
Primitive Sequences in General Purpose Forth Programs

David Gregg ∗ John Waldron
Department of Computer Science

Trinity College Dublin
David.Gregg@cs.tcd.ie

Abstract

Instruction dispatch is responsible for most of the
running time of Forth interpreters, especially on
modern pipelined processors. Superinstructions are
an important optimisation to reduce the number of
instruction dispatches. Superinstructions have been
used for many years to optimise interpreters, but an
open problem is the choice of superinstructions to
include in the interpreter. In this paper we pro-
pose a number of heuristics for choosing superin-
structions, and evaluate them for general purpose
Forth programs. We find that static measures of
frequency perform well for superinstruction selec-
tion. As few as eight superinstructions can reduce
the number of instruction dispatches by an average
of 15%, and reductions of up to 45% are possible
with large numbers of superinstructions.

1 Motivation

Traditionally, Forth is implemented with an inter-
preter. Interpreters have many advantages over
compilers. They are simpler than compilers, which
can make them more reliable and easier to maintain.
An interpreter written in a high-level language can
be made easily portable to new architectures. In
addition, interpreters along with their code can re-
quire less memory than compiled machine code. For
these reasons, many Forth implementations, such
as GForth [Ert93] are based on interpreters rather
than compilers.
Although interpreters are superior to compilers in

most respects, their major drawback is that inter-
preted code runs much more slowly than compiled
code. This problem is particularly acute on modern
pipelined processors, which rely on branch predic-
tion to keep their pipelines full.
The code for a virtual machine (VM) interpreter

is laid out in memory just like real machine code.
To execute a virtual machine instruction (that is,
a Forth primitive) the interpreter must branch to

∗Supported by Enterprise Ireland International Collabo-
ration Programme, Project IC/2002/167

one of a large number of different pieces of code,
depending on what type of instruction is to be ex-
ecuted. This is known as dispatching the instruc-
tion. The multi-way branch is implemented in the
interpreter using a switch statement, threaded dis-
patch (which requires a language which allows la-
bels as first class values, such as GNU C), or func-
tion pointers [Ert96]. Regardless of which method
is used in the source code, the multi-way branch
becomes an indirect branch when the interpreter is
compiled into machine code. Current branch pre-
dictors deal poorly with indirect branches. For ex-
ample, Ertl and Gregg [EG01] found that current
predictors mispredict 60%–97% of indirect branches
in interpreters, and that many interpreters spend up
to 70% of their time in branch mispredictions.
A number of solutions to this problem have been

proposed. One is to wait for processors with bet-
ter indirect branch predictors. Two-level indirect
branch predictors [DH98a, DH98b, KK98] can in-
crease the prediction accuracy to more than 98%
on interpreters [EG01]. However, most programs
execute only a tiny proportion of indirect branches
(typically less than 0.5% of executed instructions,
and very rarely more than 2% [DH98a]) so pro-
cessors with better indirect branch predictors are
unlikely to appear soon. The benefit is simply
too small for almost all programs other than in-
terpreters.
Another possible solution is to software pipeline

the interpreter [HATvdW99] by moving part of
the dispatch code (which may include long latency
loads) for future VM instructions into the current
instruction. If the dispatch indirect branch is mis-
predicted, any long latency instructions that started
before the branch can run to completion during the
time of the branch misprediction penalty. Ertl et
al [EGKP02] evaluated the benefit of this type of
prefetching, and found that it decreased running
time of the Gforth interpreter by an average of
about 10%. The main problem with this technique
is that branch misprediction penalties are typically
very long (10-20 cycles), whereas the latency even
of loads is typically no more than a few cycles, so
there is not much useful work than can be over-



lapped with a branch misprediction.
A third solution is to use superinstructions. A

superinstruction is a new VM primitive instruction
which behaves exactly like a sequence of regular VM
primitives. The superinstruction is implemented as
a single VM instruction, however, so the interpreter
overhead of executing it is very much lower than for
the original sequence.
There are two main types of superinstructions.

