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Over the years the concept of mesh 
computing networks – the so-called sea 
of processors – has held a fascination for 
computer scientists and silicon jockeys 
alike.  Everywhere you look, there are 
potential applications that lend 
themselves well to a computing 
environment that consists of anywhere 
from a handful to thousands (or even 
millions) of small processing elements.  
In this paper, we will consider a few of 
these applications and the implications 
they have on the computing elements 
that drive them. 

Sample Applications 
When considering mesh computing 
networks, it is important to recognize 
that there is a tremendous scale of 
applications being served, both in terms 
of the complexity of processing that 
must be done at each node, and in the 
total number of nodes involved.  
Following are a select number of 
applications that together provide insight 
into creating the ideal processing 
solution for mesh computing 
environments. 

Wireless Home Theater 
Systems 
A mesh computing environment need 
not be large to deliver significant 
benefits.  One of the smallest examples 

of mesh computing is one that would not 
normally even be thought of as a mesh 
network, namely the home theater 
system utilizing wireless speakers.  
Wireless speakers are just beginning to 
appear on the market but are currently 
limited to the “rear” effects speakers 
where cables tend to be the most 
burdensome to route and install.  
However, there is no reason why all of 
the speakers cannot be handled 
wirelessly wherein the number of remote 
nodes is at least six and may be more.  In 
the case under consideration, audio 
information is transmitted digitally over 
a wireless link from the Audio/Video 
(A/V) receiver to the six speakers which 
decode the audio signal and drives the 
powered speakers. 

Properly designed, the same computer 
chip can be used both at the A/V 
receiver to encode the audio into 5.1 
surround sound format and to digitize it 
and transmit wirelessly AND at each of 
the speakers to receive, convert to 
digital, decode it, and convert it back to 
analog to drive the powered speaker.  
Moreover, all the nodes can be made bi-
directional, meaning the speakers can 
also transmit back to the A/V receiver. 
This would allow all sorts of auto-
calibration to take place as well as other, 
complex signal processing.  In this case 
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then, the mesh network would consist of 
seven nodes, one at the A/V receiver and 
six at the speakers.  All would be 
symmetric in the sense that they share 
most or all of the same hardware.  
Likewise the speaker nodes would be 
identical in that they all share exactly the 
same computer code.  While all speakers 
would receive the entire bit stream, each 
speaker would simply extract the audio 
information for that specific speaker. 

Here we see one of the common 
elements to this class of mesh network, 
i.e., many of the nodes are totally 
identical and differ only in physical 
placement or geographical location.  
Others function as “servers” in that they 
provide data to the mesh and extract 
information back out of it.  The 
placement of the nodes on the mesh is 
somewhat arbitrary.  There is no logical 
difference, for instance, between the left 
and right speakers, other than they have 

identified themselves as 
left and right and are 
extracting the audio stream 
for the left and right 
respectively.  The operator 
could push a button on the 
A/V receiver and switch 
left and right without 
moving or reconnecting 
any cables. 

At the same time, this 
system differs in one way 
from what we would 
normally think of as a 
mesh – the highly defined 
routes that all emanate 
from one node and connect 
the others.  It wouldn’t 
make much sense, for 
instance, for the A/V 
receiver to send all of the 
data to just the subwoofer 
and have it then pass on 
data to the others.  We 

have included the home theater system 
as an intriguing example of the 
unexpected places these networks can 
turn up when you’re given inexpensive 
and very flexible node computing 
elements. 

Sensor Driven Networks 
There are many applications consisting 
of various types of sensors connected to 
local computing elements that are then 
interconnected in a mesh that serves to 
monitor and collect data from the 
sensors.  On a small scale, a home 
security network fits this description.  
On a larger scale there are many 
scientific studies monitoring wildlife, 
ecological conditions, weather, or even 
earthquake fault zones.  Today solid 
state sensors come in a wide variety that 
can monitor many types of phenomena, 
from the presence of specific gases to 
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accelerometers measuring and detecting 
motion, as well as the obvious ones for 
tracking temperature, light, humidity, 
etc.  

