from the description. UDP-SERVER! is used
when responding to a message using a different port from the one it was addressed to.

Federico de Ceballos UDP/IP over Ethernet for 8-bit Microcontrollers

%LEOLRJUDSK\
[1] Cirrus Logic. &6����$�(WKHUQHW�&RQWUROOHU�3URGXFW�'DWD�6KHHW. 2001.

[2] RFC 760. ,QWHUQHW�3URWRFRO. 1980.

[3] RFC 768. 8VHU�'DWDJUDP�3URWRFRO. 1980.

[4] RFC 826. (WKHUQHW�$GGUHVV�5HVROXWLRQ�3URWRFRO. 1982.

[5] RFC 792. ,QWHUQHO�&RQWURO�0HVVDJH�3URWRFRO. 1981.

