Virtual Machine Showdown:
stack versus registers

Yunhe Shi', Kevin Casey', Anton Ertl’, David Gregg'

'Department of Computer Science
Trinity College Dublin

“Institut fiir Computersprachen
Technische Universitdt Wien

This talk is based on a paper in ACM TACO 4(4), January 2008

Virtual Machines (VM)

» High-level language VMs

- Popular for implementing programming languages
- Java, C#, Pascal, Perl

* Program is compiled to virtual machine code
- Similar to real machine code
- But architecture neutral

* VM implemented on all target architectures
- Using interpreter and/or JIT compiler
- Same VM code then runs on all machines

Stack Architecture

» Almost all real computers use a
register architecture

- Values loaded to registers
- Operated on in registers

» But most popular VMs use stack
architecture

- Java VM, .NET VM, Pascal P-code, Per| 5

Why stack VMs?

» Code density
- No need to specify register numbers

- Easy to generate stack code
- No register allocation

* No assumptions about number of registers
- ?2?27?

» Speed

- May be easier to JIT compile

- May be faster to interpret
- Or maybe not...

Which VM interpreter is faster?

+ Stack VM interpreters
- Operands are located on stack
- No need to specify location of operands
- No need to load operand locations

* Register VM interpreters

- Fewer VM instructions needed
» Less shuffling of data onto/off stack

- Each VM instruction is more expensive

Which VM interpreter is faster?

* Question debated repeatedly over the
years

- Many arguments, small examples

- No hard numbers

- Some are confident that answer is
obvious

- But which answer?

VM Interpreters

- Emulate a virtual instruction set

+ Track state of virtual machine
- Virtual instruction pointer (IP)

- Virtual stack
* Array in memory
 With virtual stack pointer (SP)

- Virtual registers

* Array in memory

- No easy way to map virtual registers to real registers in
an interpreter

VM Interpreters

while (1) {

Ip++;

opcode = *ip;

switch (opcode) {
case |IADD: *(sp-1) = *sp + *(sp-1); sp--; break;
case ISUB: *(sp-1) = *sp — *(sp-1); sp--; break;
case ILOAD O: *(sp+1) = locals[0]; sp++; break;
case ISTORE_O: locals[0] = *sp; sp--; break;

VM Interpreters
- Dispatch

- Fetch opcode & jump to implementation
- Most expensive part of execution

- Unpredictable indirect branch

- Similar cost for both VM types

- But register VM needs fewer dispatches

» Fetch operands
- Locations are explicit in stack machine

* Perform the operation
- Often cheapest part of execution

Stack versus registers

* Our register VM

- Simple translation from JVM bytecode
- One byte register numbers

Source code Stack code Register code
a =b+c; iload b; iadd a, b, ¢
iload c;
iadd;

Istore q;

Operand Access

- Stack machine

- Virtual stack in array
- Operands on top of stack
- Stack pointer updates

* Register machine
- Virtual registers in array

- Must fetch operand locations (1-3 extra bytes)
* More loads per VM instruction

From Stack to Register

* Translated JVM code to register VM
* Local variables mapped directly

- Local O — Register O

» Stack locations

- Mapped to virtual registers

- Height of stack is always known statically
- Assigh numbers to stack locations

From Stack to Register

Stack
Code
iload 4
bipush 57
iadd
iIstore 6
iload 6
ifeq 7

Register Code

imove rl10, r4
biload r11, 57
iadd r10, r10, ri1l
imove ré6, r10
imove rl10, ré
ifeq r10, 7

Comment

; load local variable 4

; push immediate 57

; integer add

; store TOS to local 6

; load local variable 6

; branch by 7 if TOS==0

From Stack to Register

» Clean up register code with classical
optimizations
- Copy propagation fo remove unnecessary
move operations

- Partial redundancy elimination

» Re-use constants already in registers

+ Stack VM consumes its operands so must load
constants every time it uses them

Experimental Setup

*+ Implemented in Cacao VM

* Method is JIT compiled to register code on
first invocation

- Results include only executed methods

- Standard benchmarks

- SPECjvm98, Java Grande

* Real implementation wouldn't translate
- Better generate register code from source

