
RVM-FORTH, a Reversible Virtual Machine

Bill Stoddart
School of Computing and Mathematics

University of Teesside, North Yorkshire, U.K.

November 10, 2004

Abstract

RVM-FORTH is a version of Forth designed as a target execution
platform for the compilation of a proposed experimental sequential pro-
gramming language BB. Novel aspects include local variables with nested
scopes, support for sets, and reversible computing mechanisms based on
the primitive concepts of guard, choice and expression transformation.
RVM-FORTH has support for locating and browsing operation defini-
tions and for communicating with the the Unix shell. The ANS Forth
draft Standard is available as on-line help. This paper describes the RVM-
FORTH system in terms of a brief user guide.

key words: Forth, Local Variables, Sets, Reversibility, Expression Transformers

1 Introduction

Forth is a set of named operations for a stack based virtual machine. These
operations provide the elements of an operating system, an interpreter and a
compiler. Forth often runs “stand alone” without the need for an operating
system. The version described here, however, runs under Unix. It consists of
the following components:

• The RVM-FORTH nucleus. A basic virtual machine which provides primi-
tive programming capabilities and is capable of extending itself by compil-
ing new definitions. The nucleus is defined in a set of files which describe
its operations in a mixture of Forth and structured assembler language.

• The Meta-Compiler. A program which reads the RVM-FORTH nucleus
files and compiles them into a monolithic gnu assembler file.

• C functions for those parts of the nucleus written in C.

• A script to build the RVM-FORTH nucleus..

• The RVM-FORTH utilities layer. These are files containing Forth code.
They are compiled by the nucleus when it commences execution.

• Example programs and test programs.

1

2 Installation

We describe the installation procedure in a way that gives an overview of the
system.

RVM-FORTH comes as a zip file. The installation procedure assumes super-user
privileges.1

Copy the distribution file (say rvm.zip) to /usr/share. Then cd to this direc-
tory and unzip with:

unzip rvm

This will create a directory rvm with a subdirectory of the same name. Now cd
to this directory:

cd rvm/rvm

You are now in the “installation” directory of RVM. This contains the following
sub-directories and programs:

• nucleus/ containing the RVM-FORTH source code files that describe the
RVM-FORTH nucleus. RVM-FORTH source files have the extension .r

• metacompiler/ containing the source code and executable for the meta-
compiler (which is written in C) along with a make file.

• sets/ contains the RVM-FORTH sets package (written in C) and a make
file.

• ccalls/ contains funtions to support i/o and signal handling (written in
C) and a make file.

• utils/ contaning the RVM-FORTH utilities layer files

• examples/ containing the provided example programs

• tests/ containing the provided test programs

• mcomp The script to build the RVM nucleus and copy the resulting exe-
cutable file to /usr/bin.

Now, still from the installation directory /usr/share/rvm/rvm invoke the meta
compilation script:

./mcomp

This completes the installation. The meta-compilation procedure produces the
file rvm_home.r which contains the definition:

1A minor variation is needed to install RVM-FORTH in your home space without being a
super user. Follow the same instructions but unzip the distribution file in your home space in
a directory of your choice, with path x say. cd to x/rvm/rvm and edit the last command of
the script mcomp to copy the executable to a directory of your choice instead of to /usr/bin.
Then run the script ./mcomp

2

: RVM-HOME (-- s) C" /usr/share/rvm/rvm/" ;

i.e. an operation which returns a counted string giving the location of RVM’s
installation directory. RVM uses this to locate the Forth source programs which
form part of the RVM system. NB: Users of the csh and tcsh shells will need
to do a rehash before running the command.

3 Running RVM-FORTH

Now leave super-user mode and create and cd to the directory you will use for
RVM-FORTH: say:

mkdir rvm; cd rvm

Now create a file my.r in this directory containing the following Forth definition:

: HW ." HELLO WORLD " ;

invoke Forth with:

RVM_FORTH HI L my.r

The rest of the line following RVM_FORTH is passed to the Forth interpreter. The
command HI loads the utility layer. L my.r loads the file my.r.

