
Cleaning up after yourself

M. Anton Ertl∗

TU Wien

Abstract

Performing cleanup actions such as restoring a vari-
able or closing a file used to be impossible to guar-
antee in Forth before Forth-94 gave us catch. Even
with catch, the cleanup code can be skipped due
to user interrupts if you are unlucky. We introduce
a construct that guarantees that the cleanup code
is always completed. We also discuss a cheaper im-
plementation approach for cleanup code than using
a full exception frame.

1 Introduction

A frequent programming problem is to restore some
state, free a resource, or perform some other cleanup
reliably. Typical examples are:

• Restore base after a temporary change.

• Close a file.

In Forth-94 we can use catch to ensure that such
cleanup actions happen under most (but not all)
circumstances.

In this paper we explore ways to improve on this
state of affairs in the following ways:

• Provide a more reliable mechanism that works
even in the presence of asynchronous excep-
tions (e.g., user interrupts).

• Avoid the cost of a full-blown exception frame
where possible.

2 Running Example

As a running example, we will use a word hex. that
prints a number in hex base without changing base.
And that word will be used in the following context:

: foo

... hex. ...

... ;

decimal foo

hex foo

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

Note that, in addition to printing a number in
hex, foo also prints a number in the current base.

3 Standard Forth solutions

3.1 Thinking Forth approach

In the old days, Forth did not have catch, so one
would write, e.g.:

: hex. (u --)

base @ >r

hex u.

r> base ! ;

But even in the old days Forth had non-local exits
via abort, and quit, as well as user interrupts. If
any of these non-local exits from u. happened, base
would not be restored.

So, in the old days, cleanup could not be per-
formed reliably. So, various ways to work around
this situation were developed and practised, as dis-
cussed in the Thinking Forth, Chapter 7, Section
“Saving and Restoring a State” [Bro84]; in partic-
ular, this section cites Charles Moore as follows:

You really get tied up in a knot. You’re
creating problems for yourself. If I want
a hex dump I say HEX DUMP. If I want a
decimal dump I say DECIMAL DUMP. I don’t
give DUMP the privilege of messing around
with my environment.

There’s a philosophical choice between
restoring a situation when you finish and
establishing the situation when you start.
For a long time I felt you should restore
the situation when you’re finished. And
I would try to do that consistently ev-
erywhere. But it’s hard to define “every-
where.” So now I tend to establish the
state before I start.

If I have a word which cares where
things are, it had better set them. If some-
body else changes them, they don’t have
to worry about resetting them.

There are more exits than there are en-
trances.

Ertl Cleaning up after yourself

Unfortunately, this workaround is not even usable
in our running example: What is the situation that
should be established before the call to . in foo?

And this workaround does not help at all with
other cleanup tasks like closing files and freeing
other resources.

3.2 Using catch

Fortunately, with the introduction of catch in
Forth-94, the situation changes: There is only one
exit from catch, and we can use that property to
make the cleanup more reliable:

: hex.-helper (u --)

hex u. ;

: hex. (u --)

base @ >r

[’] hex.-helper catch

r> base ! throw ;

This makes sure that base will be restored
even if an exception (of any kind) happens while
hex.-helper is executed.

Unfortunately, there is still one chink in our
cleanup armour: If an exception (e.g., a user inter-
rupt) happens during the restoration of base, the
cleanup code would not complete, and base would
be left in the wrong state.

4 Advanced solutions

4.1 Try...restore...endtry

The current development version of Gforth offers a
construct try code1 restore code2 endtry. If
any exception happens anywhere between try and
endtry (including in code2), the stack depths are
reset to the depth at try, the throw value is pushed
on the data stack, and execution jumps right behind
the restore.

With this construct there is not just only one exit,
it also guarantees that code2 is executed from start
to end.

This construct can be used to solve our problem
as follows:

: hex. (u --)

base @ { oldbase }

try

hex .

