Virtual Machine Showdown: stack versus registers

Yunhe Shi¹, Kevin Casey¹, Anton Ertl², David Gregg¹

¹Department of Computer Science Trinity College Dublin

²Institut für Computersprachen Technische Universität Wien

This talk is based on a paper in ACM TACO 4(4), January 2008

Virtual Machines (VM)

- High-level language VMs
 - Popular for implementing programming languages
 - · Java, C#, Pascal, Perl
- Program is compiled to virtual machine code
 - Similar to real machine code
 - But architecture neutral
- VM implemented on all target architectures
 - Using interpreter and/or JIT compiler
 - Same VM code then runs on all machines

Stack Architecture

- Almost all real computers use a register architecture
 - Values loaded to registers
 - Operated on in registers
- But most popular VMs use stack architecture
 - Java VM, .NET VM, Pascal P-code, Perl 5

Why stack VMs?

- · Code density
 - No need to specify register numbers
- Easy to generate stack code
 - No register allocation
- No assumptions about number of registers
 - ????
- Speed
 - May be easier to JIT compile
 - May be faster to interpret
 - Or maybe not...

Which VM interpreter is faster?

- Stack VM interpreters
 - Operands are located on stack
 - No need to specify location of operands
 - No need to load operand locations
- Register VM interpreters
 - Fewer VM instructions needed
 - Less shuffling of data onto/off stack
 - Each VM instruction is more expensive

Which VM interpreter is faster?

- Question debated repeatedly over the years
 - Many arguments, small examples
 - No hard numbers
- Some are confident that answer is obvious
 - But which answer?

VM Interpreters

- Emulate a virtual instruction set
- Track state of virtual machine
 - Virtual instruction pointer (IP)
 - Virtual stack
 - Array in memory
 - With virtual stack pointer (SP)
 - Virtual registers
 - · Array in memory
 - No easy way to map virtual registers to real registers in an interpreter

VM Interpreters

VM Interpreters

- Dispatch
 - Fetch opcode & jump to implementation
 - Most expensive part of execution
 - Unpredictable indirect branch
 - Similar cost for both VM types
 - But register VM needs fewer dispatches
- Fetch operands
 - Locations are explicit in stack machine
- Perform the operation
 - Often cheapest part of execution

Stack versus registers

- Our register VM
 - Simple translation from JVM bytecode
 - One byte register numbers

```
Source code

a = b + c;

iload b;

iload c;

iadd;

istore a;
```

Operand Access

- Stack machine
 - Virtual stack in array
 - Operands on top of stack
 - Stack pointer updates
- Register machine
 - Virtual registers in array
 - Must fetch operand locations (1-3 extra bytes)
 - More loads per VM instruction

From Stack to Register

- Translated JVM code to register VM
- · Local variables mapped directly
 - Local $0 \rightarrow \text{Register } 0$
- Stack locations
 - Mapped to virtual registers
 - Height of stack is always known statically
 - Assign numbers to stack locations

From Stack to Register

Stack Code	Register Code	Comment
iload 4	imove r10, r4	; load local variable 4
bipush 57	biload r11, 57	; push immediate 57
iadd	iadd r10, r10, r11	; integer add
istore 6	imove r6, r10	; store TOS to local 6
iload 6	imove r10, r6	; load local variable 6
ifeq 7	ifeq r10,7	; branch by 7 if TOS==0

From Stack to Register

- Clean up register code with classical optimizations
 - Copy propagation to remove unnecessary move operations
 - Partial redundancy elimination
 - · Re-use constants already in registers
 - Stack VM consumes its operands so must load constants every time it uses them

Experimental Setup

- Implemented in Cacao VM
- Method is JIT compiled to register code on first invocation
 - Results include only executed methods
- Standard benchmarks
 - SPECjvm98, Java Grande
- Real implementation wouldn't translate
 - Better generate register code from source
 - But translation allows fairer comparison
 - Except for translation time

Static VM Instructions

Dynamic VM Instructions

Increase in bytecode loads

Ratio of additional loads to eliminated instructions

Real machine memory ops

Source Code

```
a = b + c;
```

Register Code

```
/* iadd a, b, c */
reg[a] = reg[b] + reg[c];
```

Stack Code

```
/* iload c */
 *(++sp) = locals[c];
 /* iload b */
*(++sp) = locals[b];
 /* iadd */
 *(sp-1) = *(sp-1) + *sp;
 sp--;
 /* istore a */
 locals[a] = *(sp--);
```

Reduction in "real machine" loads/stores compared with dispatches eliminated

Real Running Times

- Interpreter Dispatch
 - Switch dispatch
 - Token Threaded dispatch
 - Direct threaded dispatch
 - Inline threaded dispatch
- Hardware platforms
 - · AMD 64
 - · Intel P4
 - Intel Core 2 Duo
 - Digital Alpha
 - · IBM PowerPC

Speedup of Register VM - AMD64

AMD64 Event Counters - Compress

Eliminating more redundant expressions

- Stack operations consume their operands
 - So very difficult to re-use existing values
 - Stack machine must load constants, loop invariants repeatedly
 - Register machine can store constants, simple loop invariants in registers
- · What about more complex invariants
 - Repeated loads from the heap
 - Requires very sophisticated pointer analysis
 - · But what if we could do it?

Eliminating more redundant expressions - speedup on AMD 64

Java VM Summary

- · Detailed quantitative results
 - 46% reduction in executed VM instructions
 - 26% increase in bytecode size
 - 25% increase in bytecode loads
- Speedup depends on dispatch scheme
 - Speedup 1.48 with switch dispatch on AMD64
 - Even with the most efficient dispatch, 1.15 speedup can still be achieved

What about Forth?

- Forth usually uses stack VM
- But execution profile very different
- Java instructions:
 - 42% load & stores of locals
 - 6% loads of constants
 - 0-2% stack manipulation
- Very many local load/store
 - Almost all disappear in register VM

What about Forth?

- Forth VM instructions
 - Stack manipulation instructions
 - · over, dup, swap, drop, 2dup, ?dup, r>, >r, i
 - · maybe 10%-15%???
 - Literal instructions
 - lit, var
 - maybe 15%-25% ???
 - Local variable instructions
 - · >1, @local
 - · maybe 2%-5% ???

What about Forth?

- There is no huge block of instructions that will easily disappear using a register VM
 - Apart from literals
- But some speedup is probably possible by using a register VM