Dynamic superinstructions [Piu98] are new primi-
tives which are generated when the interpreter is
already running. The set of dynamic superinstruc-
tions can be tailored to the specific running pro-
gram, so choosing a good set of superinstructions is
easy. However, the interpreter must be constructed
using a language or system that supports run-time
code generation or copying. At the very least, there
must be some way to create new executable code in
main memory, to synchronise the instruction cache
with the code in main memory (which typically
requires some machine specific assembly language
code), and to jump to the new code from existing
code. These features all reduce the portability and
simplicity of the interpreter, and are not trivial to
implement.

Static superinstructions are superinstructions
that are chosen and added to the interpreter at the
time of its construction. Static superinstructions
can be specified in exactly the same way as any
other virtual machine primitive. They do not re-
quire that the interpreter be written in a language
with any special features, or machine specific code.
However, the set of static superinstructions must
be chosen when the interpreter is constructed, most
likely at a time when one doesn’t know which pro-
grams will be run on the interpreter. Ertl et al.
[EGKP02] found that static superinstructions can
increase the speed of a Forth interpreter by almost
a factor of two. The remainder of this paper deals
with static superinstructions.
Static superinstructions have been used for many

years to optimise interpreters, but there are still a
number of unsolved problems with their use. One
such problem is the choice of superinstructions to
include in the interpreter. The set of superinstruc-
tions must be chosen when the interpreter is con-
structed, at a time when the workload is proba-
bly not known. Clearly, it is desirable to choose
sequences that are likely to appear in many pro-
grams, preferably in the inner loops. One also wants
to avoid cluttering the interpreter with unused su-
perinstructions.
In this paper, we examine strategies for choos-

ing superinstructions for general purpose Forth pro-
grams. In compiler and computer architecture re-
search it is common to divide programs into sev-
eral different types [HP90]. Computer architectures

and compiler optimisations are typically designed
for a particular type of code. For example, scien-
tific code, such as whether forecasting and nuclear
weapon simulation, typically consists of large loops
containing array and floating point computations.
Scientific code usually contains few if statements.
DSP code, such as music or image filters, is similar,
but loops tend to iterate a smaller number of times.
Database code tends to contain large numbers of
if statements, the outcome of which is dependent
on user input and the information in the database.
Another important feature of database code is that
it has very poor locality of reference; little time is
spent in tight loops.

Perhaps the most important type of widely used
code is general purpose integer code. This type
of code includes operating systems, word proces-
sors, compilers, database programs and many of
the other types of programs that typically run on a
desktop machine. This code is similar to database
code in that it tends to contain large numbers of
if statements, and control flow depends heavily on
user input. General purpose integer code spends
more times in loops that database code however.
Loops iterate a (widely varying) average of about
ten times, and the number of iterations is usually
dependent on user input.

In this paper we consider the problem of choosing
a set of useful superinstructions for general purpose
integer programs written in Forth. It is important
to note that at the time we choose the superinstruc-
tions we do not know which programs will run on
the Forth system. When sample programs are used
as the basis for choosing a set of superinstructions,
we always use a different set of programs for se-
lecting superinstructions from the programs used to
evaluate the usefulness of the selection. We consider
several criteria for choosing sequences of instruc-
tions from sample programs, such as their static fre-
quency in the code, and the number of times that
they are executed dynamically. All strategies are
tested experimentally, and results are presented for
the most effective ones.

The remainder of this paper is organised as fol-
lows. We first describe existing work on superin-
structions for interpreters (section 2). Section 3
introduces our strategies for choosing superinstruc-
tions. In section 4 we describe five general pur-
pose programs we use for our experiments. Sec-
tion 5 presents our system for evaluating various
superinstruction selection strategies. In section 6
we present an empirical evaluation of the different
design choices. Finally, in section 7 we draw con-
clusions.