0 \ value for throw

restore

oldbase base !

endtry

throw ;

The old base is stored in a local, because we
cannot use the return stack for this purpose (try
pushes an exception frame on the return stack).
However, Instead of using a local, we could use the
data stack, as follows:

: hex. (u --)

base @

try

over hex .

0 \ value for throw

restore

over base !

endtry

throw

2drop ;

Note how we use over twice to keep the values
on the data stack intact, so we can use them in the
restoration code. We only drop these values after
endtry.

This construct requires some care in usage:

• As shown above, one has to be careful not to
remove items from the stacks that are needed
in the restoration; one must not even remove
them during restoration.

• The restoration code must not throw an excep-
tion, at least not every time it executes. Oth-
erwise the system will go into an infinite loop
of start-restoration...throw-exception. And not
even a user interrupt can be used to break out
of that loop. Instead, the user then has to stop
the system by using some more brutal meth-
ods (e.g., in Unix by sending a SIGTERM to the
Gforth process).

• The restoration code must be idempotent, i.e.,
executing it multiple times (starting at the
same stack depths) should have the same ef-
fect as executing it once.

However, Forth programmers are used to taking
responsibility for their programs, so these caveats
should not be a problem.

The idempotence requirement may be hard or
impossible to satisfy in some cases, e.g., when the
cleanup involves close-file or free. In such cases
it is usually preferable to have a small chance of not
cleaning up than to try to clean up several times.
One can achieve this by writing the non-idempotent
part between the endtry and the throw.

In cases where a variable is changed and restored,
the idempotence requirement is easy to achieve.

An example of a non-idempotent use is:

Ertl Cleaning up after yourself

recovery address
old sp
old fp
old lp
previous handler/old rp

exception
frame

old baselocals

restoration
frame

old base
restoration xt
previous handler

Figure 1: A general-purpose exception frame used for restoring base compared to a restoration frame

... open-file throw { f }

try

... f read-file throw ...

0 restore

endtry

f close-file throw

throw

4.2 Special-purpose words

Gforth also has special-purpose words for a few fre-
quent or dangerous purposes:

base-execute (i*x xt u -- j*x) executes xt

while base is set to u.

infile-execute (i*x xt file-id -- j*x)

executes xt while key etc. read their input
from file-id.

outfile-execute (i*x xt file-id -- j*x)

executes xt while the output of type etc. is
redirected to file-id.

Given that all these words take an xt from the
stack, and the xt is nearly always a constant, it is
probably better to define future words of this kind
such that they take the xt from the top-of-stack.

5 Efficiency

An exception frame costs five return stack cells in
Gforth (and probably a similar amount in other sys-
tems), and constructing and consuming it costs a
bit of time. For the purpose of cleanup a full ex-
ception frame is overkill. We don’t really need to
restore the depths of all stacks in this case: If we
enter the restoration in the normal way, the stack
depths are not restored anyway; and if we enter
the restoration code through a throw, we are go-
ing to throw the error further on, so we don’t need
the stack depths, either; we just need access to the
restoration data.

So we could implement a lighter-weight mecha-
nism for restoration. Two cells for the restoration
frame itself would be enough (see Fig. 1). The
restoration frames would be kept on the return
stack and chained in a linked list. Throw would

process all the restoration frames that are above
the next exception frame on the return stack, then
process that exception frame as usual.

The downside is that the code for the restoration,
and for setting up the restoration data would have
to be even more aware of the restoration mecha-
nism, because the restoration data cannot directly
be transferred through a stack, but has to be ac-
cessed through the restoration frame. E.g., the
restoration word for restoring base might look as
follows:

: restore-base (addr --)

dup @ base !

next-restoration ;

Here, addr is the address of the user part of the
restoration frame. Next-restoration (addr --

) removes the current restoration frame from the
chain. Any non-idempotent cleanup code would
happen after next-restoration.

