
A Look at Gforth Performance

M. Anton Ertl∗

TU Wien

Abstract

Gforth used to be an traditional threaded-code sys-
tem. In the last decade we integrated a number of
performance features into Gforth. Several of them
were evaluated individually, but an evaluation with
a more global perspective has been missing until
now. This paper fills this void: We have measured
the performance of Gforth releases from 0.5.0 to
0.7.0, on a wide variety of machines, and employ-
ing a wide variety of GCC versions for compiling
Gforth. We present that data and give explanations
for the performance differences.

1 Introduction

Up until and including gforth-0.5.0, Gforth em-
ployed quite traditional implementation techniques:
Indirect threaded code or, on some architectures,
direct threaded code.

Then we added a number of performance-
improving techniques, which were released with
Gforth 0.6 and Gforth 0.7: Primitive-centric hybrid
direct/indirect threaded code [Ert02] was mainly
an enabler for further optimizations. Dynamic
superinstructions with replication [RS96, PR98,
EG03b, EG03a] probably have the most significant
effect on performance; these were all present in
Gforth 0.6. Static superinstructions were added in
Gforth 0.6.2, and static stack caching [EG04, EG05]
in Gforth 0.7.0.

Moreover, Gforth-0.7.0 includes a number of
changes to make these and other optimizations
(in particular, explicit register allocation) more ef-
fective: Automatic build tuning, workarounds for
GCC bugs, and some architecture-specific improve-
ments.

In this paper, we take an overall look at these
changes and their performance effects on various
architectures.

Unfortunately, during the same time GCC was
also “optimized”, and that often resulted in signif-
icantly lower performance for Gforth. We found
workarounds for some of these problems, but the
question remains how effective they are across GCC

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

versions and architectures. So in this paper we also
look at how Gforth performs when compiled with
various GCC versions on various architectures.

2 Setup

2.1 Gforths

We compare four versions of Gforth, with an ad-
ditional three variants produced by running these
versions with an option that turns off a new fea-
ture. The Gforth versions and variants we looked
at were:

0.5.0 Uses traditional indirect or direct-threaded
code. Direct-threaded code is only supported
on some architectures, indirect threaded code
on all of them.

0.6.1 no dynamic This variant uses primitive-
centric hybrid direct/indirect threaded
threaded code. It’s still threaded code, but
now colon definitions are compiled into a call

primitive followed by an address, variables
are compiled to lit followed by the address,
etc. I.e., all threaded-code pointers point to
primitives. Dynamic superinstructions with
replication are disabled in this version (by
running Gforth with --no-dynamic) in order
to make it as close in performance to 0.5.0 as
is easily possible, and to allow isolating the
effect of that optimization.

0.6.1 This variant enables dynamic superinstruc-
tions with replication [RS96, PR98, EG03b,
EG03a] on platforms where they are available.
This feature works as follows: for a sequence of
code without branches, the native code of the
primitives is copied to a new place, and these
native code fragments are concatenated. The
direct threaded code points to these copies of
the native code, not the originals. Most of the
NEXTs are left away. Only when there is a
branch, call or execute in the threaded code,
a NEXT is needed. This feature reduces the
number of NEXTs executed and increases the
indirect branch prediction accuracy of the re-
maining NEXTs.



Ertl Gforth Performance

Architecture CPU Clock rate
Alpha 21264B 800MHz 8MB L2
AMD64 Opteron 270 2000MHz 1MB L2, like Athlon 64 X2

Xeon 5450 3000MHz 2 × 6MB L2, like Core 2 Quad
ARM Xscale IOP 80321 600MHz
IA32 Pentium 4 (Northwood) 2267MHz 512KB L2

Athlon MP 2000MHz 512KB L2, like Athlon XP
Opteron 270 2000MHz 1MB L2, like Athlon 64 X2
Xeon 5450 3000MHz 2 × 6MB L2, like Core 2 Quad

IA64 Itanium II 900MHz
PPC PPC7447A (G4) 1066MHz 512KB L2

PPC970 (G5) 2000MHz
PPC64 PPC970 (G5) 2000MHz

Figure 1: Machines

0.6.2 no superinst This variant has the same
performance features as 0.6.1. Static superin-
structions, the new performance feature of
0.6.2, are disabled.