Now we can try running the new program:

HW<enter>HELLO WORD ok

L interprets the following token (terminated by space) as a path relative to the
current working directory. There is also a system load command SL which in-
terprets the following token as a path relative the the RVM-FORTH installation
directory. An example usage is:

SL examples/sendmory.r<enter>

T runs the puzzle: SEND+MORE=MONEY ok

4 Exploring the System

4.1 Locating and browsing source code definitions

We can locate the source code definition for any Forth operation. E.g assuming
the file sendmory.r has been loaded as described above:

LOCATE T<enter>/usr/share/rvm/rvm/examples/sendmory.r line 70 ok

And assuming nedit is installed we can view the definition of an operation. E.g.
with SEE T. This runs nedit in read only mode on sendmory.r, opening the file
at the definition of T, which we see has the following definition.

: T (--) SOLUTIONS REPORT ;

3

SOLUTIONS finds the solutions to the problem and leaves them, in the form of a
set, on the top of the stack. REPORT prints the solutions. We will return to this
example application later.

In Forth it is quite acceptable to re-define a word. ALL <name> will list all the
definitions of <name> in the current search path.The most recent definition is
found and listed first.

ALL HI<enter>

utils/hi.r line 90

nucleus/cold.r line 52 ok

SEEALL reads the following token, searches for entries for that word, and will
open an edit screen for each copy found. In response to SEEALL HI the edi-
tor opens the system files nucleus/cold.r and utils/hi.r at the following
definitions.

: HI (--) C" utils/hi.r" SLOAD-FILE ;

: HI ;

The original definition of HI is a nucleus word which loads the utility layer
definitions. In the utilities layer it is redefined to do nothing. Overall, HI

ensures that the RVM-FORTH utilities layer is loaded.

The techniques described above for locating the source code for an operation
from the operation name are not adequate for operations that use “vectored
execution”. For example to allow for redirection of keyboard input the ANS
Forth word2 KEY†is defined as:

: KEY (-- c) ’KEY @ EXECUTE ;

Here the execution token for the actual code to be executed is stored in the
variable ’KEY. To find the name of the actual operation we have to use >NFA to
convert this token into a name field address. The actual operation name can be
printed as follows:

’KEY @ >NFA COUNT TYPE<enter>IKEY ok

4.2 Wordlists

The Forth dictionary is organised as a number of wordlists. .WORDLISTS prints
a list of all wordlists present in RVM-FORTH. .ORDER†tells us which of these
will currently be searched (the first listed is the first searched).

.ORDER<enter> FORTH ROOT ok

The COMPILER wordlist holds words that are only used during compilation, and
we can add it to the search order with ALSO†COMPILER. We can see exactly how
this works be doing it in two steps:

2When an ANS Standard Forth word first appears in this text it is decorated with a dagger.
The function of these words can be looked up in the on line help system which we will describe
presently

4

ALSO .ORDER<enter> FORTH FORTH ROOT

COMPILER .ORDER<enter> COMPILER FORTH ROOT

The COMPILER wordlist includes program control structure words, such as IF†,
ELSE†, and THEN†.

We can remove the last wordlist added to the search order with PREVIOUS†.

PREVIOUS .ORDER<enter> FORTH ROOT ok

EVERY allows us to locate words which are not in the current search path. For
example with the search order of FORTH and ROOT, EVERY IF will generate
the following form of output:

EVERY IF<enter>

COMPILER /usr/share/rvm/rvm/utils/syntax.r line 81

COMPILER /usr/share/rvm/rvm/utils/control_structures.r line 3 ok

Wordlsts can be created by the defining word VOCABULARY. To set the wordlist
into which operations will be compiled we use DEFINITIONS†, which makes the
first wordlist in the search order into the “compilation wordlist”. The follow-
ing classic example taken from an English/French Dictionary application. For
brevity our dictionaries will contain the translation for just a single word!

VOCABULARY FRENCH ALSO FRENCH DEFINITIONS

: AMI ." FRIEND " ;

(more entries can be added here)

PREVIOUS DEFINITIONS

VOCABULARY ENGLISH ALSO ENGLISH DEFINITIONS

: FRIEND ." AMI " ;

(more entries can be added here)

PREVIOUS DEFINITIONS ALSO

We use our dictionary as follows:

FRENCH AMI<enter>FRIEND ok

ENGLISH FRIEND<enter>AMI ok

5 Compiler extensions: immediate words

The RVM-FORTH nucleus has a simple compiler which is able to define new
operations by the sequential composition of existing operations. At this stage
it lacks almost all the other features normally associated with a high level se-
quential programming language. It has no program control structures, no local
variables... These capabilities are provided by operations defined in the utilities
layer.

