
An infix syntax for Forth
(and its compiler)

Andrew Haley

Early Inspiration
Winfield AFT, ‘Pascal in Forth’, SOFT, Vol 1, no 4, Sept. 1983, pp59-63 and
Vol 1, no 5, Oct. 1983, pp46-51.
http://www.ias.uwe.ac.uk/~a-winfie/aw_publications.htm

Very elegant, but closer to Pascal than to Forth – the resulting syntax is more
restricted, and the control structures are those of Pacal, not Forth. Also,
restricted to single-length integer expressions and arrays, no structures,
etc, etc.

Previous efforts
Forthwrite Dec ’86:

VARIABLE 'EXPRESSION : EXPRESSION 'EXPRESSION @EXECUTE ;
VARIABLE TEMP CREATE)
: ,C (a) 2- , ;
: NEXT (- a) -' IF NUMBER TEMP ! 0 ELSE DROP THEN ;
: CHECK (a a') - ABORT" not matched" ;

: FACTOR (a - a') DUP ['] (= IF DROP NEXT EXPRESSION
[']) CHECK ELSE ?DUP IF ,C

ELSE TEMP @ [COMPILE] LITERAL THEN THEN NEXT ;
: TERM (a - a') FACTOR BEGIN DUP ['] * = OVER ['] / =

OR WHILE NEXT FACTOR SWAP ,C REPEAT ;
: EXPRESSION (a - a') TERM BEGIN DUP ['] + = OVER ['] - =

OR WHILE NEXT TERM SWAP ,C REPEAT ;

: INFIX NEXT ['] (CHECK NEXT EXPRESSION [']) CHECK ;
IMMEDIATE ' EXPRESSION 'EXPRESSION !

Example of use:

44 CONSTANT FRED
: TEST (-- n) INFIX (3 * FRED / ((3 + 5) / 2)) ;

Previous efforts
Forthwrite Dec ’86:

Uses recursive descent

Compile only – no use in interpreter

No LOCAL variables

Extremely simple

Only arithmetic expressions

Uses data stack
Uses -' (aka FIND) and ,C (aka COMPILE,)

Previous efforts
comp.lang.forth Feb 2002, some details elided:

: op (a) state @ if compile, else execute then ;
: lit =number @ state @ if postpone literal then ;

ops[relop > > < < = =]
ops[addop + + - - or or xor xor]
ops[mulop * * / / and and]
ops[unop - negate @ @]

\ These are the productions.

defer expr
: expr-list expr begin match , while token expr repeat ;

: parens expr-list match) 0= abort")" ;

: primary
match# if lit token exit then
match (if token parens token exit then
this >r token match (if token parens token then r> op ;

: factor unop if >r token recurse r> op exit then primary ;

: term factor
begin mulop while >r token factor r> op repeat ;

: simple-expr term
begin addop while >r token term r> op repeat ;

:noname simple-expr
begin relop while >r token simple-expr r> op repeat ;

is expr

Previous efforts
comp.lang.forth Feb 2002:

Uses recursive descent

STATE-smart: allows interpretive use

Still extremely simple
Function calls: FOO (1, BAR, 3)

Uses return stack for temporary storage of execution tokens
that haven’t yet been used because they are of low
precedence − much cleaner; means we can use data stack for
interpretive expression evaluation

Written in almost Standard Forth

Still doesn’t allow LOCAL variables in expressions

The problem with locals

“Words that return execution tokens, such as ' (tick), ['], or
FIND, shall not be used with local names.”

This is a horrible restriction! Effectively it means that locals
can never be used as factors. Locals cannot be used as
part of an expression in this parser because it uses ' and
COMPILE,

Designing the syntax
Let’s ignore the implementation problems for a little while and
look at the syntax we’d like to have. We’ll return to the
implementation later.

Designing the syntax
A word is any string of non-whitespace characters. Words are
separated by spaces.

Numbers are just words, so they don’t need to be treated
specially. The syntax need make no special provision for them.

Designing the syntax
Simple cases:

Basic Forth syntax is
noun noun ... verb noun noun ... verb

profanely,

verb (noun , noun , ...) ; verb (noun , noun , ...) ;

Control structures:
a b > if becomes if (a > b)
10 0 do becomes do (10 , 0)

Designing the syntax
More simple cases:

Arithmetic expressions:

Traditional operator precedence, defined by syntax
b negate b b * 4 a * c * - sqrt 2 / a * +

becomes

-

b + (

sqrt

(b * b -

4 * a * c) / 2 * a)

The reserved tokens are

+ -

* / f+ f-

f* f/ () < > = f< f> f= or

xor

and @

Everything else is just a word, and can be used as a function or

an argument.