0.6.2 This version adds static superinstructions, a
platform-independent feature. Static superin-
structions essentially combine a sequence of
primitives into one primitive. Unlike dynamic
superinstructions, which are created at Gforth
run-time, static superinstructions are created
beforehand and built into the Gforth engine.
Gforth 0.6.2 uses 27 and 0.7.0 uses 13 static
superinstructions.

0.7.0 simple stack caching This version tests if
the explicit register allocation option works,
and uses it if it works. Explicit register allo-
cation tells GCC what registers to use for var-
ious VM registers (stack pointers etc.). Oth-
erwise GCC often allocates the VM registers
in memory, so explicit register allocation can
provide a significant speedup on some archi-
tectures. Gforth 0.7.0 also contains several
other performance improvements that are of-
ten somewhat specialized: E.g., it supports in-
direct branch target alignment for dynamically
generated code, providing a speedup on Al-
pha; there are also performance improvements
in mixed-precision division. And a number of
architectures have better support in 0.7.0, al-
lowing them to employ dynamic superinstruc-
tions.

0.7.0 This variant adds multi-state static stack
caching: instead of keeping the number of stack
items in registers the same (usually one item
in the top-of-stack register) all of the time, the
number of stack items in registers can vary to
minimize the number of loads from and stores
to the stack memory, as well as stack pointer

updates. Most architectures have too few reg-
isters available in a way usable with GCC and
therefore can use only at most one register. On
the PPC and PPC64 architectures we use up
to three registers.

All versions of Gforth were compiled without en-
abling non-default performance features (such as
explicit register allocation on versions before Gforth
0.7.0). That is the way that Linux distributors
compile Gforth (and most Linux users get Gforth
through their distribution rather than building it
themselves). On the other hand, most Windows
users probably use the binary package built by
Bernd Paysan, and that uses non-default build op-
tions (in particular --enable-force-reg for ex-
plicit register allocation) to improve performance.
So, the presented results are not representative for
typical Windows installations.

A few other features that are not related to per-
formance and are not used for the benchmarks (e.g.,
the C library interface) were disabled in order to
help make the resulting binaries portable. We com-
piled the four Gforth variants once for each archi-
tecture and GCC version, and then ran the resulting
binaries on all machines of that architecture.

2.2 Hardware and OS

Figure 1 shows the hardware we used. Several ma-
chines were able to run binaries for two architec-
tures. All of these machines were running under
various versions of Linux, on various versions of
the Debian distribution. All machines had enough
RAM to run the benchmarks without swapping.

2.3 Benchmarks

Figure 2 shows the benchmarks we use. These are
all application benchmarks of significant size, and



Ertl Gforth Performance

Program Author Description

bench-gc 1.0 Anton Ertl Garbage Collector

brainless 0.0.2 David Kuehling Chess

cd16sim v11 Brad Eckert CPU emulator

fcp 1.31-64 Ian Osgood Chess

lexex Gerry Jackson Scanner Generator

Figure 2: Benchmark programs used

hopefully their usage patterns are more representa-
tive of other CPU-intensive applications than some
of the smaller benchmarks that are often used (and
that have quite different behaviour from these and
other application benchmarks).

Each benchmark was run three times (on each
combination of Gforth variant, GCC version, and
machine), and the median of the three results was
used further on.

In a few graphs we show results for individual
benchmarks, but in most graphs we show an ag-
gregate of all benchmarks. We use the geometric
mean for aggregation (with each benchmark having
the same weight) [FW86].

Brainless produces different results on 32-bit and
64-bit systems, and probably would produce differ-
ent run-times even on a system that was always
equally fast in 32-bit and 64-bit mode. Therefore
we did not include brainless in the aggregate if we
compare 32-bit and 64-bit systems.

2.4 GCC versions

We tried to compile Gforth with as many GCC ver-
sions as possible. Fortunately, there is a wide vari-
ety of GCC versions available on Debian, and they
can be installed simultaneously. In addition, there
were some manually installed GCCs available on
some architectures.