Once again the placement of the nodes 
on the mesh may be very arbitrary.  In 
the case of the home security system 
there is no need to know the mesh route 
to any particular sensor as long as that 
sensor provides an ID as it sends along 
data.  In the case of the earthquake 
sensors, of course one arrangement 
would have the sensors placed in 
predetermined spots on the mesh, while 
another solution would be to let the 
nodes acquire and transmit their GPS 
coordinates along with their data.  This 
second configuration is extremely 
flexible and has the advantage that it is 
much easier to set up and maintain.  It is 
almost always critical that the mesh 
know the location of the nodes so that as 
data is acquired by those nodes it can be 
organized and acted on.  That location 
can initially be determined by either 
setting it into the node (as in the case of 
a thumbwheel switch) or having the 
node identify itself in some way. 

One of the other characteristics of this 
class of mesh networks is that nodes 

should be able to be added or removed 
casually without having to reconfigure 
or reprogram the system.  Whereas in the 
home theater environment, new speakers 
are added very infrequently, in a mesh of 
scientific sensors or even in the home 
security network, adding new nodes 
should be trivial and easily done by 
untrained personnel. 

Traffic Light Controllers 
Who has not cursed the absurdity of the 
American traffic light system extant in 
most cities where each light operates 
independently of all others, oblivious to 
the traffic conditions at neighboring 
intersections to say nothing of the 
obvious traffic conditions at the prior 
intersection?  To state the obvious: 
“Why am I stopped at a red light when 
there is absolutely no traffic coming the 
other way?” 

Most people, when contemplating this 
system, picture the incredible 
improvement that could be brought to 
bear by a central computer located 
somewhere “downtown,” monitoring the 
conditions at all of the intersections and 
by some clever algorithm controlling the 
traffic lights to maximize traffic flow 
and minimize our blood pressure.   But 
as delicious as this fantasy is, consider 
that nothing as complex as a system 
“downtown” is needed. 

What is actually needed is a modicum of 
intelligence at the traffic signals 
themselves.  First of all, being aware of 
the conditions at the intersection would 
make a staggering improvement for most 
of us fighting our way through city 
traffic.  But extending this to include 
knowledge of what’s going on at 
neighboring intersections greatly 
improves the ability to handle traffic 
even more.  Indeed, what is needed is 
not central intelligence, but a little bit of 
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distributed intelligence.  Sounds like a 
job for mesh computing. 

Traffic light control is actually a 
compelling example of a mesh network.  
Hundreds of nodes, each doing some 
local processing while talking to the 
nodes at neighboring intersections.  And 
the computing element does not need a 
magical algorithm to create the perfect 
traffic flow, whatever that is anyway.  It 
only needs to improve it a bit to make a 
big perceived difference.  If the node 
knew when its neighbor was changing 
the signal and sending traffic its way, 
and what speed limit and distance was, it 
automatically knows when it will be 
getting a new batch of cars to process.  
Even simpler, at the time the system is 
installed someone could simply get in a 
car and drive the distance to that 
neighboring intersection and plug that 
parameter in. 

Notice that we’re making no attempt to 
understand the traffic conditions across 
the entire city, just the conditions at the 
neighboring intersections, a much 
simpler task.  That also means there’s no 
need to string cables across the city 
either.  Each node only has to be 
connected to the neighboring nodes, and 
for that, wireless is fine.  If you’re 
concerned that interference on the 
wireless link might cause serious 
problems, even accidents, remember that 
all we need is to be sure the link data is 
valid.  If not, we can always resort to 
just analyzing the conditions at our 
intersection and that alone would be a 
giant improvement over what we have 
now. 