Program control structure words such as IF ELSE THEN compile branch instruc-
tions, record the locations of branch destinations and unresolved branch offsets,
and resolve branch offsets. They are tagged with an IMMEDIATE†attribute that

5

causes them to be executed during compilation rather than compiled as part of
the current definition..

Using the exploration facilities described above, we found that IF has two defi-
nitions. The first defined performs the required compilation function:

: IF (-- addr) POSTPONE ZBRANCH MARK ; IMMEDIATE

Here POSTPONE† ZBRANCH†compiles a virtual machine branch on zero instruc-
tion. When subsequently executed, this will remove the top stack item and if it
is zero will branch over the IF clause in the control structure. However, when IF

is executed, it does not know where this branch destination will be. MARK leaves
the address of the branch instruction on the stack, so the branch destination
can be amended by a following ELSE or (where there is no ELSE clause) THEN.

In the same file are corresponding definitions for ELSE and THEN which together
implement the Forth IF ELSE THEN control structure. These definitions op-
erate correctly and efficiently for valid source code, but if used incorrectly will
not produce error reports. To impose syntax checks and error reporting they
are redefined. The redifinition of IF is:

: IF (-- addr) POSTPONE IF -IF- ; IMMEDIATE

POSTPONE IF refers to the previous definition of IF and causes it to be treated
like a non-immediate command, that is to be compiled as part of the current
definition rather than executed immediately. -IF- leaves a syntax token on a
separate syntax stack, and this is checked by a subsequent ELSE or THEN.

The corresponding re-definitions for ELSE and THEN are in the same file.

6 On line help

The final committee draft of the ANS Forth Standard is available as on line
help. ANS HELP prints relevant help information. The ANS package assumes the
Mozilla browser is available in the current unix search path. You can however
use any browser which will navigate to a file path given on the command line,
as Mozilla does with e.g.

mozilla /usr/share/rvm/rvm/dpans/welcome.htm

To select a different browser edit the definition of MY-BROWSER, which returns
the browser name to the stack as a character array and count.

7 Invoking Unix commands

RVM-FORTH has a simple wordset for communicating with the Unix shell.

SYS is used in interpret mode, and passes the rest of the input line to the unix
shell: e.g.

6

SYS pwd<enter> /home/fred/rvm ok

Words used for communicating with the shell within compiled definitions are
defined in the SYSMESS vocabulary.

SYSMESS-INIT initialises the system message buffer.

+MESS (addr n --) adds the message consisting of n characters at addr to
the system message buffer.

TELL-UNIX passes the text in the system message buffer to the Unix shell.

ASK-UNIX (-- addr n) passes the text in the system message buffer to the
shell and returns the shell’s response as a string.

The following definitions illustrate the use of these words.

ALSO SYSMESS

: T1 (--, tell unix shell to execute the pwd command)

SYSMESS-INIT S" pwd" +MESS TELL-UNIX ;

: T2 (-- addr n, ask the shell for the current directory)

SYSMESS-INIT S" pwd" +MESS ASK-UNIX ;

: T3 (p-- addr n, parse next token, terminated by a full stop,

and ask the unix shell for its response to this unix command)

SYSMESS-INIT [CHAR] . PARSE +MESS ASK-UNIX ;

PREVIOUS

You can try them out like this:

T1<enter> /home/fred/rvm ok

T2 TYPE<enter> /home/fred/rvm ok

T3 pwd. TYPE<enter> /home/fred/rvm ok

Note: we have made use of ANS Forth Standard words S" [CHAR] PARSE and
TYPE. You can check the functionality of these words using the online help facility
with:

ANS WORDS<enter> mozilla /usr/share/rvm/rvm/dpans/dpansf.htm&

request to launch browser issued ok

This points the browser at an ascii ordered list of links to Standard Forth word
descriptions (known as “glossary entries”).

In fact (exercise) you could now write your own Forth definition to do this using
the SYSMESS commands.

Solution:

ALSO SYSMESS

: FW (open browser at list of Forth words)

SYSMESS-INIT MY-BROWSER +MESS RVM-HOME +MESS

7

S" dpans/welcome.htm" +MESS TELL-UNIX ;

PREVIOUS

8 Defining words

The nucleus level of RVM-FORTH provides two “defining words”. These are
operations which can be used to add new words to the Forth dictionary. These
are3 : and CONSTANT. An example constant definition is.

