A Debugger for the b16 CPU

Bernd Paysan!

1Diodes Zetex GmbH

EuroForth 2008

Bernd Paysan A Debugger for the b16 CPU

Outline

@ Motivation
@ b16 Architecture Overview
© Adding In-Circuit Debugging
@ Available Components
@ Register Structure
@ Read Registers
o Write Registers
@ Debugger Core
© Debugging Software
@ Status Readout
@ Breakpoints
@ Source Window
@ Integrating Test Equipment
© Lessons Learned

Bernd Paysan A Debugger for the b16 CPU

Motivation

b16 Architecture Overview

Motivation

For the current project with the b16 core [1] inside, a few things are
“unusual™:

e Firmware programmer isn't a Forth expert (i.e. not me)
@ Program in writable memory (first test chip: RAM, final chip:
Flash or OTP)

Under these circumstances, it makes some sense to debug the
firmware using a “classical” in—circuit—debugger. It will turn out
that adding such a debugger to the hardware is a fairly trivial
exercise, leaving writing the software as “main” challenge.

Bernd Paysan A Debugger for the b16 CPU

Motivation

b16 Architecture Overview

Features

The features such a debugger should have are quite common:

@ Interface the chip with a PC, so that the PC can control
memory content (and memory mapped |0 registers)

@ The debugging window should show the source code, and
jump with the cursor to the currently executed location (if the
CPU is halted)

e Typical commands: Single step, multiple steps, run/stop,
set/clear breakpoint

@ Direct access to a memory location, dump of a consecutive
memory block

@ Optional: Forth console to mix debugging commands with
other instructions (e.g. measurement and stimuli equipment
driven by serial lines)

@ Missing: Classical command line for the embedded CPU

Bernd Paysan A Debugger for the b16 CPU

Motivation

b16 Architecture Overview

b16 Architecture Overview

Just to recap: The core components of the b16 are

e An ALU

e A data stack with top and next of stack (T and N) as inputs
for the ALU

@ A return stack with top R
@ An instruction pointer P

@ An instruction latch |

Bernd Paysan A Debugger for the b16 CPU

Motivation

b16 Architecture Overview

b16 small Block Diagram

Diagram
B16 small Block Diagram

RAM/ROM

T
|

| Instruction Word ‘ ‘ Address MUX

I TOS \—‘[P
NOS R

Stack ALU

Return-Stack

Bernd Paysan A Debugger for the b16 CPU

Available Components
Adding In—Circuit Debugging Register Structure
Read Registers
Write Registers
Debugger Core

Available Components

@ CPU core (small change: add multiply and div step again)
@ SPI interface

e Two versions: Little and big endian

@ Missing: Debugger

Bernd Paysan A Debugger for the b16 CPU

Available Components
Adding In—Circuit Debugging Register Structure

Read Registers

Write Registers

Debugger Core

Register Structure

Debugging Registers

] Address \ read \ write ‘
SFFEO P P
$FFE2 T T
$FFE4 R R
$FFE6 I I
$FFES state state

$FFEA | stack[sp++] | push+T
$FFEC | rstack[rp++] | pushr+R
$FFEE stop start/step

Bernd Paysan A Debugger for the b16 CPU

Available Components
Adding In—Circuit Debugging Register Structure

Read Registers

Write Registers

Debugger Core

Read Registers

if('dr || run) dout <= ’hz;
else casez(daddr)

3’h0: dout <= P;
3’hl: dout <= T;
3’h2: dout <= R;
3’h3: dout <= I;
3°h4: dout <= { run, 4°h0, c, state,

{4-sdep{1°b0}}, sp,
{4-rdep{1°b0}}, rp };
3’h5: dout <= N;
3’h6: dout <= toR;
3’h?7: dout <= 0;
endcase

Bernd Paysan A Debugger for the b16 CPU

Available Components
Adding In—Circuit Debugging Register Structure

Read Registers

Write Registers

Debugger Core

Write Registers

if (dw) casez(daddr)
3’h0: P <= din;

