
Xchars

or

Unicode in Forth

First Experiences

M. Anton Ertl∗

TU Wien

Bernd Paysan

Abstract

When dealing with different scripts at the same
time (e.g., Latin, Greek, Cyrillic), or with Chinese
ideograms, 8-bit fixed-width characters are too nar-
row. However, many Forth programs have an en-
vironmental dependency on 1 chars = 1, so just
making Forth characters wider would cause quite
a lot of portability problems. We propose to add
xchars for dealing with potentially wider, variable-
width characters. This extension is relatively pain-
less, requiring changes in only those program parts
that work with individual characters, if they should
work with the extended characters; uses of string
words need no changes to work with extended char-
acters. The xchar words can also be implemented
on 8-bit-only Forth systems, so programs written to
use xchars can also work on such systems.

1 Introduction

Most Forth systems today support character sets
fitting into 8 bits, such as ASCII (7 bits) and its
8-bit extensions like ISO Latin-1.

However, such 8-bit character sets are not suf-
ficient to support Chinese, Japanese, and Korean
Han ideographs, or to express a text that contains,
say, German, Russian, and Greek words. To ad-
dress this problem, Unicode1 was developed. Uni-
code is a universal character set.

There are several alternative encodings of Uni-
code characters: In UTF-32 each character consists
of 32 bits, in UTF-16 each character consists of 1–
2 16-bit entities, in UTF-8 each character consists
of 1–4 8-bit entities. I.e., UTF-8 and UTF-16 are

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1Actually, there were two standards: ISO 10646 and Uni-
code, produced by two different organizations, resulting in
two standards documents; fortunately, the two documents
define the same character set. We use the name Unicode
throughout this paper.

variable-width encodings.

How can Forth accomodate Unicode? ANS Forth
only allows ASCII or only graphic ASCII characters
in many contexts. However, ANS Forth also sup-
ports fixed-width, but large characters; e.g., a Forth
system could use 32-bit characters to support the
UTF-32 encoding of Unicode; since the codes for
the ASCII characters are the same in Unicode, this
would actually be a fully compliant ANS Forth im-
plementation. Indeed, Jax4th was one of the first
ANS Forth implementations and implemented char-
acters as fixed-width 16-bit characters (for the then-
current 16-bit (subset of) Unicode).

However, most Forth programs, even if they
are otherwise mostly ANS Forth compliant, as-
sume that 1 chars produces 1.2 These Forth pro-
grams would not work correctly on a system where
1 chars produces 4, as would be the case with
UTF-32 characters on a byte-addressed machine.
And it is relatively hard to find all the places where
one forgot to insert chars or 1 chars / or where
one used 1+ instead of char+. So going to UTF-32
characters would be a rather painful option.

Fortunately, Forth programs usually do not work
with individual characters (with, e.g., words like
emit) in many places. They work much more of-
ten with strings of characters (with, e.g., words like
type). So if we find a way to deal with Unicode
where string-handling code would continue to work,
and only character-handling code needed changing,
that solution would require much less porting effort
for most programs than using UTF-32 with the ex-
isting character words and an appropriate chars

size.

In this paper, we propose such a solution based on
a new character type (xchars) and words for deal-
ing with that type. In the following paper, we ex-
plain and discuss the new data types and words
(Section 2), look at scenarios for using various en-

2Since all widely used ANS Forth systems have the prop-
erty that 1 CHARS produces 1, it is pretty much impossible
to test that a program does not have this environmental de-
pendency.

Ertl, Paysan Xchars

codings and character sizes in Forth systems (Sec-
tion 3), give some examples of using these words
(Section 4), report our experience with implement-
ing these ideas in Gforth (Section 5), and compare
our work to that of others.

2 Glossary

The following set of words is not final. It contains
a number of redundant words, and we might decide
to recommend a smaller set for widespread adop-
tion. Conversely, there might also be words that
are useful and that we missed or are still undecided
(see Section 2.4).

If you are missing string words (like type), that’s
because you can use the ANS Forth string words on
strings containing xchars.