7 CONSTANT FRED

Using HERE†, which returns the next free location in Forth’s data memory. we
define in the utilities layer the defining word CREATE†

: CREATE HERE CONSTANT ;

ALLOT†, removes an integer from the stack and advances the memory allocation
pointer that no. of memory units (bytes for the i386). CELL†is a constant giving
the no. of memory units in a cell. With these we define the defining word
VARIABLE}†

: VARIABLE CREATE CELL ALLOT ;

Suppose we want to define some words which return constant strings. We can
define:

: MSG CREATE [CHAR] . WORD ,CSTRING ;

[CHAR]† . compiles code that returns the character code for ’.’.

WORD†takes a delimiting character from the stack (in this case a full stop) and
scans the following text from the input stream until it finds this character (or
end of line/file). It places the scanned text in a buffer, where the first byte of
the buffer holds a count giving the string length, and subsequent bytes hold the
characters (a form known as a “counted string”). It returns the address of the
buffer.

,CSTRING takes a counted string address from the stack and compiles it into the
first free locations in Forth’s data memory.

We use MSG as follows:

MSG M1 HELLO WORLD .

And we can type the messages using:

M1 COUNT TYPE<enter> HELLO WORLD ok

Words defined with CREATE may be modified with DOES>†. When used within a
compiled definition, DOES> exits from the definition after appending the action
performed by the code which follows it to the most recently defined word. For

3We usually distinguish Forth words, Unix commands etc from surrounding text by pre-
senting them in typewriter font. However, since Forth words can be any sequence of characters,
including a single punctuation mark, we sometimes present them as . , , etc.

8

example:

: +PRINT ." appending COUNT TYPE to most recent definition "

DOES> COUNT TYPE ;

Let’s define a word to be modified by +PRINT and modify its behaviour.

MSG M2 GOODBYE TO ALL THAT . +PRINT

M2<enter> GOODBYE TO ALL THAT ok

We generally use CREATE and DOES> within the same defining word. E.g.

: ANNOUNCE CREATE [CHAR] . WORD ,CSTRING DOES> COUNT TYPE ;

ANNOUNCE ANN1 HELLO WORLD . ANNOUNCE ANN2 GOODBYE TO ALL THAT .

ANN1<enter> HELLO WORLD ok

When used in this way, code between CREATE and DOES> defines the compile
time action for a class of words, and code following DOES> defines the run time
action for the class. Communication between compile time and run time takes
place via the address passed to the DOES> clause, which is the address where
the compile time actions were performed.

The online help package (described earlier) uses CREATE .. DOES> along with
other techniques we have discussed such as word lists and communication with
the Unix Shell. To review this application enter SEE ANS.

9 Variables

32 bit global variables may be defined in Forth with either VARIABLE†or VALUE†.
The difference between these forms is that a VARIABLE just pushes its address to
the stack. Accessing or storing the value of the variable is then done by @ †or

! †. A VALUE4 by constrast, is responsible for accessing its own data. It will
either return its value to the stack or take on a new value from the stack. Which
of these behaviours it exhibits is controlled by the presence or otherwise of the
prefix5 to.

100 VALUE X

X . 77 to X X .<enter>100 77 ok

Arrays and array references are defined by VALUE-ARRAY. Arrays are indexed
from 1. Examples:

4The definition of VALUE provides an interesting example of the use of CREATE ..
DOES>.. VALUEs in RVM-FORTH are immediate words which, when invoked in compiled
definitions, decide at compile time which action to perform.

5This prefix syntax is at variance with Forth’s normal use of postfix. We use lower case

to to emphasise this. The ANS Standard uses TO .

9

2 VALUE-ARRAY T1 2 VALUE-ARRAY T2

10 to 1 of T1 20 to 2 of T1

size of T1 . size of T2 .<enter> 2 2 ok

1 of T2 . 2 of T2 .<enter> 10 20 ok

The use of prefixes gives rise to an occasional need for brackets to control which
object a prefix applies to. E.g. given:

VALUE I 10 VALUE-ARRAY TABLE

we might want to assign 100 to position I in TABLE. The following would not
work: 100 to I of TABLE. The prefix to would be consumed by I. Instead we
must write: 100 to << I >> of TABLE

Reference arrays may be declared with VALUE-ARRAY^. Example:

