
"Want", a Flash Token-Threaded Virtual-Machine and
Operating-System for DSPs

EuroForth 2004 - Christophe Lavarenne (cl@ubic.fr - UBIC S.A. - http://www.ubic.fr)

Abstract:
More and more low-cost applications (telecommu-
nications, automotive, metering, alarm systems...)
embed, beside a microcontroller unit (MCU), a
Digital-Signal-Processor (DSP) to cope with data
rates and their processing under hard real-time
constraints. For such applications, the UBIC
company has developed "WantOS", a multitasking
real time operating system with interrupt-driven
peripheral drivers, integrated into "WantVM", a
compact and efficient token-threaded virtual-
machine running several megabytecodes per
second directly out of flash, programmable in
either "WantC" with a full-featured graphical user
interface, or more interactively in "WantForth".
This paper presents this software architecture and
the savings it has allowed, compared to usual
designs, in the hardware architecture and in the
design and life cycles of hundreds of thousands of
remote alarm systems, and of new real time video-
processing projects.

1. Introduction

Real-time embedded applications design is often deeply
split into areas, that designers like to call "layers"
(analog/digital, hardware/software, system/application,
dataflow/control, to give only a few examples), each
designed with very different tools requiring very different
skills based on quite different knowledge and often using
the same vocabulary with different meanings. Hence the
difficulty to master several areas, then to communicate
clearly between designers skilled in different areas, to the
point that they tend to scorn or even distrust each other,
and protect their side of the interface against unexpected
(misunderstood/misdesigned) behavior from the other
side, globally leading to interfaces overcosts.

This paper focuses on the split between the so-called
signal-processing (SP) and control-processing (CP) areas.

SP is mathematically founded, originally on continuous
signals processed with analog hardware, and more and
more on sampled discrete signals processed by DSPs
dealing mostly with periodic dataflows and massive
amounts of almost repetitive computations with parallel
operations and specific post-modify addressing modes
(such as circular for delay lines, and bit-reversed for fast
block transforms).

In comparison, CP is rather a cook art, so many are the
implementation choices for the encoding and the
computation of the control state, between combinatory
and/or sequential logic, state transition diagrams and/or
multitasking, which are far from equivalent in terms of

execution speed, memory footprint, and ease of design
and debug. But for average CP designers, this seems
usually more a matter of personal culture and taste, than
an efficiency concern, as is their usual preference for
MCU architectures, less efficient but simpler than DSPs,
with general purpose addressing modes (such as indirect-
indexed for accessing global data structures and stack
frames), and integrating on-chip flash memory and more
general-purpose multifunction input-output pins, also
supporting various serial communication standards (such
as UART, I2C, SPI, CAN).

This SP/CP split has led to lots of designs integrating
both a DSP and an MCU communicating by some shared
link or memory, where the DSP is usually under the
control of the MCU, which takes care of the application
"high" layers. However, programming such different
processors and making them efficiently synchronize and
communicate, is not a trivial design activity.

The need existing for a simpler and less expensive
solution, several processor manufacturers (DSP-Group
with their Teak core, Microchip with their dsPIC, Analog
Devices and Intel with their BlackFin) have designed new
DSP architectures, with an instruction set enriched to offer
all usual MCU instructions, and with family variants
enriched to offer all usual MCU peripherals. Then both SP
and CP designers are expected to be happy sharing the
same processor, and therefore the same communication
library relying on some multitasking scheduler.

For very limited SP activity, some MCU manufacturers
(such as ARM, or Texas Instrument with their MSP430)
also offer a optional multiplier-accumulator unit in their
MCU architecture, but this doesn't compete with a full
fledged DSP, such as described in the next section.

The UBIC company has thought a different approach,
usable on any DSP, and trying to make the best use of
each DSP resource. From the obvious observations that:
• a DSP may not be under-dimensioned (or it would not

satisfy its application's real-time constraints),
• all its SP is triggered by hardware periodic interrupts,
• its mean unused processing power is still very big

compared with an MCU, even during worst case SP,
UBIC decided to "integrate" in software (i.e. emulate) an
MCU into the DSP during its SP idle periods (i.e. as the
lowest priority task of the DSP), using a portable and
compact virtual machine (VM), classifiable as dual-stack
token-threaded bytecoded flashed architecture.