2.1 Data types

xc An xchar (extended character) on the stack. For
Unicode characters this will typically be the
(decoded) Unicode number of the character.

xc-addr The address of an xchar in memory.
Xchar addresses are character-aligned. An
xchar can be represented (encoded) in memory
differently than on the stack.

xc-addr u A string containing xchars. u counts
the chars, not the xchars (or tha aus) in the
string. All ANS Forth string words can be used
on such a string.

2.2 Words

xchar+ (xc-addr1 – xc-addr2) Corresponds
to char+. xc-addr2 is the address of the xc
after xc-addr1.

xchar- (xc-addr1 – xc-addr2) Corresponds
to char-. xc-addr2 is the address of the xc
before xc-addr1.

+x/string (xc-addr1 u1 – xc-addr2 u2)
Corresponds to 1 /string.

-x/string (xc-addr1 u1 – xc-addr2 u2)
Corresponds to -1 /string.

xc@ (xc-addr – xc) Corresponds to c@. Fetch
the xchar at xc-addr onto the stack.

xc@+ (xc-addr1 – xc-addr2 xc) Fetch xc
from xc-addr1; xc-addr2 is the address of the
next xchar.

xc@+/string (xc-addr1 u1 – xc-addr2 u2 xc)
Fetch xc from xc-addr1 and also perform the
action of +x/string.

xc!+? (xc c-addr1 u1 – c-addr2 u2 f) If the
buffer at c-addr1 u1 is big enough for xc, store
xc there, f is true and c-addr2 u2 describe the
rest of the buffer. If the buffer is too small, f
is false and c-addr2 u2 is the same as c-addr1
u1.3

xc-size (xc – u) U is the number of chars that
xc takes when stored in memory.

-trailing-garbage (c-addr u1 – c-addr u2)
Given a string c-addr1 u1 containing xchars
and further chars that do not form a complete
xchar, c-addr u2 is the same string with only
the complete xchars.

wcwidth (xc – u) U is the display width of xc
on a monospaced display. Currently this word
can produce the values 0, 1, 2.

display-width (xc-addr u – u2) u2 is the dis-
play width of the string xc-addr u on a
monospaced display.

Ambiguous conditions exist, if the xchar(s)
read from memory by xchar+ xchar-

+x/string -x/string xc@ xc@+ xc@+/string

display-width are not properly encoded xchars4,
or if the count would underflow (for +x/string

xc@+/string -trailing-garbage).
In addition, words like key, emit, char and

[char] have to be extended to work with xchars.

2.3 Requirements and Guarantees

An encoding to be used with the xchar words must
have the following properties:

1. The length of an xchar can be determined in
forward processing (every encoding has that
property).

2. The length of an xchar can be determined
in backwards processing (not every encoding
has this property, but UTF-8, UTF-16, some
encodings for Asian languages, and of course
fixed-width encodings have it).

3. Partial xchars can be recognized (this is usually
a consequence of backwards processability).

4. The on-stack representation of ASCII charac-
ters is the ASCII number (so that char, emit
etc. work as expected).

3Bernd Paysan’s reference implementation also cantains a
word xc!+ (xc xc-addr1 -- xc-addr2), but this word is
cumbersome to use safely and easy to use not safely, leading
to buffer overflows (like C’s strcat()).

4E.g., in UTF-8, if an ASCII character is followed by a
character in the range $80–$bf, or if the xchar is not encoded
in the shortest possible sequence.

Ertl, Paysan Xchars

In addition, the following property is needed to
ensure that all ANS Forth programs work on a
system with xchars when processing ASCII-only
strings (which is the only case that ANS Forth ac-
tually covers):

5. The in-memory encoding of ASCII characters
is the same for xchars and chars.

2.4 Input and output

The xchars words were designed for having one uni-
versal encoding used throughout the Forth system.
However, Forth code might have to deal with other
encodings on I/O.

For I/O of text files (and other things supported
by the Forth system with a file-like interface) in a
specific encoding, the encoding of the external text
could be specified in the fam (file access mode) pa-
rameter of open-file (with a bin-like word), and
the reading and writing words would perform the
conversion between the external and the internal
encoding. One consequence of this conversion is
that you usually cannot use file positions for such
files in calculations to compute other file positions
(because the size of the data in the file has little re-
lation to the size of the data in the Forth system).

For text fields in binary files (e.g., Java .class

files), the file has to be read/written in binary mode,
and the text fields have to be converted between
the external and the internal encoding with string
conversion words.