T2 VALUE-ARRAY^ T3

1 of T3 .<enter>10 ok

9.1 Local variables

Within a compiled definition, local variables may be declared within an argu-
ment list bracketed by (: ... :) as shown in the following example. We calculate
the createst common divisor of two numbers using Euclid’s algorithm, in which
the smaller of the pair is subtracted from the larger to give a new pair. This
process is repeated until the two numbers are equal

: GCD0 (n1 n2 -- n3, pre n1>0 & n2>0, post n3 = gcd(n1,n2))

(: VALUE X VALUE Y :)

BEGIN

X Y <>

WHILE

X Y >

IF

X Y - to X

ELSE

Y X - to Y

THEN

REPEAT

X

1LEAVE ;

Values X and Y are initialised from the stack, X taking the value of n1 and Y
the value of n2. 1LEAVE specifies that just one item (the current top of stack)
will be returned. 0LEAVE 1LEAVE 2LEAVE and 3LEAVE are available to specify
from 0 to 3 returned values. Only one of these may be used per operation, with
the syntactic pattern:

: <name> ... (: ... :) ... nLEAVE ... ;

10

VALUEs may be declared after the argument list. In this case the first of these
VALUEs should be declared at a point where one additional item has been
pushed to the stack by code subsequent to the argument list. It obtains its
initial value from that item. A second may be declared when another value has
been pushed and so on.

Static scopes for locals may be opened and closed with (SCOPE and SCOPE). The
following example illustrates these features:

1 VALUE X

: T 2 3

(: VALUE X VALUE Y :)

4 VALUE Y

(SCOPE 5 VALUE X X . Y . SCOPE)

X . Y .

0LEAVE

X . Y . ;

T<enter> 5 4 2 4 2 3 ok

The above descriptions have been given in a way that is independent of whether
stack frame items are removed from the parameter stack or accessed by index-
ing into the stack. However, we cannot make this design decision completely
transparent, as it will show up in the DEPTH†of the stack and in use of the stack
print operation .S †.

Local array variables may be declared with VALUE-ARRAY or VALUE-ARRAY^ re-
spectively. Both forms expect to be passed the address of an array. They
implement call by value (where the whole array is copied into local variable
space) and call by reference semantics respectively. Examples can be found in
the file tests/argtests.r

10 Sets

A set containing the integers 1, 2 and 3 can be expressed as 1 3 .. or alterna-
tively INT { 1 , 2 , 3 , }. A set containing the strings “tom”, “dick” and
“harry” can be written as: STRING { " tom" , " dick" , " harry" , }

The open set bracket must be preceded by an expression which gives the type
of the elements. We restrict ourselves to homogeneous sets (every element of a
set must be of the same type). A set occupies one stack location (which is a
reference into the heap). We have operations for set union \/, intersection /\

and subtraction \. For set subtraction and some other set operations we discuss
below, the order of arguments is important. In all cases they should be provided
in the same order as the mathematical infix form.

POW takes a set and returns the set of all its subsets. PROD takes two sets and
returns their cross product. Two sets can be tested for equality by SET=. The
value of a set can be printed with .SET. Examples:

11

1 4 .. VALUE X 2 5 .. VALUE Y

STRING { " aa" , " bb" , } VALUE Z

X Y /\ .SET X Y \ .SET<enter> {2,3,4} {1} ok

Z POW .SET<enter> {{},{aa},{bb},{aa,bb}} ok

Z 1 2 .. PROD .SET<enter> {(aa,1),(aa,2),(bb,1),(bb,2)} ok

1 5 .. X Y \/ SET= .<enter> -1 ok

As well as listing elements within set brackets, we can generate them there
with a program. The implementation of .. provides a good example. (Use

EVERY .. to check whether the current dispensation has different versions for
interpret and compile mode).

Order is not important in sets. The order in which elements are printed need
not correspond to the order in which they are added to the set:

STRING { " tom" , " dick" , " harry" , } VALUE NAMES

NAMES .SET<enter> {dick,harry,tom} ok

We use sets of pairs to express relations e.g. between names and telephone
numbers:

STRING INT PROD { " bill" 2673 |->$,I , " frank" 4012 |->$,I ,

" rob" 4012 |->$,I , } VALUE TEL

|->$,I takes a string and an integer from the stack and returns a string integer
pair. A nicer notation6 would be |-> but unfortunately we were not able, with-
out incurring a run time performance overhead, to do without some information
about what kind of elements a pair is being formed from. We need 16 different
pair constructors to handle 4 basic classes of element: integers, strings, pairs
and sets. In naming these operations we use the characters I, $, P and S in a
systematic way. e.g. |->$,S constructs a pair from a string and a set.