And since this is about improving the 
system, let’s see what else we can do to 
smooth traffic in our cities.  First, there 
is a new fad in our major cities of adding 
video cameras to catch people running 

red lights.  This effort has been driven 
by accidents in the intersections with 
people running the light as it changes, 
and the resolution has to be sufficient to 
read license plate numbers.  Why not 
control the camera with the node 
computer to eliminate the need to save 
video of empty intersections.  The 
computer could certainly analyze 
whether a car is actually in the 
intersection during the transition period, 
and if not, discard the video.  What if 
there IS a car there?  Then video could 
be sent to the adjoining node to see if the 
same car speeds through the next 
intersection as well.  In this way you get 
a record of the bad offenders and 
hopefully you do something about it. 

Of course with a camera operating at the 
intersections you get all sorts of data.  
You know how many cars are passing at 
what times, how many are in which 
lanes, how many turn, etc. – a complete 
profile of the traffic at that intersection 
every day.  And each night the data is 
rippled across the city, from signal to 
signal, until it arrives at some central 
collection point – perhaps the uber 
lighten in front of city hall. 

To Catch a Terrorist 
Imagine a computing node on the mesh 
consisting of a powerful computing 
element, an accelerometer sensor for 
detecting motion (footsteps), a GPS 
geoposition chipset to determine the 
exact position, and perhaps even audio 
and video sensor/cameras.  Now let them 
communicate wirelessly in a mesh 
network.  Could you build them for 
$1,000 each? In a heartbeat!  More like 
$100 or less.  But stick with the $1,000 
figure a minute.  Make a million of 
them!  Now fly over Torra Borra and 
dump them from an aircraft, much the 
same way the US Navy dropped 
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sonobuoys from a P3 Orion to detect 
submarines.  Imagine a million nodes on 
a mesh network that knows, through the 
GPS, where the nodes are, and can 
organize itself, that can talk from node to 
node, and pass data, images, and audio 
across the mesh, back to a control point.  
Total cost = $1 billion.  A lot of money 
but it would tell you about every living 
thing that crosses the area, man or 
animal, and send images back of the 
transient.  One thing that is common to 
all mesh networks is the way the nodes 
talk among themselves.  Here’s an 
imaginary conversation: 

“Tell the humans the battery on node 
54321 is running low and really should 
be replaced” 

“I hear something.  Sounds human” 

“Good gosh, it’s a tall dude in a white 
robe… here’s some images of him… 
pass the word along.  Node 1583 – he’s 
moving your way, pick it up” 

Fanciful? Sure, but practical? Yes! 

Mesh Node Characteristics 

Low Node Cost 
As the number of nodes in the mesh 
increases, it is generally important that 
the cost per node is relatively low.  
Obviously users want the per node cost 
to be as low as possible, but in mesh 
networks the practicality of the mesh 
solution is frequently dictated by the 
node cost.  This implies very small, 
inexpensive chips that are highly 
integrated and require little in the way of 
supporting silicon chips to complete the 
node. 

Node Independence 
A second mesh node characteristic is the 
high degree of independence each 

individual node has.  Many mesh 
networks have intermittent and 
infrequent data transmissions from node 
to node, so that for the majority of the 
time they are working on their own.  
Additionally, reliability of the entire 
system dictates that the nodes continue 
to operate even in the absence of 
communication with the other nodes.  
Thus if the network route breaks down, 
the show goes on! There are two 
corollaries of this node independence: 

1. Absence of Central Operating 
System 

If the nodes are to be truly independent, 
it means there cannot be a traditional 
central operating system.  Nodes might 
be directed to enter a specific mode or 
go to a particular state in a state 
machine, but once that’s done they 
should continue to operate in that mode 
or state until directed otherwise. 

The absence of a tightly-coupled 
operating system also means that you 
cannot count on all of the nodes being in 
the same state at the same time – some 
will simply get the word later than 
others, hopefully in a well designed 
mesh, close to the same time but not 
instantaneously. 

2. High Computing Power at each 
Node 

With node independence, each node 
needs to handle its own computing needs 
locally.  In the case of sensor driven 
networks, the nodes frequently need to 
process and filter a continuing stream of 
data from the sensor without passing on 
every data bit to the network. 