2.5 Graphs

All graphs are scaled such that the highest-
performing system gets speed 1. Also, all graphs
are scaled logarithmically.

For graphs where each data point represents a
Gforth variant with no reference to a specific com-
piler, the fastest-performing variant out of those
that ran is shown. This should show what the vari-
ous versions of Gforth are capable of when not hin-
dered by GCC performance bugs.

In some graphs data points are missing, either be-
cause building that version of Gforth did not work,
or because one of the benchmarks failed (for all of
the Gforth compilations under consideration).

If a missing data point lies between two others
in a line graph, the line is drawn from the point
before to the point after, which is incorrect: It sug-
gests that the performance of the missing point is in

the middle, but actually there was no performance
at all for that point; however, trying to make these
cases more visible would probably add more confu-
sion than it would help, so we decided against it.

If a missing point is at the start or the end of the
line, it is just not shown. In some cases, there is
only one point in the line, which is then not shown.
Instead you see the label of the “line” to the right
of where the point is.

3 Results and Analysis

3.1 Overall performance

Figure 3 shows a performance summary: Each
line represents an architecture/machine combina-
tion. The points on each line show the performance
of different Gforth versions/variants, for each the
fastest gforth-fast binary that the different com-
piler versions produced.

Overall, we can see that Gforth performance has
improved significantly between 0.5.0 and 0.7.0, e.g.,
by a factor of more than 3 for IA32 Xeon 5450, and
that factor seems pretty typical.

Another overall observation we can make is that
we managed to build all Gforth versions on all ma-
chines, even on architectures that were not available
to us for testing when we released the old versions of
Gforth (like ARM or PPC64), or that were not even
released when Gforth 0.5.0 was released in 2000, like
IA64 (released in 2001) and AMD64 (2003). This
shows that Gforth achieves its goal of portability
very well.

3.2 Gforth versions

Looking closer, the effect of different changes is dif-
ferent for different architectures:

From 0.5.0 to 0.6.1nd, the threaded code
model changed from classical direct or indirect
threaded code to primitive-centric direct threaded
code. In addition, on IA32 the top-of-stack is no
longer kept in a register (without explicit register
allocation); registers are scarce on IA32, and with-
out explicit register allocation GCC then spills the
stack pointer to memory, causing a significant slow-
down compared to not keeping the top-of-stack in
a register.

On the IA32 CPUs, switching to primitive-centric
direct-threaded code buys a speedup, because it
eliminates the cache consistency problems these
CPUs have with classical direct threaded code
(where code fragments are close to data) [Ert02,
Section 3], and which shows up in some of these
benchmarks, especially cd16sim. Interestingly, the
AMD64 versions of Gforth 0.5.0 outperform the
IA32 versions on the same machine, even though
the AMD64 versions have no architecture-specific



Ertl Gforth Performance

IA64 Itanium II

IA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270

PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321

PPC 970

AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed geometric mean

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

Figure 3: Performance per cycle, geometric mean
of benchmarks (without brainless) of the best-
compiled versions on all machines

tuning at all. Classical direct threading showed a
benefit on the small benchmarks we usually use dur-
ing development, but obviously these small bench-
marks are not representative of large application
benchmarks.

Most other machines also show an improvement
from going to primitive-centric direct threaded
code, because they usually used indirect threaded
code in Gforth 0.5.0, and direct-threaded code is
faster on most architectures.

From 0.6.1nd to 0.6.1: This enables dynamic
superinstructions with replication on several ar-
chitectures (Alpha, IA32, PPC), and gives large
speedups on these machines. On architectures that
we did not have available for testing when releasing
0.6.1 (AMD64, ARM, IA64, PPC64), this feature
is not supported (it requires architecture-specific
code for maintaining cache consistency) and there-
fore there is no change between 0.6.1nd and 0.6.1
on these architectures.

From 0.6.1 to 0.6.2ns There are no new perfor-
mance features, so performance should be the same
between these variants, and it generally is; we have
no good explanation for the speedup on the Alpha
21264B machine.