These ideas have not been implemented in Gforth
yet, and there are no word specifications yet.

2.5 Multiple internal encodings

Some people have suggested words for changing the
Forth-internal encoding at run-time. We did not
design xchars for such an environment, and would
probably design an extension for such an environ-
ment differently. The way to deal with different
encodings in the outside world in the xchars con-
text is to convert them all to a universal encoding
in the Forth system, and convert back on output.

The technical problem with switching between
the internal encodings is that existing strings will
continue to be in the old encoding, and interpret-
ing them in the context of the new encoding will
produce wrong results. So the program would have
to keep track of which strings are in which encod-
ings and always switch around between encodings,
which is cumbersome and error-prone. And if two
strings containing different encodings have to be
used in the same operation (e.g., in compare), there
is no way to set the switch right (and actually, with
our xchars proposal compare does not encoding-
dependent work).

3 Implementation scenarios

3.1 8-bit xchars and 8-bit chars

That is very easy to implement on top of current
systems. It may appear pointless, but it allows to
run code that uses xchars on systems that only deal
with 8-bit characters. And it allows developing code
on such systems that should work on systems with
more featureful xchar implementations (although
one should probably still test on a more featureful
system). Gforth implements this scenario.

3.2 UTF-8 xchars and 8-bit chars

This combination satisfies all the requirements
above (including requirement 5), as well as sat-
isfying the widespread environmental dependency
on 1 chars = 1 (on byte-addressable machines).
Moreover, the memory representation of a non-
ASCII xchar consists only of non-ASCII chars; this
means that even some programs working on individ-
ual characters will work on strings containing non-
ASCII xchars, e.g., if the program searches for an
ASCII character. Gforth implements this scenario.

3.3 UTF-32 xchars and 32-bit chars

This scenario satisfies all the requirements above
(including requirement 5), but (on byte-addressable
machines) not the environmental dependency on
1 chars = 1. Xchars don’t make much sense in
that scenario, classical ANS Forth characters do ev-
erything they do.

3.4 UTF-32 xchars and 8 bit chars

This scenario satisfies all the requirements above ex-
cept requirement 5; in addition it satisfies the envi-
ronmental dependency on 1 chars= 1. While such
a system does not conform to ANS Forth (because
requirement 5 is not satisfied), it probably takes less
effort to port most programs to such a system than
to a system like that in Section 3.3.

If this scenario would become the standard sce-
nario, it would make sense to define a different
wordset optimized for fixed-width wchars for it
rather than our xchars wordset, which is designed
for dealing with variable-width characters.

3.5 Other scenarios

Scenarios involving UTF-16 have similar tradeoffs
to the UTF-32 scenarios, except that UTF-16 is a
variable-width encoding.

Ertl, Paysan Xchars

4 Code examples

Here we present some examples of using the xchars
words.

One thing that we noticed is that it is actually
not that easy to find examples where characters are
dealt with individually (instead of in strings).

The following word works like type, but prints
the string back-to-front.

: revtype1 (xc-addr u --)

over >r + begin

dup r@ u> while

xchar- dup xc@ emit

repeat

r> 2drop ;

One other thing we noticed is that often, instead
of converting an xchar to the on-stack representa-
tion, it can just as well be treated as a string (and
this is often more efficient):

: revtype2 (xc-addr u --)

over >r + begin

dup r@ u> while

0 -x/string over swap type

repeat

r> 2drop ;

Here is another example, implementation of the
widely-available word scan that searches for a char-
acter in a string. First, here is an xchar variant of
the non-xchar version in Gforth:

: scan1 (xc-addr1 u1 xc -- xc-addr2 u2)

>r

BEGIN

dup

WHILE

over xc@ r@ <>

WHILE

+x/string

REPEAT THEN

rdrop ;

And here is a version that deals with the xc as
string:

: xc->s (xc -- xc-addr u)

\ convert xc into ALLOCATEd

\ in-memory representation

dup xc-size dup chars allocate throw

swap (xc xc-addr u)

2dup 2>r xc!+? 0= abort" bug"

2drop 2r> ;

: scan2 (xc-addr1 u1 xc -- xc-addr2 u2)

xc->s 2dup 2>r search 0= if \ no match

dup /string then

2r> drop free throw ;

In many cases, the programmer can also provide
the xchar as string and call search directly instead
of through scan2.