The type of the elements in the set is given by the preceding postfix expressions
STRING INT PROD. Conceptually we can think of STRING as the set of all
strings and INT as the set of all integers. Their product would then be the set
of all possible string/integer pairs. We call this a “maximal set”. Any postfix
expression made up of INT STRING PROD and POW (and representing a single
value) will represent a maximal set. Maximal sets are types in our system.

We can index through a set with @ELEMENT. The following operation prints the
contents of TEL. In the definition we make use of CARD, which returns the no. of
elements in a set, FIRST and SECOND, which return the first and second elements
of a pair, and .AZ which prints an asciiz string (the form of string used in our
sets package).

: .TEL (--) CR TEL CARD 0

DO

TEL I @ELEMENT DUP FIRST .AZ SPACE SECOND . CR

LOOP ;

We can obtain the domain of a relation (all left hand elements of its pairs) with

6There are two mathematical notations for ordered pairs, (a, b) and a 7→ b.

12

DOM. .We can obtain its range (right hand elements) with RAN

TEL DOM .SET TEL RAN .SET<enter> {bill,frank,rob} {2673,4012} ok

Tests for membership, subset inclusion, and strict subset inclusion are provided
by IN, <: and <<:. The following test is to reveal whether “steve” is in the
telephone book:

" steve" TEL DOM IN .<enter> 0 ok

Each person listed in the telephone book has only one entry. We call such
a relation a function, and we can look up a telephone number using function
application.

TEL " rob" APPLY .<enter> 4012 ok

We can obtain the inverse of a relation with ˜ . The relational image of a set

is given by IMAGE. To enquire which people have the same number as frank we
can use:

TEL ~ INT { TEL " frank" APPLY , } IMAGE .SET<enter>

{frank,rob} ok

Domain and range restriction and subtraction are provided by <|, <<|, |> and
|>>. Domain restriction takes a set of type x and a relation from x to y. It yields
that part of the relation whose domain coincides with the set. If we define:

STRING { " frank" , " rob" , } VALUE STUDENTS

We can obtain that part of the telephone book which records entries for students
with:

STUDENTS TEL <| .SET<enter> {(frank,4012),(rob,4012)} ok

We can add a single new entry to TEL:

TEL " steve 4395" |->$,I ADD-ELEMENT to TEL

We can add a set of new entries. Assuming they are held in a set NEW of the
same type as TEL:

TEL NEW \/ to TEL

To perform updates on TEL is slightly more complex, and it will be worth defining
a new set operation for “function override”. Its mathematical definition (written
with our ascii set symbols) is:

S <+ U = (DOM(U) <<| S) \/ U

We can think of S as a set containing our database expressed as a mathematical
relation. U is another relation of the same type containing updates. These
may be either new entries or updates. In the context of our telephone directory
example it works like this: DOM(U) is the set of names which occur in the updates.
DOM(u) <<| S consists of the entries in S for those names which do not occur
in the updates. i.e. the database with the entries that are going to be updated
deleted. (DOM(U) <<| S) \/ U adds the updates.

13

Exercise. Code the Forth operation <+

Solution: : <+ (s u -- s<+u) DUP DOM ROT <<| \/ ;

Exercise: Assuming VALUEs TEL and UPDATES hold a telephone directory and
its updates, what Forth phrase will assign the updated directory to TEL?

Solution: TEL UPDATES <+ to TEL

10.1 Set types

From the given types INT and STRING, which conceptually represent the set of
all integers and the set of all strings.7, We can constuct additional types using
PROD and POW. The type of a set is the maximal (largest) set to which it belongs.
For instance 3 belongs to the set {1,2,3}, but the largest set to which it belongs
is INT and that is its type. The largest set to which any set of integers belongs
is INT POW. The largest set to which a string integer pair belongs is STRING
INT PROD. The largest set to which a set of string integer pairs belongs is
STRING INT PROD POW. This is the type of TEL in the above examples.