- But translation allows fairer comparison
» Except for translation time

Static VM Instructions

Average |

Search I

MonteCarlo |

Euler |

RayTracer

Jack |

Mtrt

Mpegaudio

Javac

Db

Jess

Compress

|
I
|
[
|
I
|
I
|
‘ [
MolDyn ‘ [¥
I
|
|
|
[
|
I
|
I
|
[
|

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ONop/Pop eliminated B Move Eliminated O Constant Eliminated O Others Eliminated
B Move Remaining O Constant Remaining B Others Remaining

Dynamic VM Instructions

Average

Search [N

MonteCarlo

Euler
RayTracer
MolDyn
Jack

Mtrt

Mpegaudio [1

Javac

Db

Jess

Compress

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O Pop BMove Eliminated OConstant Eliminated O Others Eliminated BMove Remaining O Constant Remaining B Others Remaining

1.6

1.4

1.2

Increase in bytecode loads

0.8
0.6
0.4
0.2 -
0 _
@%%
&

g&‘

&©
eqr&}
@Q

N
& & o

\I Code Size B Bytecode Load \

Ratio of additional loads to
eliminated instructions

2.50

2.00

1.50 —

1.00
) I I I I I
0.00]
Qgﬁ

&\p

Real machine memory ops

Source Code
a=b+c;

Register Code
/* iadd a, b, c*/
regla] = reg[b] + reg[c]

Stack Code
/* iload ¢ */
*(++sp) = locals[c];

/* iload b */
*(++sp) = locals[b];

/* iadd */
*(sp-1) = *(sp-1) + *sp;
sp--.

/* istore a */
locals[a] = *(sp--);

2.50

2.00 -

il

1.50

1.00

0.50

0.00

OO

Reduction in “real machine" loads/stores
compared with dispatches eliminated

< &°
o O
i Q@Qrb & & Coe' ‘?:\
A\ &

®°°

Real Running Times

* Interpreter Dispatch

- Switch dispatch

- Token Threaded dispatch
- Direct threaded dispatch
* Inline threaded dispatch

* Hardware platforms
- AMD 64

* Intel P4

* Intel Core 2 Duo

- Digital Alpha

- IBM PowerPC

Speedup of Register VM - AMD64

2.00

1.50 -

1.00

\I:I Inline Threaded M Direct Threaded O Token Threaded O Switch \

AMD64 Event Counters - Compress

1.2

1.0

0.8

0.6

0.4 -

0.2 +

0.0

Data cache
accesses
(*100B)

Data cache Instruction cache Instruction cache

Retired taken Retired taken

misses (*200M) fetches (*200B) misses (*2M) branches (*25B) branches

mispredicted
(*25B)

O Register Inline Threaded B Stack Inline Threaded
O Stack Direct Threaded B Register Switch

O Register Direct Threaded
O Stack Switch

Retired
instructions
(*160B)

Eliminating more redundant

expressions

» Stack operations consume their operands
- So very difficult to re-use existing values

- Stack machine must load constants, loop
invariants repeatedly

- Register machine can store constants, simple
loop invariants in registers

* What about more complex invariants
- Repeated loads from the heap

- Requires very sophisticated pointer analysis
* But what if we could do it?

Eliminating more redundant expressions
- speedup on AMD 64

t safe!

Th%e results
- arejno

Java VM Summary

+ Detailed quantitative results
- 46% reduction in executed VM instructions
- 26% increase in bytecode size
- 25% increase in bytecode loads

» Speedup depends on dispatch scheme
- Speedup 1.48 with switch dispatch on AMD64

- Even with the most efficient dispatch, 1.15
speedup can still be achieved

What about Forth?

* Forth usually uses stack VM
* But execution profile very different

+ Java instructions:

- 42% load & stores of locals

- 6% loads of constants

- 0-2% stack manipulation

* Very many local load/store

- Almost all disappear in register VM

What about Forth?

- Forth VM instructions

- Stack manipulation instructions
- over, dup, swap, drop, 2dup, ?dup, r>, >r, i
* maybe 10%-15% ???
- Literal instructions
- lit, var
* maybe 15%-25% 2??
- Local variable instructions

- 5|, @local
- maybe 2%-5% ???

What about Forth?

» There is no huge block of instructions
that will easily disappear using a
register VM

- Apart from literals

» But some speedup is probably possible
by using a register VM