2 Related Work

Programmers of interpreters have combined in-
structions into superinstructions for many years.
However, the earliest published reference on such
a combining system that we are aware of is from
Schütz [Sch92].
In the past superinstructions made interpreters

more difficult (expensive) to maintain. The rea-
son is that superinstructions were added manually
to the interpreter. Interpreter generators [Pro95]
allow superinstructions to be generated automati-
cally. Typically, profiling data from a set of test pro-
grams is used to choose a list of superinstructions.
This list is fed into the interpreter generator, which
automatically combines the code to implement each
of the VM instructions. More sophisticated inter-
preter generators, such as vmgen [EGKP02], can
also perform stack optimisations.
An alternative to combining sequences of instruc-

tions is to combine operators earlier in the pro-
cess of compiling a program. Hughes [Hug82] pro-
poses such a scheme, which operates on the parse
tree for a program. It identifies common combina-
tions of operators, and combines them into “super-
combinators”. If represented as a sequence of in-
structions, a super-combinator may have one or
more gaps which can contain other VM instructions.
A similar scheme is proposed by Proebsting [Pro95].
In previous, unpublished work Ertl measured the

frequency of instructions, and sequences of instruc-
tions in three large Forth programs. The raw
data from these measurements can be found at
http://www.complang.tuwien.ac.at/forth/peep/.
The best developed body of related work is on

dictionary-based text compression [BCW90]. Dic-
tionary compression schemes reduce the size of a
text by replacing common sequences in the text
with references to phrases in a dictionary. Superin-
structions are an application of dictionary-based
compression, where the dictionary is fixed in ad-
vance, compression must stop at basic block bound-
aries, and the emphasis is on compressing the most
commonly executed basic blocks.
Research on compression theory has found a

number of results which are directly relevant to
choosing superinstructions. Perhaps the most im-
portant of these is that for a given text, choosing an
optimal set of phrases for a dictionary to compress
that text is NP-hard. Thus, choosing the best set
of superinstructions for a given sample of programs
is also NP-hard. A practical scheme for choosing
superinstructions must be based on heuristics. In
the next section, we present a number of promising
heuristics.
One branch of text compression which is similar

to our work is on split stream dictionary compres-

sion [Luc00], which is used for compressing byte-
code programs. A bytecode program consists of a
mixture of opcodes and operands. Typically, there
is a strong pattern in sequences of opcodes. For
example, in Java bytecode, an opcode to load a
pointer to an object is often followed by a byte-
code to invoke a method on that object. However,
the opcodes are interspersed with operands to spec-
ify from which local variable the pointer should
be loaded, and which method should be invoked.
These operands may also follow a pattern. By split-
ting the bytecode into two streams — one for each
of opcodes and operands, better compression can
be achieved than by mixing them together.
An alternative to improving interpreters is to

compile directly to native code. Bruno and Las-
sagne [BL75] describe a system for generating opti-
mal code for stack machines. Rose [Ros86] presents
a “subroutine threaded” implementation of Forth
which expresses programs as a sequence of calls to
subroutines which implement the primitives. Almy
[Alm87] describes further optimisations for Forth.

3 Superinstruction Selection

The most obvious way to select superinstructions is
to choose the most common sequences appearing in
a set of sample programs. As we show in section 6
this is an effective strategy. However, there are a
number of ways that the most common sequences
could be defined. Furthermore, choosing one se-
quence might affect the desirability of another. In
this section, we explore a number of criteria that
can be used in choosing superinstructions.
The most basic decision in a superinstruction

selection strategy is whether to choose sequences
based on how often they appear statically in sam-
ple programs, or the frequency with which they are
executed dynamically. Intuitively, it seems better
to choose dynamically frequent sequences. If a se-
quence is executed frequently in one program, it is
perhaps likely to be executed frequently in another.
The counter-argument is that programs spend

most of their time in a handfull of loops. The se-
quences in these loops are so much more frequently
executed that the other code in the program that
sequences from other code will be selected only af-
ter every sequence within these loops has been cho-
sen. Thus, one is trying to choose common se-
quences based primarily on a handfull of small sam-
ples. These loops are often peculiar to the particu-
lar program, and result in sequences that are close
to optimal for the sample program, but useless for
other purposes. Statically frequent sequences, on
the other hand, are based on a much larger sam-
ple of code, and should represent genuinely frequent



code patterns. The weakness of static measures is
that some Forth primitives, such as (loop), are
dynamically frequent, but statically extremely rare
[GEW01]. A compromise solution is to use some
sort of hybrid.
A second important decision is whether or not