Given any set types x y we can construct further types x POW, x y PROD,
x y PROD POW, x POW y POW PROD etc. Since there are an unlimited
number of these and our set operations are type sensitive, we sometimes use type
expressions in our stack effect descriptions. For these expressions we employ a
postfix syntax using n and $ for the types INT and STRING, * for PROD and
P for POW. Examples:

DOM x.y.*.P -- x.P

IMAGE x.y.*.P x.P -- y.P

We use a full stop between elements of the same type expression. This is redun-
dant, but helps readability. Sometimes, for the written description of a glossary
entry, we would like to refer to the stack elements by name. For this we employ
a notation of the form < name >:< type >. E.g.

DOM r:x.y.*.P -- s:x.P

s is the domain of the relation r

11 Sequences

Sequences are functions whose domain consists of integers from 1 to n. They
are described in the same way as sets except that instead of enclosing our de-

scriptions within set brackets we use the sequence brackets [and] .8

7It sounds from this description as if we can represent infinite sets, which is not the case.
We need INT to be an infinite set for purposes of type theory, but we do not need this for our
implementation.

8These names clash with the ANS operations to leave and enter compilation mode. Se-

quence brackets are defined in the SEQUENCE vocabulary. We provide [[and]] , equiv-

alent to [†and] ,†to support compiler switching in this context.

14

CR STRING [" tom" , " dick" , " harry" ,] DUP .SEQ .SET<enter>

[tom,dick,harry] {(1,tom),(2,dick),(3,harry)} ok

The type of a sequence with elements of type x is n.x.*.P, but we abbreviate
this to x.seq. In terms of postfix type algebra, which borrows some notation
from Forth, this abbreviation is defined as: : seq n swap ∗ P ;.

The following sequence operations are provided:

^ s1:x.seq s2:x.seq -- s3:x.seq, "concat", s3=s1^s2

Concatenates two sequences. s3 is formed by appending the elements of s2 to
s1.

<- s1:x e:x -- s2:x, "cat element", s2 = s1 ^ [e]

\|/ s1:x.seq n -- s2:x.seq, "remove"

pre: n < card(s1)
s2 is formed by removing the first n elements of s1

/|\ s1:x.seq n -- s2:x.seq, "retain"

pre: n < card(s1)
s2 is the first n elements of s1

Exercise: Code the following.

INSERT s1:x.seq e:x n -- s2:x.seq

s2 is formed by inserting e at the nth position of s1, Note: we recommend
using local variables. A definition using stack manipulations is possible (though
not easy). However, it has the disadvantage that if the specifier decides on a
different order of arguments, the code must be completely redesigned.

Solution:

: INSERT (s1:x.seq e:x n -- s2:x.seq)

1- (: VALUE S1 VALUE E VALUE N-1 :)

S1 N-1 /|\ E <- S1 N-1 \|/ ^

1LEAVE ;

12 Reversibility choice and potential values

The guard command --> removes a flag from the stack. If non-zero, execution
continues ahead. Otherwise execution reverses.

During reverse execution, changes made to memory state by a previous forward
execution may be reversed. For this to happen the code must be written using
reversible operations where appropriate. Reversible versions of all primitives
that change memory are provided. These have the normal names with an added
underscore: ! , C! , +! , CMOVE_, CMOVE$>_. Reversible versions of global
and local variables can be declared with: VALUE_, VALUE^_, VALUE-ARRAY_, and
VALUE-ARRAY^_.

Once invoked, reverse execution continues until a point at which a choice had

15

been previously made is reached. If an untried alternative exists at that point,
forward execution re-commences with a new choice. Otherwise, reverse exe-
cution continues. If reverse execution arrives back at the start of a command
entered by the user, the prompt of “ko” is given rather than “ok” to indicate
that the requested command was infeasible.

The construct: <CHOICE S1 [] S2 ..[] Sn CHOICE> provides choice between
two or more alternative code sequences S1, S2... The alternatives are tried in
order. Example:

: T1 <CHOICE 10 [] 5 [] 8 CHOICE> . FALSE --> ;

T1<enter>10 5 8 ko

CHOICE provides a choice from a set. Choices are always made in the same order.

1 3 .. VALUE S : T1 S CHOICE . FALSE --> ;

T1<enter> 3 2 1 ko

RANDOM-CHOICE provides a random choice from a set.