From 0.6.2ns to 0.6.2 27 static superinstruc-
tions were enabled. They buy a small speedup even
on systems where dynamic superinstructions work,
because the native code for a static superinstruction
is optimized compared to the equivalent dynamic
superinstructions, which just consists of a concate-
nation of the code of its parts. Static superinstruc-
tions buy a larger speedup on systems where dy-
namic superinstructions are not supported, because
there the static superinstructions also buy a part of
the benefit that the dynamic superinstructions give
otherwise: fewer NEXTs and better branch predic-
tion. Looking at the individual benchmarks, static
superinstructions help most of the benchmarks, but
lexex is not affected.

From 0.6.2 to 0.7.0ssc there are a number of
new performance features, with different effects on
different architectures:

Several architectures (AMD64, ARM, IA64,
PPC64) became available for testing, and now
Gforth supports dynamic superinstructions with
replication on them; note how AMD64 and PPC64
now catch up to the performance of IA32 and PPC
on the same machines.

Automatic tuning: The build script automati-
cally tests whether Gforth works when built with
explicit register allocation and/or a C type for
double-cell integers, and enables these features if
they work (i.e. in the usual case). Explicit register
allocation gives significant speedups on IA32 and
AMD64.

Branch target alignment inserts padding in the
native code such that the targets of branches are
aligned to cache line boundaries. This provides a
significant speedup on the Alpha; this feature is
also implemented for IA32 and AMD64 (but with
padding limited to 1 byte), but we have seen little
effect there (we also tried more padding).

We also added workarounds for GCC perfor-
mance bugs, resulting in more GCC versions having
good performance. This does not show up much
in these graphs, which show only the binary from
the best-performing GCC, but it is responsible for
much of the speedup on PPC: For Gforth 0.6.2, the
best-performing GCC for PPC was 2.95, and it per-
forms similarly for Gforth 0.7.0, but there gcc-4.3
performs a little better.

We have also implemented faster mixed-precision
division, but we do not think that this shows up in
these benchmarks.

From 0.7.0ssc to 0.7.0, multiple-state static
stack caching is enabled. Unfortunately, on most
architectures GCC cannot use more than one regis-
ter for this purpose; so in addition to always keeping
one stack item in a register, Gforth 0.7.0 can now
also keep no stack item in a register, and switch be-
tween these two states to minimize the work needed.
In theory this improves the performance for se-



Ertl Gforth Performance

quences like ! 5, but as we can see, for most ar-
chitectures (except PPC and PPC64) there is no
speedup in application benchmarks.

On PPC and PPC64, GCC can use enough reg-
isters for keeping up to 8 stack items in registers,
and up to 3 registers are useful [EG05], and that’s
what Gforth 0.7.0 uses on these architectures; static
stack caching provides a speedup then. We suspect
that there are also enough registers usable on IA64
and SPARC, but have not tested this.

3.3 Architectures and machines

We can also look at Fig. 3 to compare architectures
and machines.

If you look for the best-performing system for
running Gforth, the Xeon 5450 performs best per
cycle among the machines we tested. In addition,
it also has the highest clock rate, so it has the best
absolute performance.

Another interesting question is whether to use
64-bit (AMD64, PPC64) or 32-bit (IA32, PPC) bi-
naries of Gforth if you do not need 64-bit cells.
In theory there is a speed advantage on AMD64
over IA32, because AMD64 has more registers avail-
able; unfortunately GCC makes no productive use
of these registers when compiling Gforth; perfor-
mance disadvantages of the 64-bit versions are the
doubled memory requirement for all cells, including
the threaded code, resulting in more cache misses;
also, on the Xeon 5450 (and Core 2, but not on
Opteron/Athlon 64), decoding is a little slower in
64-bit mode. On PPC64, there is no register ad-
vantage and no decoding slowdown.

Looking at the results, the 32-bit versions beat
the 64-bit versions. There are some differences be-
tween the benchmarks here: cd16sim and fcp show
the same performance in both architectures on the
Opteron, but on Xeon the 32-bit architecture is a
little faster (probably due to the decoding slow-
down). For benchgc and lexex, the slowdown of the
64-bit version is significant (more than a factor of
1.2). This may be caused by the benchmarks doing
something differently depending on cell size. E.g.,
for benchgc the cell size may change when and how
often garbage collection is called. Or it could be a
result of more cache misses.