to weight the sequences by length. A longer se-
quence reduces the number of dispatches by a larger
amount, and thus gives a greater benefit. On the
other hand, even if a longer sequence occurs fre-
quently in the training programs, it is less likely to
be used in practice. The longer the sequence, the
more likely that it is peculiar to a particular train-
ing program.
A third important decision is whether choosing

one sequence to be a superinstruction should affect
the choice of other sequences. The most straight-
forward strategy is to simply order all sequences by
frequency, and choose those with the highest rank.
However, the value of a sequence such as lit @ lit
@ is lower if one has already chosen the sequence lit
@ lit as a superinstruction. One might be better
to choose a completely different sequence.
Another consideration arises when one combines

data from several different programs. Using several
different programs to choose frequent sequences is
highly desirable, since it decreases the likelihood
of choosing sequences that are only useful for the
training program. A problem is that one program
may run for much longer than another. If the data
for the two programs are simply combined, the long
running programwill dominate the dynamic results.
A similar problem arises when one program is stat-
ically much larger than another. One solution to
this problem is to normalise the results for each
program. For example, the frequency of each se-
quence could be expressed as a percentage of total
instructions in the program. When combining data
from different programs, the percentages could be
combined rather than the absolute numbers. In the
following sections we evaluate these strategies, and
present results using five general purpose programs.

4 Benchmarks

This section describes the benchmarks that we use
to evaluate the strategies for choosing superinstruc-
tions. We have chosen five large, general purpose
programs for our experiments, which we believe are
generally representative of real programs.
We deliberately chose not to use small, artificial

benchmark programs for our evaluation. The main
reason is that such programs behave very differently
from larger ones [GEW01], so any conclusions that
we drew about them might not be applicable to real
programs. In addition, choosing superinstructions

that are useful for micro-benchmarks is not easy,
unless one knows at the time of constructing the
interpreter that it will be used to run that particular
microbenchmark. Typically, these programs spend
virtually all their time in a single small loop. The
usefulness of superinstructions for these programs
depends almost entirely on whether one happens
to choose one or more sequences that match the
handfull of instructions in the loop.
It is easier to select useful superinstructions for

a larger program, since the execution time is typi-
cally spread over several loops. A representative set
of superinstructions is more likely to find matches
in a larger body of code. Thus, we restrict ourselves
to the easier problem of choosing superinstructions
for real general purpose programs1. Basic informa-
tion about the benchmarks appears in Fig. 1. The
benchmarks are:

prims2x A virtual machine interpreter generator
which forms part of the Gforth system. It ac-
cepts a specification of the virtual machine in-
structions and outputs C source for an inter-
preter.

gray A parser generator which accepts an LL1
grammar and produces a recursive descent
parser in Forth.

brew An evolutionary programming playground,
which simulates the interaction between crea-
tures.

brainless A chess playing program.

benchgc A conservative garbage collector for
Forth. It was run with a test program which
allocates and collects large amounts of memory.

5 Experimental Setup

The benchmarks were measured with the Gforth
system [Ert93]. Gforth is a complete, product
quality implementation of the ANS Forth standard
which is freely available under the GNU general
public licence. Gforth is an interpreter based imple-
mentation of Forth, which allows the Forth engine
to be simple and portable.
We modified the Forth text interpreter (which

compiles Forth source to threaded virtual machine
code) and the engine interpreter (which interprets
the threaded code) to collect information about run-
ning programs. The most important modification

1Note that in previous work [GEW01], we also examined
the behaviour of another large program, pentomino. How-
ever, pentomino generates very large amounts of almost iden-
tical code at run time, and could not, by any normal measure,
be described as a general purpose program.