3’h1l: T <= din;
3’h2: R <= din;
3’h3: I <= din;
3’h4: { c, state, sp, rp } <=
{ din[10:8],
din[sdep+3:4], din[rdep-1:0] };
3’h5: { sp, T } <= { spdec, din };

3°h6: { rp, R } <= { rpdec, din };
endcase

Bernd Paysan A Debugger for the b16 CPU

Available Components
Adding In—Circuit Debugging Register Structure

Read Registers

Write Registers

Debugger Core

Debugger Core

always @(posedge clk or negedge nreset)
if (!nreset) begin
drun <= 1;
drunl <= 1;
end else begin
drun <= drunl;
if((dr | dw) && (addr([3:1] == 3’h7)) begin
drun <= !dr & dw;
drunl <= !'dr & dw & datal[0];
end
end

Bernd Paysan A Debugger for the b16 CPU

Status Readout
Breakpoints
Source Window

Debugging Software

Debugger GUI

Debugger GUI

bi1& Debugger sl
File Help
Addr|50 Data[50 spit. | spi@ |

Nio pump | SRAM | Reset |
omd T

Step Plso Wjso stalso 5P1Fs.et /
| Steps| Tj50 S0j50 SMfs0 8250 S350

Stop RS0 ROjS0 R1[50 R2|50 n3|=3:|

Bernd Paysan A Debugger for the b16 CPU

Status Readout
Debugging Software Breakpoints
Source Window

Problems with Readout

@ SPI post—access read makes status read problematic (will also
modify stack pointer)

@ Unexpected side effects of instruction loaded on stack readouts
Solution:

o First read the four registers

@ Setlto0

o Read status & stacks (stacks 4 times)
@ Restore |

Bernd Paysan A Debugger for the b16 CPU

Status Readout
Debugging Software Breakpoints
Source Window

Readout Code

load-regs (--)
DBG_P regs 4 spiw@s
0 DBG_I spiw!
\ clear instruction register to read stacks
DBG_STATE regs 8 + 3 spiw@s
stack 16 + stack 4 + DO
DBG_S[] I 2 spiw@s
4 +L00P
regs 6 + w@ DBG_I spiw!

Bernd Paysan A Debugger for the b16 CPU

Status Readout
Debugging Software Breakpoints
Source Window

Breakpoints

@ Original idea: Call control register address — stops CPU
@ Doesn't work due to loop elimination in the design

@ Turned out to be a bad idea, anyway (wastes 20% return stack
space)

@ Solution: Replace instruction by loop to itself.

Bernd Paysan A Debugger for the b16 CPU

Status Readout
Debugging Software Breakpoints
Source Window

Source Window

@ MINOS editor component: Load the source into it
e Canvas on the left side displays address (for breakpoints)

@ Change assembler so that listing contains enough information
to translate address+state into cursor position

@ No IDE at the moment (changes on the source go nowhere)

Bernd Paysan A Debugger for the b16 CPU

Integrating Test Equipment

Integrating Test Equipment

@ Other test equipment (from HP, driven via RS232) needs
integration:

e Voltage source
o Measurement ADC

e Typical use: Apply voltage, measure with equipment, measure
with chip (several times), collect data

@ Problem: RS232 nowadays via USB, there's no easy way to
know which interface is connected where

Bernd Paysan A Debugger for the b16 CPU

Lessons Learned

Lessons Learned

e If time permits, diverging modules like the SPI should be
merged and made configurable

@ The register order should be changed so that the stack access
doesn't require special care (stack access first)

o Read with side effect is evil, anyway

@ Integrating the assembler into the debugger should be fairly
trivial, and thereby it creates an IDE with little effort

@ Further magic could allow to seamlessly insert code with just a
small stop and restart of the CPU

e Adding some (further) interactivity with the target CPU is also
fairly trivial

@ Hot—plugged devices must have a unique serial ID (this is a
hint to Intel!ll)

Bernd Paysan A Debugger for the b16 CPU

Appendix For Further Reading

For Further Reading |

¥ EuroForth 2004, b16-small — Less is More, Bernd Paysan
¥ EuroForth 2007, Audio GUI: MINOS@work, Bernd Paysan

Bernd Paysan A Debugger for the b16 CPU