For the PPC970, there is a slowdown in the 64-
bit version even for cd16sim and fcp. One reason
for that could be that we had fewer GCC versions
available for PPC64 than for PPC; however, gcc-
4.1 performed well for PPC and was available for
PPC64, so we are not very confident that this ex-
planation is correct. Unfortunately, we don’t have
any other explanation.

Another remarkable thing is how close the per-
formance of the IA32 Opteron is to the IA32
Athlon MP; this confirms that the K8 (Opteron,

gforth

gforth-fast

gforth version

speed PPC 7447A

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 4: Benchmarking vs. debugging engine

Athlon 64) is really mostly a 64-bit variant of the
K7 (Athlon MP, XP).

Another interesting result is that all IA32 and
AMD64 machines beat all the others in performance
per cycle in Gforth 0.7.0; even the Pentium 4, which
has a well-deserved reputation for raising the clock
rate at the cost of lower performance per cycle beats
all the other architectures.

This is probably due to the indirect branch pre-
dictors of these CPUs rather than the architec-
ture itself; and these branch predictors benefit from
dynamic superinstructions with replication. Even
though dynamic superinstructions reduce the num-
ber of executed NEXTs (and thus the number of ex-
ecuted indirect branches) by a factor of more than 3,
there are still a lot of indirect branches executed,
and they cost a lot unless correctly predicted.

You can see this effect especially well by look-
ing at the PPC7447A line and comparing it to
the IA32 lines. In Gforth 0.5.0 and 0.6.1nd,
it is the runner-up machine (after the Xeon) in
performance-per-cycle, but with the enabling of dy-
namic superinstruction and replication, it is passed
by the Opteron and Athlon MP, and the Pentium 4
also comes close. Finally, it is passed by the Pen-
tium 4 with the enabling of explicit register allo-
cation in Gforth 0.7.0 (PPC has enough registers
that GCC performs good register allocation even
without explicit register allocation).



Ertl Gforth Performance

gforth

gforth-fast

gforth version

speed IA32 Xeon 5450

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 5: Benchmarking vs. debugging engine

gforth

gforth-fast

gforth version

speed AMD64 Xeon 5450

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 6: Benchmarking vs. debugging engine

3.4 Gforth-fast vs. gforth

Gforth comes with two engines: the debug-
ging engine gforth and the benchmarking engine
gforth-fast. The debugging engine performs
some actions that cost performance, and it disables
various performance features to allow better error
reporting. How much does this cost, and has it
changed over time, and why?

Figure 4 shows the graph for the PPC7447A.
Already in Gforth 0.5.0, the debugging engine is
slower, because it maintains a copy of the IP and
RP virtual machine registers in memory (to allow
better error reporting on invalid memory accesses
etc.).

Both benefit to a similar amount from switching
from indirect-threaded code to primitive-centric di-
rect threaded code in 0.6.1nd; there is also a change
in the way that IP is maintained that has no obvi-
ously visible effect on the PPC7447A, and is there-
fore explained later for a machine where the effect
is visible.

Gforth-fast benefits a little more from dynamic
superinstructions with replication in 0.6.1, proba-
bly because before it stalled longer waiting for the
branches to resolve (whereas gforth was still busy
maintaining IP and RP). There is no change in
0.6.2ns, as expected.

In 0.6.2, gforth-fast gains static superinstructions
and a corresponding speedup, whereas the debug-
ging engine does not enable static superinstructions
in order to be able to report at which primitive an
exception occured.

Both engines benefit from improvements in
0.7.0ssc (for this machine probably from GCC per-
formance bug workarounds). On this machine
gforth-fast profits from the more sophisticated stack
caching in 0.7.0, whereas this stack caching is dis-
abled in the debugging engine to support better re-
porting of stack underflows.