Benchmark source lines static primitives dynamic primitives.
prims2x 1258 6,314 18,319,272
gray 1458 4,792 4,833,582
brew 7627 6,078 1,312,698,495
brainless 3755 11,430 859,030,440
benchgc 1479 4,105 559,786,379

Figure 1: The benchmark programs

was to add additional code to all control flow in-
structions, so that they record the number of times
that each basic block is entered.
One complication with measuring the behaviour

of Forth code is that there is no “program” as such.
A Forth system consists of a collection of words.
Additional functionality is added by defining new
words, in effect, changing the language. An impor-
tant question when measuring Forth programs is
whether to examine only the user-defined words, or
whether to include both system and user-defined
words. Should statistics for a small bubble sort
benchmark include the entire Forth system or just
the words in the user part of the code? The for-
mer would cause the system code to dominate static
measurements of most programs, whereas the latter
would leave out an important part of dynamic mea-
surements. For this reason we chose a compromise,
which is to include in our measurements those in-
structions from the system and user code which are
executed at least once.
The simplest way to find common sequences of

instructions up to a given length N is to modify
the interpreter to keep a list of the most recent
N instructions executed. After executing each in-
struction the list is added to a hash table which
records the number of times that that sequence
has occurred. A weakness of this approach is that
the instructions in the resulting sequences may
be from more than one basic block. Currently,
sequence-based optimisations work only on instruc-
tions within a basic block. For this reason, we used
a more sophisticated scheme to measure only those
sequences which appear within basic block bound-
aries.
It is also important to note that some complex

words appear in executable code that are expanded
to primitives at run time. In Forth implementations
other than GForth, these might be implemented by
a single primitive. The replacements are shown in
Fig. 2.
When rewriting the program with superinstruc-

tions, there may be situations where there are sev-
eral possible rewrites of a basic block. Identifying
possible rewrites is known as parsing in compres-
sion terminology. Several different parsing strate-
gies are possible, but for the experiments in this pa-

word replacement
docol call
docon lit @
dovar lit
douser useraddr
dodefer lit @ execute
dofield lit +
dodoes lit call

Figure 2: Replacements of words with sequences

per we used longest match parsing [BCW90]. This
approach finds the longest sequence of primitives
in the basic block that matches a superinstruction,
and replaces them with that superinstruction. It
then applies the same process again, until no more
replacements are possible. Longest match parsing
is simple to implement and gives results which are
very close to optimal [BCW90].
In total we used five benchmark programs. When

choosing superinstructions, we used four of these
programs as training data. In other words, we chose
the most frequent sequences from four programs,
and then evaluated the usefulness of those superin-
structions for the fifth program. We did this five
times, each time using a different program to evalu-
ate the superinstructions. Results are presented in
the next section.

6 Results

To measure the effectiveness of each scheme, we ini-
tially computed the number of dispatches required
to execute the program without superinstructions.
We then chose the set of superinstructions using
the given scheme, and rewrote the program using
those superinstructions. We then recomputed the
number of dispatches. The results show the per-
centage reduction in dispatches caused by replacing
sequences of primitives with superinstructions. We
implemented the following schemes.

static Sequences are chosen in order of static fre-
quency.

dynamic Sequences are chosen in order of the



Scheme 8 16 32 64 128 256 512 1024 2048
static 14.81 17.51 21.11 24.45 28.54 33.62 37.22 41.71 44.24
static normalise 14.77 17.51 21.20 24.18 28.08 33.32 36.78 41.25 44.66
static length 13.47 16.77 20.74 24.06 26.77 30.28 36.56 38.53 42.40
static length normalise 13.47 16.77 20.34 23.82 26.25 29.16 33.99 38.71 42.18
static rewrite 14.83 17.91 19.99 23.40 28.98 34.14 37.78 42.58 44.27
static normalise rewrite 15.01 17.91 20.85 23.29 28.71 34.01 37.87 42.47 44.64
static length rewrite 14.61 18.22 20.08 22.83 27.02 31.89 36.36 41.32 42.38
static length normalise rewrite 14.32 17.87 19.50 22.23 25.38 31.93 35.67 41.25 42.95
dynamic 12.00 13.98 17.22 19.66 22.50 26.28 32.10 35.38 39.74
dynamic normalise 11.86 13.08 18.18 21.94 24.22 29.18 32.64 38.14 41.93
dynamic length 11.23 13.11 15.28 16.67 20.69 24.77 29.85 34.91 38.13
dynamic length normalise 10.86 13.72 16.23 18.96 22.89 26.61 30.94 35.86 41.19
dynamic rewrite 10.54 13.63 15.57 19.60 23.71 28.04 33.46 40.22 43.58
dynamic normalise rewrite 10.58 14.65 17.51 21.24 26.18 31.67 35.36 40.94 43.70
dynamic length rewrite 10.09 14.19 16.46 20.59 23.40 28.24 33.89 40.83 42.02
dynamic length normalise rewrite 11.00 13.89 17.51 21.93 26.54 30.03 34.24 40.32 41.74
hybrid normalise 14.77 17.51 21.20 24.18 28.08 33.32 36.81 41.50 45.32
hybrid length normalise 13.47 16.77 20.34 23.82 26.25 29.16 33.99 38.71 42.18
hybrid normalise rewrite 15.01 17.91 20.85 23.29 28.71 34.23 38.93 42.76 44.65
hybrid length normalise rewrite 14.32 17.87 19.50 22.23 25.47 32.03 35.69 41.27 42.95