Finally, here is a primitive implementation of
accept for xchars.

: accept1 (c-addr +n -- +n2)

over >r begin

key dup #cr <> while (c-a1 u1 xc)

dup 2swap xc!+? >r rot r> 0= if

drop #bell then

emit

repeat

2drop r> - ;

5 Experience

We have implemented Xchars and UTF-8 support
in the Gforth development version in December
2004 and January 2005, during the course of a
month. The xchars addition itself took only a week
(after earlier work on an UTF-8 specific wordset).

The main code changes were the addition of a
156-line file for UTF-8 handling, an 80-line file for
generic xchar handling and for the 8-bit implemen-
tation, changes in accept (20 deleted lines, 117 lines
added), and changes of less than 100 lines overall in
about five other files.

Overall, these changes were relatively painless,
and certainly much easier than the changes we
would expect had we tried to change the char size.

One interesting challenge was that we did not im-
plement display-width, and had to work around
that lack in two places:

We use a pretty sophisticated editor for accept,
where the user can move the cursor back and edit
there without deleting the text. In order to achieve
this without display-width, accept now always
jumps to the start of the line, draws the part of
the line before the cursors, remembers the cursor
position, then draws the rest of the line and restores
the cursor position to the remembered value.

The other problem was indicating where in an
input line an error had happened. Originally Gforth
did this by having a second line below the first with
^^^ characters pointing out the word. Now Gforth
indicates the word by surrounding it with >>> and
<<<.

Figure 1 gives an idea of how Gforth processing
Unicode looks, including a case where an error mes-
sage is shown.

6 Related work

Jax4th for Windows NT by Jack Woehr was one
of the first dpANS Forth systems. It supported

Ertl, Paysan Xchars

Figure 1: Gforth processes Unicode characters

the then-16-bit Unicode by making characters 16-
bit in size, making use of the freedom that ANS
Forth had given to Forth systems in this area (by
making 1 chars = 2). However, Jax4th was not
used widely, and all widely-used systems imple-
ment 1 chars = 1. More importantly, many near-
ANS programs have an environmental dependency
on 1 chars = 1 and would break on systems like
Jax4th. Therefore we decided to take a different
approach in Gforth and introduced xchars.

Pelc and Knaggs [PK01] identified the same prob-
lems as we did (in particular the widespread en-
vironmental dependency on 1 chars = 1), and
similar to us propose adding new words for deal-
ing with wider characters: They propose adding
wide-character versions of the existing character
and string words, for use with wide fixed-width
encodings; the system and old-style applications
would continue to use the regular character and
string words, but applications could be converted
to use these wide-character words. In contrast, we
propose adding words that support variable-width
encodings, but only for words that deal with in-
dividual characters; the string words work just as
well for strings containing extended characters as
for strings containing classical characters. Our ap-
proach requires less conversion work, so we propose
applying it throughout the system instead of just
to application data.

Java uses Unicode as character set and UTF-16
as internal character encoding.

Kuhn compiled an excellent resource on UTF-8
and Unicode [Kuh05], which is highly recommended
for anyone having to deal with these issues and con-
tains many links to other documents on the topic.

7 Conclusion

Xchars allow Forth systems to support Unicode (in
particular in its UTF-8 encoding) in a relatively
compatible way: String words (and programs us-
ing them) continue to work without changes; words
dealing with individual characters work as usual
with ASCII characters, but have to be adapted for
working with extended characters.

Xchars can also be implemented easily on sys-
tems that only support 8-bit character encodings, so
programs using xchars are not restricted to systems
with Unicode (or other wide character) support.

Xchars have been implemented in Gforth and big-
Forth. The Gforth porting experience was relatively
painless, requiring adding or changing only a few
hundred lines of Forth code.

References

[Kuh05] Markus Kuhn. UTF-8 and
Unicode FAQ for Unix/Linux.
http://www.cl.cam.ac.uk/˜mgk25/
unicode.html, 2005.

[PK01] Stephen Pelc and Peter Knaggs.
ANS Forth and large characters.
http://www.mpeforth.com/arena/
i18n.widechar.v7.PDF, 2001.