While the graphs for most other machines can be
explained in a similar way, there are a few interest-
ing deviations:

Figure 5 shows the graph of the IA32 Xeon. For
gforth-0.5.0, IP is maintained in memory by using
a global variable for it, which requires loading it at
every access. Starting from gforth 0.6, IP is kept in
a register, but is stored to memory on every instruc-
tion boundary. This eliminates the loads and also
guarantees that the in-memory IP always points to
a primitive. Apparently the stores alone are very
cheap1, resulting in performance for the debugging
engine from 0.6.1nd to 0.6.2ns that is very close to
the performance of gforth-fast. On other IA32 ma-
chines the performance of the debugging engine is
actually slightly higher for these versions, but we

1Loads alone are also relatively cheap, but round trips

through memory are usually expensive.



Ertl Gforth Performance

have no explanation for that.
Gforth 0.7.0 does not automatically tune the de-

bugging engine to use explicit register allocation (to
make building Gforth more robust and faster), so in
the step from 0.6.2 to 0.7.0ssc we see the speedup
from explicit register allocation in gforth-fast, but
no speedup in gforth.

The slowdown for the debugging engine from
0.6.2 to 0.7.0ssc is due to workarounds for GCC per-
formance bugs. These workarounds do have a cost;
they pay for themselves on many compiler versions,
but on the ones that don’t need them they still cost.

Figure 6 shows the graph of the AMD64 Xeon.
Unlike IA32, we have no classical direct thread-
ing with its cache consistency problems and also no
spilling of SP, so the performance changes very little
from 0.5.0 to 0.6.1nd. In addition, GCC manages
to avoid loading IP from memory in 0.5.0 (resulting
in code like for 0.6.1nd).

Dynamic superinstructions with replication are
disabled in Gforth 0.6 on AMD64, so we see no
speedup from that, and a flat line for the debug-
ging engine until 0.6.2. In 0.7.0ssc one would ex-
pect dynamic superinstructions with replication to
take effect, and they do for gforth-fast, but not for
the debugging engine. The reason is that the debug-
ging engine accesses a global variable (the saved IP)
in every primitive, and on AMD64 global variables
are referenced in a PC-relative way. This makes
each primitive non-relocatable, effectively disabling
dynamic superinstructions with replication for the
debugging engine on AMD64.

3.5 GCC versions

All the graphs until now only showed the perfor-
mance with the best-performing GCC version. Here
we look at how well the different gforth-fast versions
perform on different GCC versions on a few differ-
ent architectures.

Figure 7 shows the graph for the PPC7447A.
Gforth 0.5.0 and 0.6.1nd do not perform any op-
timizations that are broken by newer GCC ver-
sions, so their lines are relatively flat. Gforth 0.6.1–
0.6.2 gain performance by using dynamic superin-
structions with replication and work around GCC
performance bugs up to gcc-3.3, but gcc-3.4 (re-
leased in 2004, i.e., after Gforth 0.6.2) and later
introduced new performance bugs that disable dy-
namic superinstructions in these versions. Gforth-
0.7.0 works around these performance bugs success-
fully, but in doing so apparently falls pray to a gcc-
3.2 performance bug that disables dynamic superin-
structions with replication. The GCC version that
works best across all Gforth versions is gcc-2.95.

Figure 8 shows the graph for the IA32 Xeon.
Again, gcc-2.95 shows the best performance across
the board, and is the only compiler that builds

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache

0.7.0

gcc version

speed PPC 7447A

2.95
3.2

3.3
3.4

4.0
4.1

4.3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 7: Gforth versions on different GCC versions

0.5.0 0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache

0.7.0

gcc version

speed IA32 Xeon 5450

2.95
3.3

3.4
4.0

4.1
4.2

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 8: Gforth versions on different GCC versions



Ertl Gforth Performance

0.5.0

0.6.1 no dynamic0.6.1
0.6.2 no superinst

0.6.2

0.7.0 simple stack cache0.7.0

gcc version

speed AMD64 Xeon 5450

3.3
3.4

4.0.0
4.0

4.1
4.2.0

4.2
4.3

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 9: Gforth versions on different GCC versions

Gforth 0.5.0. Gcc-3.3 gratuitiously changed the
code order, breaking gforth-0.6.1 as a result. We
worked around this problem in 0.6.2.