Figure 3: Average reduction in dynamically executed dispatches using varying numbers of superinstruc-
tions for each of the schemes

Scheme 8 16 32 64 128 256 512 1024 2048
static 15.35 17.67 21.14 25.16 29.45 35.09 40.93 44.79 49.47
static normalise 15.01 17.67 20.66 24.60 28.65 34.28 40.15 44.27 49.13
static length 12.78 17.71 20.68 24.09 27.84 32.02 39.71 43.41 48.05
static length normalise 12.78 17.66 20.11 23.67 27.02 30.75 37.41 42.93 47.08
static rewrite 15.50 18.46 21.71 25.62 32.55 36.92 42.78 49.30 49.88
static normalise rewrite 15.01 18.39 21.27 25.18 29.99 36.63 42.00 48.92 49.89
static length rewrite 15.26 18.51 21.06 24.48 31.24 37.55 42.70 48.49 49.14
static length normalise rewrite 14.26 17.94 20.14 23.58 29.04 36.49 41.65 48.52 49.21
dynamic 12.35 14.41 16.18 18.95 21.65 23.73 27.58 31.55 36.71
dynamic normalise 12.30 13.14 17.67 21.13 22.63 26.01 28.90 34.69 39.78
dynamic length 10.91 13.42 15.04 16.10 18.29 22.18 25.99 30.46 34.35
dynamic length normalise 10.10 13.14 15.63 16.56 19.41 22.90 27.30 32.80 38.26
dynamic rewrite 11.63 12.92 15.25 18.47 22.10 26.07 30.13 39.14 47.86
dynamic normalise rewrite 11.61 14.64 16.26 18.75 23.43 29.15 33.60 39.54 47.85
dynamic length rewrite 10.05 11.80 14.73 18.16 21.30 24.37 30.60 42.12 46.96
dynamic length normalise rewrite 12.19 13.32 14.67 18.19 22.73 27.70 32.88 42.69 46.87
hybrid normalise 15.01 17.67 20.66 24.60 28.65 34.27 40.18 44.19 48.19
hybrid length normalise 12.78 17.66 20.11 23.67 26.96 30.76 37.41 42.90 47.09
hybrid normalise rewrite 15.01 18.39 21.27 25.18 29.97 36.64 41.71 48.89 49.90
hybrid length normalise rewrite 14.26 17.94 20.14 23.58 29.11 36.51 41.69 48.51 49.19

Figure 4: Average reduction in primitives statically appearing in the program using varying numbers of
superinstructions for each of the schemes



number of times they are executed dynami-
cally.

length Sequences are weighted by length. The
frequency of the sequence is multiplied by its
length during ranking.

normalise Frequencies are normalised across pro-
grams. That is, the static (dynamic) frequency
of the sequence is divided by the total number
of static (dynamic) primitives in the program.

hybrid Sequences are ranked on the sum of their
normalised static and dynamic frequencies.

rewrite After the highest ranking superinstruction
is chosen, the program is rewritten using the
current set of superinstructions. Rankings are
then recalculated, based on the new program.