Section 2 describes current DSP available resources and
their relative costs, driving the implementation choices of
the VM and of its multitasking operating system described
in section 3. Section 4 presents the available development
environments and their original features. Section 5
presents some real applications.

EuroForth 2004 – "Want", a Flash Token-Threaded Virtual-Machine and Operating-System for DSPs – 1/5

2. DSP resources and costs

DSP architectures are designed to efficiently transfer
and process periodically sampled signal data flows, in
real-time and at low costs.

The data transfers between the DSP memory and
analog-digital converters (either integrated on-chip, or
through standardized ports, serial or parallel) is nowadays
supported by a dedicated multichannel DMA (Direct
Memory Access) controller running in parallel with the
CPU (Central Processing Unit).

The CPU is mainly optimized for computing sums of
products, the most intensive operation of most signal
processing algorithms: on every clock cycle, the CPU is
able, in parallel, to fetch an instruction from memory, to
decrement a loop counter and jump back to a loop entry,
to read up to two data from memory or to write one, to
update up to two data pointers (in linear, circular, or bit-
reversed addressing), and to combine up to three data
(such as multiply two data and sum their product into an
accumulator).

Newer DSPs, such as the Blackfin of Analog Devices,
are even able to execute two MACs (multiply-accumulate)
in parallel per instruction, at up to 800 Mips, for only half
a milliwatt per Mips (Mega-Instructions Per Second, of
course hardly comparable with Mips of fan cooled general
purpose processors) and about two square centimeters of
printed circuit board (PCB) space.

The cost of DSPs is almost proportional to their on-chip
RAM size (around one cent/kilobit), which typically
varies between around a half and one megabits of zero
wait-states, partially cacheable program and data memory.
In comparison, off-chip memories are easily one to two
orders of magnitude cheaper and bigger (around 20 and 5
cents/megabit for 8 Mbit 70ns FLASH and 256 Mbit 7ns
SDRAM) against some wait-states.

However, note that SDRAM are hardly found in small
sizes, then cost more than the DSP and the FLASH
together, require also much more power supply and more
PCB space than them, make the PCB harder to route and
the memory bus noisier, i.e. the PCB electro-magnetic
compliance harder, so avoid SDRAM when possible. In
particular, prefer operating systems which are able to live
without an SDRAM.

You'll hardly avoid a flash, unless you don't need
reconfigurable non-volatile memory and your DSP offers
on-chip maskable ROM matching your application needs.
Then, if you are still concerned with cost, you'll try to
limit the DSP on-chip RAM size, and use instead the flash
as much as possible. The UBIC company has followed
these guidelines to design the "WantVM" virtual machine.

3. WantVM and WantOS architectures

The DSP precious on-chip RAM is reserved for critical
highly optimized native code (drivers interrupt and SP
compute-intensive subroutines, and VM primitives), and
for system buffers and VM tasks contexts (data and return
stacks, and global variables).

To avoid allocating RAM for application CP code, the

VM executes it "in place" by fetching one bytecode at a
time directly from flash when it needs it for execution. As
CP activity is sporadic and less critical, its reaction time is
dampened by drivers interface buffers to absorb interrupt
delays and flash waitstates.

The VM sequencer is pipelined: while interpreting a
bytecode, it prefetches the next one, such that interpreta-
tion time is mostly masked off by prefetch waitstates.
Waitstates are also minimized by compact VM programs,
obtained with an open bytecode instruction set, mostly
based on 0-operand 1-byte coded instructions using:
• implicit register addresses, thanks to two last-in-first-

out register stacks, each sequentially accessed through
an implicit stack pointer (instead of the more usual
register array, randomly accessed through an explicit
index stored in the instruction)

• implicit memory addresses, stored only once in a
Bytecode Translation Table (BTT) in RAM, not only
for the primitives RAM entry addresses, but also for
the subroutines flash entry addresses, and for the RAM
buffers base addresses

• 1-operand 2-bytes codes are only used for literals,
jump offsets, return stack offsets (for efficient C stack
frames support), BTT extensions over 256 bytecodes,
and for drivers functions calls.