: T2 S RANDOM-CHOICE . FALSE --> ;

T2<enter> 2 1 3 ko

T2<enter> 1 3 2 ko

Potential values are values a computation would yield were it to be carried out.
We compute them by carrying out the computation, noting the result, then
reversing so that no side effect of the computation remains. Let S be a code
sequence which generates an integer stack value whilst leaving existing stack
elements unchanged. INT { <RUN S INT> } is the set of possible values that
can be left by S. There are equivalent forms where S generates an asciiz string,
a pair or a set: <RUN S STRING>, <RUN S PAIR> and <RUN S SET>. They
must all be used within set brackets preceded by a type expression unless S is
deterministic (can only produce a single result). Potential values are related to
the formal theory of “Expression Transformers”.

Reverse computation of compiled code collects any garbage generated by for-
ward computation. This removes a major disadvantage of the use of reference
semantics in the sets package. Maximum garbage is collected when an applica-
tion is organised as a potential value computation.

13 Example Application

We now return to the application mentioned briefly earlier, and listed below.
It finds solutions to the pseudo-arithmetic problem SEND+MORE=MONEY.
The code begins with global variable declarations for the set of digits, for each of
the letters in the problem, and for the carry values for units, tens and hundreds.

PUZZLE finds a single solution to the puzzle, leaving the solution in the digit
variables. It guesses values for each independent digit, beginning with the least
significant. Each digit chosen is subtracted from DIGIT to ensure that each

16

choice will be unique. Having guessed D and E, we calculate Y and C0 and
apply a feasibility check: Y must be different from both D and E. If the check
fails we reverse and try different values. We proceed in this way until all digit
variables have been assigned using feasibility checks that ensure the assigned
values are a solution to the puzzle.

SOLUTIONS returns the set of all solutions to the puzzle, each solution being
a function from the names of the digits to their values. .SOLN takes such a
solution from the stack and prints it. REPORT takes a set of solutions and prints
them all.

Note that only DIGIT is declared as a reversible variable. The other variables
are always assigned before use following any choice, so it serves no semantic
purpose to restore their previous values during reverse execution.

0 9 .. VALUE_ DIGIT

0 VALUE S (-- n) 0 VALUE E (-- n) 0 VALUE N (-- n)

0 VALUE D (-- n) 0 VALUE M (-- n) 0 VALUE O (-- n)

0 VALUE R (-- n) 0 VALUE Y (-- n)

0 VALUE c0 (-- n) 0 VALUE c1 (-- n) 0 VALUE c2 (-- n)

: PUZZLE (--, find a solution to the puzzle)

DIGIT CHOICE to D DIGIT INT { D , } \ to DIGIT

DIGIT CHOICE to E D E + 10 /MOD to c0 to Y

Y E <> Y D <> AND --> DIGIT INT { E , Y , } \ to DIGIT

DIGIT CHOICE to N DIGIT INT { N , } \ to DIGIT

DIGIT CHOICE to R

N R + c0 + 10 MOD E = -->

N R + c0 + 10 / to c1

DIGIT CHOICE to O

E O + c1 + 10 MOD N = -->

E O + c1 + 10 / to c2

DIGIT INT { R , } \ to DIGIT

DIGIT CHOICE to S

1 to M S M + c2 + 10 MOD O = -->

S M + c2 + 10 / M = --> ;

: SOLUTIONS (-- $.n.*.P.P, returns the set of solns to the

sendmory puzzle, each solution is in the form of a function from

strings (" S", " E" etc) to values)

STRING INT PROD POW {

<RUN PUZZLE

STRING INT PROD {

" S" S |->$,I , " E" E |->$,I , " N" N |->$,I ,

" D" D |->$,I , " M" M |->$,I , " O" O |->$,I ,

" R" R |->$,I , " Y" Y |->$,I ,

}

SET>

} ;

17

: .SOLN ($.n.*.P --) (: VALUE SOLN :)

SOLN " S" APPLY . SOLN " E" APPLY . SOLN " N" APPLY .

SOLN " D" APPLY . ." + "

SOLN " M" APPLY . SOLN " O" APPLY . SOLN " R" APPLY .

SOLN " E" APPLY . ." = "

SOLN " M" APPLY . SOLN " O" APPLY . SOLN " N" APPLY .

SOLN " E" APPLY . SOLN " Y" APPLY . 0LEAVE ;

: REPORT (--) (: VALUE SOLS :) CR

BEGIN

SOLS CARD

WHILE

SOLS SOLS CHOICE DUP .SOLN CR SUBTRACT-ELEMENT to SOLS

REPEAT 0LEAVE ;

: T (--) SOLUTIONS REPORT ;

CR .(T runs the puzzle: SEND + MORE = MONEY) CR

18