In some applications, the system is only 
practical IF the nodes are staggeringly 
fast computers.  In something as simple 
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as wireless home theater speakers, the 
node at the A/V receiver has to do a full 
5.1 surround sound encode and deliver 
that as a bit-stream to the speakers over 
wireless links, which it is actually 
implementing at the same time.  And the 
computing elements at the speaker nodes 
have to be able to monitor that bit-
stream and extract the appropriate data 
for their specific speaker.  Ideally, these 
node computers would also perform the 
A/D and D/A conversions digitally as 
part of their programmed tasks. 

Consider the case of a node that must 
monitor and process the output of an 
accelerometer to determine, for instance, 
if the vibrations it’s picking up are 
caused by human presence.  At the same 
time it’s processing data from the 
accelerometer, it may be required to 
service a CCD camera encoding the 
image into a JPEG format, at the same 
time it is recording sound and 
compressing that data into an MP3 
format, at the same time it is monitoring 
data on the mesh network, and in this 
case, sending its own data stream of 
vibrations, MP3 and JPEG multimedia, 
out onto the mesh.  Such tasks are 
beyond the ability of conventional 
microprocessors, which is why it makes 
sense to pack dozens of high-speed core 
processors onto a single chip, each core 
executing one high-level instruction 
every nanosecond. 

Real Time Requirements 
As the example we just discussed 
demonstrates, the nodes must be able to 
handle multiple tasks simultaneously.  
Especially in the case of audio, listeners 
are extremely critical to delays and gaps 
in audio streams.  In many real-world 
applications, it is not enough to handle 
multiple tasks simultaneously, but they 

must be handled within tightly defined 
time slots as well. 

Microprocessors have traditionally 
managed this through a combination of 
interrupts to inject the real-time element, 
and a system of round-robin processing 
of tasks wherein each task is processed 
for a certain period before the processor 
moves onto the next.  As long as the 
processor is fast enough and the data 
input stream is slow enough, this 
approach gives the appearance of 
simultaneous task handling. 

Over time, this has become more and 
more difficult, partly due to the ever 
increasing complexity of the tasks 
themselves and the growing tendency for 
these tasks to be multimedia in nature – 
i.e., sound and images.   

Another issue, however, has been the 
direction of microprocessor design itself.  
Market pressures have moved those 
designs more and more in the direction 
of PC and server CPUs.  And one of the 
basic weapons in the arsenal of the CPU 
designer has been that of cache memory.  
Much of the increased speed of today’s 
microprocessors has been gained by 
larger and more efficient instruction and 
data caches designed to minimize the 
accesses to external memory or in the 
worst case, to slow-running disk drives.  
But caches are the enemy of real-time 
processing because they make the 
processor non-deterministic.  Indeed, 
you cannot guarantee processing time of 
any given code segment because of the 
interference of the cache.  Code executes 
at one speed when it’s in cache, but the 
first time it is encountered it must be 
fetched from external memory, which 
adds significantly to the execution time.  
A similar issue occurs through the way 
modern processors try to predict the 
outcome of jumps and forks because 
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they add to the non-deterministic nature 
of the execution time. 

Some processors attempt to solve the 
non-deterministic issue by incorporating 
two processors on the same chip with the 
idea that one would be dedicated to real-
time processing while the other would 
handle operating system issues that are 
at the heart of cache problems.  But this 
is frequently not enough, since as we’ve 
seen the computing node may be 
handling many tasks at once and you 
still have the issue of only having one 
processor to round-robin those tasks. 