The VM instruction set is limited to 50 primitives to
spare RAM and BTT entries, but is completed by a set of
100 inlining macros. It natively supports cooperative
multitasking, structured exceptions, in-flash debugging,
and a dozen drivers (UART, I2C, RTC+timers, periodical-
ly polled I/Os, 8KHz Audio, voice+V32bis Modem, Flash
file system with adpcm codec, with configuration and
circular log spaces, etc., each with its private interface
functions and BTT) totaling 150 functions (among which
30 are bytecoded) making up "WantOS".

WantOS drivers interfaces have been designed to
mimic MCU status/control and data I/O registers behavior
(instead of the OS-usual central event queue, which
multiplexing costs space and time to store, code and
decode events identifying tags). But to avoid unnecessary
status polling and save DSP power, the pause multitasker
primitive (which switches the VM task context) and the
drivers interrupts and functions cooperate to put asleep
and wakeup the VM in the following way:
• pause decrements a task-switch counter, and if null

puts the VM asleep in the middle of a task-switch by
stopping the DSP in low power IDLE mode;

EuroForth 2004 – "Want", a Flash Token-Threaded Virtual-Machine and Operating-System for DSPs – 2/5

SP
(I4)

RP
(I5)

IR
(I7)

Task1 Task2 Task3

Data
Stacks

Return
Stacks

Global Data

DSPcode

Bytecode

VMIP
(BDMA)

jump
vaddr

saddr

Bytecode
Translation

Table (1Kw)

fetch

decode

execute

DM

PM

Flash Application Programs (large)

Application Variables (fast)

WantVM “µcode” & drivers

VirtualMachine Sequencer Multitasking Contexts

• on an interrupt request, the DSP wakes up and
executes the interrupt subroutine; if this one changes
its driver's status, it also loads the task-switch counter
with the number of tasks;

• on return from interrupt, pause checks the task-switch
counter: if still null, it keeps the VM asleep by
stopping the DSP, otherwise it awakes the VM by
letting the DSP execute the next VM instruction;

• then, before the task-switch counter becomes null,
each VM task has a chance to poll the status of the
driver(s) it takes care of, and if active, to service it; if a
driver function modifies the driver's status, it also
loads the task-switch counter with the number of tasks.

Therefore, the VM runs until all tasks have polled only
inactive driver status, where pause puts the VM asleep.

WantOS includes several loaders, between a serial link,
the flash and RAM, to support DSP-native code and
bytecode boot, execution, and interactive development:
• a boot-loader, bringing up a serial "native-monitor"

(with its own serial-to-RAM loader) for low-level
interactive umbilical development in DSP assembler,
then looking the flash file system for the VM native-
code executable startup file to load;

• a native-loader, called to load from flash to RAM the
DSP-native-code executable files composing the VM
kernel and WantOS drivers (of which the modem is
composed of several overlays, sharing the same RAM
space during different modem modes, to spare RAM);

• a bytecode-loader, called mainly by the VM boot to
compute and load into the BTT the flash addresses of
the subroutines entry points of compiled bytecode files
(which are therefore relocatable, i.e. may be stored
anywhere in flash), in which each subroutine is
preceded by its size; from an initial bytecode number
given in the file header, the compiler and bytecode-
loader assign bytecodes and BTT entries in the same
order; a null subroutine size triggers the deallocation
of the last bytecode and its execution (this supports
initializations and startup)

• a frame-loader, called mainly by a "bytecode-monitor"
(brought up by the VM boot task after some initializa-
tions, including spawning a task bytecode-loading the
application specific startup file if found), to receive,
error-check, and acknowledge (or request retrans-
mission of) HDLC-like frames through a serial driver
(such as UART or modem) from a remote computer
into a TEMP flash area; depending on the frame's first
two bytes, the bytecode-monitor either saves the frame
as a file in the flash file system, or executes a system
service (such as flash file system listing or update,
configuration space dump or update, log space dump,
real time clock update, etc.), or executes an application
hookable frame-interpreter (this supports any frame-
oriented application specific communication protocol),
or finally executes the frame's bytecode contents (this
supports bytecode interactive development, or remote
maintenance through precompiled subroutines).