We tested as many combinations of the differ-
ent schemes as seemed sensible. Figure 3 shows
the reduction in dynamically executed dispatches
using each of the schemes, and varying the num-
ber of superinstructions chosen between 8 and 2048.
The numbers presented are average figures across all
five programs. It is important that the reduction
varied a lot from program to program. For exam-
ple, with just eight superinstructions the number
of dispatches could be reduced for brew by 26.87%,
whereas for benchgc the reduction was only 3.7%.
A number of trends are clear from the figures in

Fig. 3, and these don’t vary from on program to
another. First, static measures of frequency con-
sistently outperform dynamic measures. For eight
superinstructions, static heuristics reduce the num-
ber of dispatches by about one quarter more than
dynamic measures. As the number of superinstruc-
tions rises, the gap gets smaller, but static measures
consistently outperform. Dynamic schemes choose
the sequences in the inner loops of the training pro-
grams, rather than more generally applicable ones,
which might be useful for programs that we have
not yet seen.
Another interesting result is that normalising the

frequencies doesn’t make very much difference to ei-
ther static or dynamic schemes. When the number
of superinstructions becomes very large, it appears
to have some benefit, but the result is not consis-
tent.
Surprisingly, weighting sequences by length does

not result in more useful superinstructions. Al-
though longer sequences remove more dispatches,
it appears that it is much more difficult to match a
longer sequences, which offsets the benefit.
Rewriting the training programs between choos-

ing superinstructions gives mixed results. It ap-
pears to definitely be a bad idea for dynamic

schemes. The problem with rewriting is that it
tends to eliminate substrings of long sequences that
have been chosen. Dynamic schemes first choose
the sequences from the inner loop, and if these
are super-strings of useful sequences, rewriting may
greatly decrease the priority of these useful short se-
quences. On the other hand, static schemes benefit
from rewriting, since these tend to choose shorter
sequences first, and rewriting reduces the priority
of other similar strings.
Overall, the best performing scheme is the hybrid

one with rewriting. It appears that this success-
fully combines the advantages of rewriting for static
strings with some ability to identify sequences that
are likely to execute frequently. The margin over
other schemes is small, however. Simple static fre-
quency is remarkably strong, and much simpler to
implement.
Figure 4 shows the percentage reduction in static

primitives using each combination of the schemes
and varying numbers of superinstructions. Perhaps
the most interesting result is that the schemes who
do best dynamically are also the best statically. In
addition to reducing the number of dispatches, we
can also expect a significant fall in the size of the
interpreted code.
Interestingly, the static reduction in primitives is

greater than the dynamic number. We believe that
the main reason for this is that a large percentage
of the static code consists of Forth words that are
part of the GForth system, most of which are in-
voked on startup. These words are common to all
programs, so for these words the training code is ac-
tually the same as the real code. In previous work
[GEW01] we measured the proportion of static that
is executed at least once and belongs to the GForth
system and found that it accounts for an average of
65% of static code. These words account for a much
smaller proportion (average of 29%) of dynamically
executed primitives however, so the dynamic reduc-
tion is less.

7 Conclusion

Instruction dispatch is responsible for most of the
running time of Forth interpreters, especially on
modern pipelined machines. Superinstructions are
an important optimisation to reduce the number of
instruction dispatches. Many interpreters use su-
perinstructions, but there has been little study of
how the sequences which will be turned into su-
perinstructions should be chosen.
In this paper we have examined a number of

heuristics for choosing superinstructions for general
purpose programs. We found that using the heuris-
tics described in this paper, the number of statically



executed dispatches can be reduced by up to an av-
erage of 45%. Even using only eight superinstruc-
tions, dispatches can be reduced by 15%. Perhaps
our most interesting finding is that static measures
of sequence frequency are usually better for choos-
ing superinstructions than dynamic measures. We
believe that this is because dynamic measures are
dominated by a few inner loops, so the sample of
code is rather small. In addition, statically frequent
sequences are also the most effective at reducing the
size of the interpreted program, giving better run-
ning time and smaller code size.