Designing the syntax
To allow multiple statements, we add the ; operator:

expr

;

expr

Local variables can be assigned with the := operator:
a b * to c becomes c := a * b

@ is a problem. We could just treat it as a function like any other Forth word,
but then it would be cumbersome to use because of parentheses:

@ (a) + @ (b) ...

so we define @ to be a high-precedence unary operator, which is much nicer:

@ a + @ b ...

We could arguably do the same with ! , treating it as a binary operator

Designing the syntax
A structure access, as per the Forth 200x structures RFD, is just the application
of a function to a pointer.
Given a struct, we can use its fields with no special treatment:

struct

point

1 cells +field p.x

1 cells +field p.y

end-struct

\

Draw a line from p1 to p2

draw (p.x (p1) , p.y (p1) , p.x (p2) , p.y (p2) ;

We could define a word . as a postfix function operator, but that isn’t obviously
a big improvement

Designing the syntax
Because every statement is also an expression, we can have conditionals in
expressions, so:

a := b + (if (c < 10) ; 1 ; else ; 2)

is equivalent to

b c 10 < if 1 else 2 + to a

Designing the syntax
I’m still not certain about the absolute best syntax for arrays, but Smalltalk is a
good place to start

For array reads,

a at: i produces a i at:

And for writes,

<expression> put: (b , 2) produces b 2 put:

(Maybe b at: 2 put: <expression> would be better)

With an additional shorthand (purely for familiarity’s sake):

a [i] is equivalent to a at: i

Designing the syntax
Arrays are tricky. In profane languages lvalues are treated differently from
rvalues: an lvalue is evaluated for its address, but an rvalue is evaluated for its
value

For example,

a [i] := b [j]

We can’t simply say that every array access on the LHS of an assignment is
evaluated for its address, because of things like

a [b [i]] := b [j]

where only the outermost array access is evaluated for its address

It’s difficult to do a mapping in a purely syntactical way. If we’re simply
scanning from left to right we have no way to know that an assignment is
imminent; that would require backtracking

Designing the syntax
Parsing words are the biggest headache. Anything that acts as a prefix
operator by using PARSE or WORD needs special treatment

String constants are easy enough, though:
s" hello " type

maps easily to

type (" hello ")

I don’t think the lack of .” is important

Escape to Forth
If all else fails and there really is a Forth expression that cannot be rendered as
infix in any way, there’s an escape:

[.” Hello, world”]

This also allows local declarations, etc:

[LOCALS| a b c |]

The problem with TO

“An ambiguous condition exists if either POSTPONE or
[COMPILE] is applied to TO.”

So TO can never be used as a factor either.

This is a very bad design decision: if Forth is about any
single thing it’s factoring, and this is an important part of the
language that forbids factoring.

Implementation
The problem with TO not being allowed to be ticked or
POSTPONED was, as it turned out, a big inspiration

We can’t use XTs, but we can use strings. So, instead of
saving XTs on the return stack, we create a string stack and
define >S and S>. Also, we create an output buffer and push
into it words from the string stack

At any stage in the compilation, we only have to decide whether
to push a word into the output buffer or onto the string stack

Implementation

Implementation
A great benefit –

arguably the greatest benefit –

of doing this by

using strings rather than XTs is that we no longer need to be
STATE-smart. The infix code is rewritten to be postfix and then
passed to INTERPRET. INTERPRET either compiles or
interprets.

An example
Original FORTRAN:

do i = 1, dim1

do j = 1, dim3

C(i, j) = 0.

do k = 1, dim2

C(i, j) = C(i, j) + A(i, k)*B(k, j)

enddo

enddo

enddo

An example
Infix Forth:
do (dim1 , 1) ;

do (dim3 , 1) ;
0.e0 put: C (j , i) ;
do (dim2 , 1) ;

C [k , j] f+ A [k , i] f* B [i , j] put: C (k , j) ;
loop ;

loop ;
Loop

generates
dim1 1 do

dim3 1 do
0.e0 j i C put:
dim2 1 do
C k j at: A k i at: B i j at: * + k j C put:

loop
loop

loop

In summary

Infix Forth is not a translator from some other language to Forth, but an
infix form of the language that doesn’t change its semantics.

Most Forth words can still be used and keep their glossary definitions.

If we’re going to translate from FORTRAN, C, etc, to Forth for a standard
algorithms library, this is a much better way to do it than translating from
infix to postfix by hand. It’s easier to do and easier to check.

	Slide Number 1
	Early Inspiration
	Previous efforts
	Previous efforts
	Previous efforts
	Previous efforts
	The problem with locals
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Designing the syntax
	Escape to Forth
	The problem with TO
	Implementation
	Implementation
	Implementation
	An example
	An example
	 In summary