In-flash-debugging is supported by the stopwm VM
instruction, which looks for its own flash address in a
breakpoints table in RAM, and if found suspends VM

execution by calling the native-monitor, to allow inspec-
tion or modification of the RAM state, or to single-step or
resume VM execution, which may also be suspended
asynchronously by a break condition on the debug serial
line, if the UART driver has been configured to do so.

Here are some figures taken from the ADSP-218x
implementation: 300 instructions (900 bytes) for the VM
core primitives, 2700 instructions for all drivers primitive
functions and interrupt subroutines (modem datapumps
excluded), and 5 Kbytecodes for WantOS subroutines,
altogether in 8 files totaling 12 Kbytes (plus 64 Kbytes in
9 files for the modem datapumps).

4. WantVM development environments

There are 3 development levels:
• WantAsm: DSP code interactive cross-(dis)assembler
• WantForth: VM bytecode interactive cross-compiler
• WantC: VM bytecode C cross-compiler/debugger

The first two are integrated in the same environment,
based on Gforth under Linux or on Win32for under
Windows (using only the simple usual Forth command
line user interface), allowing the programmer to switch
between them if needed to debug the hardware and VM.

WantC is a separate environment, based on the open
LCC compiler and Wedit (its integrated development
editor with a graphical user interface) under Windows,
both customized for WantVM. Although WantC is not
(yet) incremental, and therefore less interactive from the
point of view of a Forth programmer, it is closer than
Forth to what the average MCU programmer seems to be
used to, and to expect.

WantAsm of course depends on the DSP type; UBIC
presently supports Analog Devices 218x (16 bits 64 Mips)
and Blackfin (32 bits 800 Mips) fixed-point DSP families.
WantAsm may be used either standalone, to generate
"Forth-less" DSP code, or to support a subroutine-
threaded Forth with inline macros, or to build a VM core,
as is the case here.

WantForth is a light cross-compiler: instead of the usual
juggling with host and target separate vocabularies contai-
ning homonyms, target words are systematically suffixed
by a single-quote (this makes macros easier to write and
read, such as for example: : 2*' dup' +' ;), target
is defined as a compile loop automatically appending this
suffix to each word before its dictionary search (this saves
typing the suffix for each target word, and hides non-
target words), and host is defined as throwing an excep-
tion caught by target to exit its compile loop and return.

Another deeper simplification is worth to describe, that
I apply to all cross-environments I have been developing
for the past 15 years: they are interactive without the need
for an interpreter (note that so are Lisp and Smalltalk).
Forth interactivity usually relies on the execution of a
word immediately after its dictionary search when in the
interpret mode; this requires additional complexity to
specify a different behavior when in the compile mode,
mainly for immediate compiling words (non-immediate
words have a common compile behavior, specified in the
compile loop). This complexity explodes when combined

EuroForth 2004 – "Want", a Flash Token-Threaded Virtual-Machine and Operating-System for DSPs – 3/5

with the cross-compilers target and host modes, to the
point that most cross-compilers are not cross-interactive.
Interactivity requires user-controlled interleaving between
user code input and code execution, but instead of doing it
at the word grain level, it may be done at the subroutine
grain level, with anonymous subroutines: named and
anonymous subroutines end with a semicolon, but a
named subroutine begins with a colon and a name (added
as key in the dictionary to retrieve the subroutine entry
point for later reference), whereas an anonymous
subroutine doesn't, therefore the only useful thing that can
be done before forgetting it, is to execute it immediately.
More accurately in a cross-environment, when the host
terminates the cross-compilation of an anonymous
subroutine, it first downloads into the target all the code
cross-compiled since the previous download, and then
requests the target to execute the anonymous subroutine.
This works as well for WantAsm as for WantForth, as it
will some day for WantC, where an anonymous function
is limited to a function body between {curly braces}, or to
a single C-statement (well, the compiler must complain if
execution may follow any unresolved forward reference).