Acknowledgments

We would like to thank the anonymous reviewers for
their detailed comments which greatly improved the
quality of this paper. We are also grateful to Anton
Ertl for help with Gforth.

References

[Alm87] T. Almy. Compiling of Forth for per-
formance. Journal of Forth Applica-
tions and Research, 4(3), 1987.

[BCW90] Timothy Bell, John Cleary, and Ian
Witten. Text Compression. Prentice
Hall, 1990.

[BL75] J. Bruno and T. Lassagne. The
generation of optimal code for stack
machines. Journal of the ACM,
22(3):382–396, 1975.

[DH98a] K. Driesen and U. Hölzle. Accurate
indirect branch prediction. In Pro-
ceedings of the 25th Annual Interna-
tional Symposium on Computer Ar-
chitecture (ISCA-98), volume 26,3 of
ACM Computer Architecture News,
pages 167–178, New York, June 27–
July 1 1998. ACM Press.

[DH98b] K. Driesen and U. Hölzle. The
cascaded predictor: Economical and
adaptive branch target prediction.
In Proceedings of the 31st Annual
ACM/IEEE International Sympo-
sium on Microarchitecture (MICRO-
98), pages 249–258, Los Alami-
tos, November 30–December 2 1998.
IEEE Computer Society.

[EG01] M. Anton Ertl and David Gregg. The
behaviour of efficient virtual machine
interpreters on modern architectures.

In Euro-Par 2001, pages 403–412.
Springer LNCS 2150, 2001.

[EGKP02] M. Anton Ertl, David Gregg, An-
dreas Krall, and Bernd Paysan. vm-
gen — A generator of efficient virtual
machine interpreters. Software—
Practice and Experience, 32(3):265–
294, 2002.

[Ert93] M. Anton Ertl. A portable Forth
engine. In EuroFORTH ’93 confer-
ence proceedings, Mariánské Láznè
(Marienbad), 1993.

[Ert96] M. Anton Ertl. Implementation of
Stack-Based Languages on Register
Machines. PhD thesis, Technische
Universität Wien, Austria, 1996.

[GEW01] David Gregg, M. Anton Ertl, and
John Waldron. The common case
in Forth programs. In EuroForth
2001 Conference Proceedings, pages
63–70, 2001.

[HATvdW99] Jan Hoogerbrugge, Lex Augusteijn,
Jeroen Trum, and Rik van de
Wiel. A code compression sys-
tem based on pipelined interpreters.
Software—Practice and Experience,
29(11):1005–1023, September 1999.

[HP90] John Hennessy and David Patterson.
Computer architecture: A quantita-
tive approach. Morgan Kaufmann
Publishers, 1990.

[Hug82] R. J. M. Hughes. Super-combinators.
In Conference Record of the 1980
LISP Conference, Stanford, CA,
pages 1–11, New York, 1982. ACM.

[KK98] J. Kalamatianos and D. R. Kaeli.
Predicting indirect branches via data
compression. In Proceedings of
the 31st Annual ACM/IEEE In-
ternational Symposium on Microar-
chitecture (MICRO-98), pages 272–
284, Los Alamitos, November 30–
December 2 1998. IEEE Computer
Society.

[Luc00] Steven Lucco. Split-stream dictio-
nary compression. In SIGPLAN ’00
Conference on Programming Lan-
guage Design and Implementation,
pages 27–34, 2000.



[Piu98] Ian Piumarta. Optimizing direct
threaded code by selective inlining.
In ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI), Montreal,
Canada, June 1998.

[Pro95] Todd A. Proebsting. Optimizing an
ANSI C interpreter with superoper-
ators. In Principles of Programming
Languages (POPL ’95), pages 322–
332, 1995.

[Ros86] Anthony Rose. Design of a fast
68000-based subroutine-threaded
Forth with inline code & an opti-
mizer. Journal of Forth Application
and Research, 4(2):285–288, 1986.
1986 Rochester Forth Conference.

[Sch92] Udo Schütz. Optimierung von
Fadencode. In FORTH-Tagung, Ro-
stock, 1992. Forth Gesellschaft e.V.