These issues can be resolved by simply 
putting dozens of core processors on 
each chip so that each of those tasks gets 
its own dedicated processor, or in some 
cases a half-dozen or more.  Since each 
task is being handled by a dedicated 
processor(s) there is no longer the 
illusion of simultaneous processing – 
you have true simultaneous processing.   
This also solves the issue of interrupt 
latency.  At the heart of all of these 
multi-tasking processor solutions is an 
interrupt clicking off time slots.  As each 
interrupt occurs, the processor has to 
save the state of its registers and any 
task-related data in the process of being 
changed.  The same thing happens in 
reverse when the task represented by the 
interrupt is completed, since the registers 
and data must be restored.  The time to 
do that round trip is called interrupt 
latency, and it sets the minimum 
granularity of the real-time process… 
the minimum time that can be allotted to 
each task, even if there is no cache or 
predictive issue involved.  A much 
simpler solution would be to have each 
task be handled by its own dedicated 
processor, thereby eliminating the need 
for interrupts and hence eliminating 
interrupt latency. 

Local Memory Requirements 
In simple, single-processor applications, 
we rarely think much about the memory 
other than to be sure there’s enough.  
But as multiple processors are brought 
onto a single chip, the question of how 
to access memory comes into play.  
Generally, chips with several processor 
cores share some memory, either on-chip 
or external.  Sometimes they even share 
a cache memory as well, which of course 
resurrects all of the non-deterministic 
issues associated with cache hits and 
misses.   But even without the cache, if 
the only memory for the core processors 
is a common store on the chip, then there 
has to be some mechanism for 
arbitrating access to it as the processors 
fight to get data and instructions.  That 
arbitration can be complex at best, and at 
worst can make the chip, once again, 
non-deterministic as well as creating a 
tremendous performance bottleneck. 

This problem can be solved with the 
simple expedient of giving each core 
processor its own memory, both ROM 
and RAM, in sufficient quantity to 
enable most tasks to be executed totally 
from local core memory.  No shared 
memory means no memory arbitration, 
full deterministic execution, and no 
performance bottleneck. 

Low Power Requirements 
Power requirements for mesh nodes vary 
greatly depending on the nature of the 
mesh and the application.  Certainly in 
our example of the wireless home theater 
system, there’s plenty of power available 
to run the node computer chip.  But 
many of these mesh applications place 
the nodes remotely and require battery or 
even solar power to run them.  That’s 
certainly true of sensor driven mesh 
networks collecting data in the field, for 
instance.  In some cases, the cost of the 
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power may exceed the cost of the node 
computer, so that anything to reduce the 
power consumption of the chip translates 
directly into cost savings. 

Unfortunately high computing power is 
normally associated with high power 
dissipation. Simply put, the faster chips 
run the more power they dissipate during 
the charging and discharging of 
hundreds of thousands (or millions) of 
various parasitic capacitors associated 
with the transistors, the metalization, etc.  
This situation is at its worst when chips 
are designed with large, central clock 
trees where a majority of the nodes are 
driven synchronously. 

This problem can be addressed in two 
ways.  First, all of the core processors 
are totally asynchronous relative to each 
other – there is no central clock tree, or 
for that matter, no chip clock.  
Processors run as fast as native silicon 
allows, and they are naturally out-of-
phase reducing the number of nodes 
being charged/discharged at any given 

instant.  Second, the processors only run 
while they are doing work.  That is, 
whenever they’re waiting for data, either 
sending or receiving, they come to a 
total stop.  There are literally no nodes in 
a waiting core processor that are being 
exercised, and since at any given instant, 
most of the core processors are in this 
waiting state, power is automatically 
reduced to the bare minimum, essentially 
just leakage current. 

The Ideal Multicore Solution 
By now we’ve already described many 
of the key points of the ideal multicore 
processor solution.  Pack dozens of core 
processors on a single chip, each core 
with plenty of local RAM and ROM, and 
let them run asynchronously to increase 
speed and reduce power.  Use these 
cores to address specific tasks so there is 
no interrupt latency or problem with 
trying to force a single processor to 
multitask.  Make them very low cost, 
and the result is ideal for mesh networks 
in a wide variety of applications. 

IntellaSys specializes in innovating multicore processor solutions that target embedded 
applications requiring low-power operation, fast operating speed and a small footprint.  For more 
information visit: www.intellasys.net. 

 

 