WantC has several unusual features worth to mention,
apart its absence of support for float and double types.
First of all, its compiler backend generates bytecode for a
dual-stack engine, which was far from its usual
assumption of a register-array based engine; we finally
rewrote the backend from scratch.

Then it generates (very quickly) binary executable code
(and separate debug-support information in XML format)
directly from application and libraries source files,
without any need for a separate assembler, archiver, lin-
ker, makefile, or for the intermediate files they exchange.
Most library functions are defined _INLINE_ASM by
default, with an #ifdef to instead generate a separate
function if needed; inline assembler improves speed and
saves BTT entries against a few bytes of flash for each
call; the "inline-assembler" is a Forth without defining
words. Among the compiled functions, are linked together
into the executable code only those reachable from the
main function, by a recursive exploration of the call-tree,
including in it assignments to function pointers; during
this exploration, a bytecode is assigned to each reachable
function, then each function-call may be resolved, call-
stack depth is computed, call-recursion is detected, and
both are reported along with other allocated runtime
resources (RAM, BTT, flash). It is worth to mention that
this automatic stripping process not only saves runtime
resources by removing dead code, but also simplifies
library maintenance and selection: the link-time binary
granularity being independent of the source granularity,
each library may be maintained as a single simple source
file, that the user has only to #include in his source
code; library source hiding by encryption may be
supported on request.

If configured in debug mode, WantC generates one
stopwm instruction for every C statement or source line,
whichever includes several others. To start debugging, the
host-side cross-debugger communicates with the target-
side bytecode-monitor to download the compiled code

into the TEMP flash area; the breakpoints table is initially
empty, which by default enables every stopwm. Then,
when an enabled stopwm (or a user requested break on the
debug serial line) suspends the VM execution, the target-
side native-monitor signals it to the host-side cross-
debugger, which then uploads the VM state, automatically
highlights the source line of the reached breakpoint, and
displays the variables in the five source lines around it;
any variable in scope may also be inspected by simply
pointing the mouse over, and waiting for a popup to
display its value. To resume VM execution on user
request (for a single step or more, or even to stop
debugging, each case modifying differently the VM state),
the cross-debugger downloads the VM state, and requests
the native-monitor to resume VM execution.

If configured in install mode, WantC generates no
stopwm in the executable bytecode file (typically 8%
smaller). To install it, together with other application files
(data, sounds, etc.) for standalone execution into the flash
file system, the host-side installer interacts with the
programmer through a dialog box, and communicates
with the target-side bytecode-monitor to sequentially:
• upload the signatures (4 first and 4 last bytes) of all

files in the target flash file system, compare them with
the signatures of the files in the host installation
directories (one for system files, the other for
application files), and display a colored list of all these
files, each marked with a symbol indicating its state
(new, up-to-date, obsolete, etc.)

• download the files which have changed on the host
(then the flash file system contains two copies of each
updated file, keeping the flash file system in a consis-
tent state, where WantOS file-search functions only
see the elder copy)

• trigger the bytecode-monitor rmreboot service, which
deletes from flash the requested files (those absent on
the host) and the elder copy of duplicate files, and then
reboots the VM in the consistent updated state of the
flash file system.

The installer is not only a development tool, it may also
be used for remote update by modem, of systems in the
field, provided the application initiates, or accepts, a
modem connection, and redirects the bytecode-monitor to
use it: this leaves room for protection against undesired
connections.