An implementation of base-execute with such
a mechanism might look as follows:

: base-execute (i*x xt u -- j*x)

base @ >r

[’] restore-base >restore

base ! execute

restore>

r> drop ;

Here >restore would push a restoration frame
on the return stack and add it to the restoration
chain. Restore> would execute the restoration xt
(i.e., restore-base) and drop it from the return
stack. The old base would have to be dropped ex-
plicitly.

This mechanism has not been implemented.
While it would be relatively easy to implement, it
is unclear if it is worth the documentation and sup-
port load to provide it as a feature to the users.
Here are a number of points to consider:

• In my experience nearly all uses of catch

are for restoration/cleanup. So most excep-
tion frames could be replaced by lighter-weight
restoration frames.

Ertl Cleaning up after yourself

• Exception frames and their handling have not
shown up as performance bottlenecks, but then
I have not performed any measurements.

6 Related work

I am not aware of other advanced solutions in Forth.
However, this is a common programming problem,
so other languages have developed a wide variety of
approaches for solving it.

6.1 Dynamic Scoping

Some of the problems addressed in this paper,
e.g., our base-based running examples can be seen
as customizing the execution environment. Han-
son and Proebsting [HP01] argue that dynamically-
scoped variables have the right properties for this
usage and that programmers in languages without
dynamic scoping resort to simulating dynamic scop-
ing, and they point out the similiarity between ex-
ceptions (a dynamically scoped control structure)
and dynamically scoped variables (which explains
why we and others use exception-catching to im-
plement them).

A significant number of programming languages
and systems provide dynamically-scoped variables.
Lisp is a well-known example. But a probably
more widely-used example is environment variables
in Unix and Windows processes.

Another language with dynamically-scoped vari-
ables is Postscript; there programmers perform dy-
namic scoping by (in Forth terminology) construct-
ing wordlists dynamically, and pushing them on
the search order stack; because name lookup in
Postscript happens at run-time, this results in dy-
namic scoping. However, the Postscript dynamic
control-flow words (exit, stop) do not affect the
depth of the control-flow stack, so these features
cannot be combined safely.

6.2 Cleanup

Lisp has the unwind-protect special form1:
(unwind-protect protected cleanup) makes
sure that cleanup is executed in any case, even
if there is an abnormal exit from protected .
However, unlike try...restore...endtry, it does
not protect against abnormal exits from cleanup .

Java has a similar feature in the form of the try

... finally construct, and C++ in try ...

catch.

C++ also provides destructors that can be used
to automatically release resources and perform

1http://www.lispworks.com/documentation/

HyperSpec/Body/s_unwind.htm

other cleanup when the scope of a variable is ex-
ited. Stroustroup[Str01] gives a good overview of
what kind of exception safety are desirable, and how
the various features of C++ may be used to achieve
them.

In a similar vein, Java finalizers perform cleanup
actions when an object is garbage-collected. How-
ever, because the finalizer may be executed a long
time after a destructor would have been executed,
it is often recommended to favor other approaches
over using finalizers.

Many other languages have similar features.

7 Conclusion

The introduction of catch in Forth-94 provided a
good basis for writing code that cleans up after itself
rather than requiring every piece of code to clean
up all the trash that all other code may have left
behind.

However, in the presence of user interrupts and
other asynchronous exceptions this is not sufficient.
We propose the try ... restore ... endtry

construct that can be used to solve this problem
completely for some, but not all uses. We also dis-
cuss a more light-weight implementation technique.

References

[Bro84] Leo Brodie. Thinking Forth. Fig Leaf
Press (Forth Interest Group), 100 Dolores
St, Suite 183, Carmel, CA 93923, USA,
1984.

[HP01] David. R. Hanson and Todd A. Proebsting.
Dynamic variables. In SIGPLAN ’01 Con-

ference on Programming Language Design

and Implementation, pages 264–273, 2001.

[Str01] Bjarne Stroustrup. Exception safety: con-
cepts and techniques. In Advances in ex-

ception handling techniques, pages 60–76.
Springer LNCS 2022, 2001.