EuroForth 2004 – "Want", a Flash Token-Threaded Virtual-Machine and Operating-System for DSPs – 4/5

5. WantVM applications

The first applications supported by a WantVM on
ADSP-218x, and until now the biggest in number of units
running in the field (several hundreds of thousands) and
running hours (they run non-stop), is for a family of
burglar remote alarm systems. Compared with previous
families based on 8051 microcontrollers and dedicated
integrated circuits, the fabrication costs have been
considerably lowered, the communication speed has been
multiplied by 700 (from 20 bps DTMF to 14400 bps
V32bis), allowing remote configuration and software
update, and the local and remote user interfaces are
improved with vocal messages (generated by concatenat-
ing sounds stored in adpcm-coded files in flash). Another
family of social remote alarm systems for aged persons
has followed the same conversion to WantVM on ADSP-
218x, with an even simpler hardware architecture using a
low-cost stereo codec, and a lower-cost telephone line
interface. These two families of products are developed
by the alarm manufacturer in WantForth on top of
WantOS, with a few variants between the number and
types of drivers. It was quite an investment to teach
WantForth and WantOS to the manufacturer developers,
who were used to assembly or C low-level programming
on 8051 or PIC microcontrollers.

For evaluation purposes, or for smart modem applica-
tions in small series, which cannot afford in their design
the high level of integration of a Want hardware core
(DSP, quartz, voltage regulator, flash, codec, and isolated
telephone line interface), UBIC has designed and sells the
WantModem stamp (30x70mm) with its development kit,
including a devboard (with leds, buttons, I2C thermo-
meter, RS232 connector, and draft area), a power supply,
an RS232 cable, and a CD with WantC and a complete
technical documentation; for more information and for
ordering, visit us at http://www.ubic.fr

Several demonstration applications have been
developed under WantC on the WantModem. The biggest
one controls a number of digital, analog, and radio-link,
plug-and-play I/O modules through an I2C bus, records
significant events in the flash log space, automatically
calls a telephone number on an alarm event, or answers

incoming calls, then guides the remote user with vocal
menus and state reports, and lets him navigate in the
menus and remotely control some I/Os and configuration
parameters with the DTMF tones of his telephone keys.
Some figures: this application weights 70 Kbytes of C
source code, compiled in 0.1 seconds into 5 Kbytecodes,
and is installed together with 48 sound files totaling 120
Kbytes.

New video processing and communication applications
and a WantVM are under development on Blackfin, with
its WantAsm connected through its hardware UART to
boost the development cycle, compared with VisualDSP
(Analog Devices integrated development environment),
which is hopelessly slow through the USB-JTAG link of
its EZ-KIT devboard. The Blackfin is a powerful 14 mm

2

piece of low-cost low-power hardware, that WantVM will
make easier to program efficiently and economically by
both DSP experts and MCU skilled developers; or at least
by the author.

6. Conclusion

Forth trains minds to look for shortcuts.
When I can't avoid using "state-of-the-art" development

environments, I feel too often limited by their lack of
flexibility and embarrassed by their opaque complexity
hidden behind their supposedly "friendly" graphical inter-
faces. Cross-development of hard real time applications,
where moreover the hardware has to be debugged as
much as the software, is a complex enough game to en-
courage the player to shortcut tools which hinder him.

The best shortcuts I have found so far, have been to
build my own cross-development environments (for 8086,
8051, RTX2000, PIC, ADSP-218x, MSP430, Blackfin),
almost from scratch (well, on top of open Forth systems:
thanks to their creators!), and to simplify them ever more.

As presented in this paper, anonymous definitions and
quote-suffixing are big simplifications of conventional
Forth cross-assemblers/compilers, allowing to make them
easily interactive; the open bytecode instruction set is an
efficient simplification of token-threaded virtual
machines, making their code more compact and easily
relocatable; the recursive linker is a straight shortcut
across the usual concept of compilation chain, saving lots
of intermediate tools, files, and compilation time.

The ant is a simple small insect, but with regard to its
size, its power and speed are impressive, and its ability to
communicate with its partners makes them together even
more powerful. Such is the Want. The initial W ... is
another story.

EuroForth 2004 – "Want", a Flash Token-Threaded Virtual-Machine and Operating-System for DSPs – 5/5