The workarounds in Gforth-0.6.2 for GCC per-
formance bugs work up to gcc-3.3 and then fail.
Gcc-3.4 is particularly bad in sharing one indirect
branch for all the NEXTs, completely disabling the
branch predictor of the CPU (GCC PR15242); that
bug also causes the slowdown of 0.6.1nd on gcc-3.4.
Gcc-4.0–4.2 fixed this bug, restoring at least a part
of the performance, but the PR15242 problem is
back in gcc-4.4.0, giving us bad performance again.

Gforth 0.7.0 successfully works around the per-
formance bugs having to do with code ordering and
indirect branches in GCC ≤ 4.3, but gcc-4.0 and 4.1
spill important virtual machine registers, hurting
performance. In addition to resurrecting PR15242,
gcc-4.4.0 (released after Gforth-0.7.0) features a
new (or worsening) performance bug that makes
NEXT longer and slower, resulting in the slowdown
shown in the graph. This performance bug uncov-
ered a bug in the implementation of static stack
caching in Gforth 0.7.0 (and that bug is responsible
for there being no result for 0.7.0 with static stack
caching and gcc-4.4.0).

Figure 9 shows the graph for the AMD64 Xeon.
Unfortunately, gcc-2.95 is not available for AMD64.
Gforth ≤ 0.6.2 does not use dynamic superinstruc-
tions with replication on AMD64 anyway, so the
lines for these Gforth versions run mostly in par-
allel, reflecting the presence of PR15242 in gcc-3.4

and 4.4.0, and their absence in the other version,
with one exception: gcc-4.3 exhibits the PR15242
problem for gforth-0.5.0, but not for gforth-0.6.x.

Gforth-0.7.0 successfully works around the GCC
bugs that disable dynamic superinstructions with
replication. The cause for the performance varia-
tions between the gcc-4.x versions seems to be a
performance bug that makes NEXT longer (and
slower) in varying amounts between these versions.

4 Future work

This work uncovered some performance issues (in
particular the unnecessarily long NEXT) that we
plan to work around.

In addition, there are some performance ideas
that we plan implement, in particular inlining
[GE04].

Finally, this performance evaluation should be
enhanced by comparing Gforth with other Forth
systems. One challenge here is finding a large
enough set of application benchmarks that run on
all Forth systems.

5 Related work

Instead of working around GCC bugs as we do,
one could also fix GCC. Prokopski and Verbrugge
[PV08] propose a good method for letting GCC
preserve the order of basic blocks and similar as-
sumptions that are helpful for implementing code-
copying optimizations like dynamic superinstruc-
tions. They don’t just disable or restrict optimiza-
tions; they record the basic block order at the start
and then restore it at the end (if possible), or report
an error (if not).

6 Conclusion

The performance of default-compiled Gforth has
improved a lot between Gforth 0.5.0 (2000) and
0.7.0 (2008), typically by a factor of 3.

The most significant factor for that performance
improvement is the introduction of dynamic su-
perinstructions with replication. While that was
relatively easy to implement as a prototype, mak-
ing it work on a wide range of architectures and
GCC versions is a larger effort: First, it requires
a small amount of architecture-specific code; more
significantly, new GCC versions often break this fea-
ture, requiring programming workarounds for these
performance bugs. So while this feature was in-
troduced in Gforth 0.6.x, in many practical cases
(e.g., various Debian packages) it was disabled in
these versions. Gforth 0.7.0 includes a lot of work
to make this feature more widely available.



Ertl Gforth Performance

There are also many other performance features,
but they often only have a small effect (e.g., static
superinstructions) or only on one or a few archi-
tectures (e.g., automatic tuning to enable explicit
register allocation, which helps a lot on IA32). The
combined effect of all these optimizations is quite
significant, though.

Another interesting result is that Gforth has
proven to be very portable, with even the very old
Gforth 0.5.0 running on architectures and being
compiled with compilers that did not exist when
it was released.

References

[EG03a] M. Anton Ertl and David Gregg. Imple-
mentation issues for superinstructions in
Gforth. In EuroForth 2003 Conference
Proceedings, 2003.

[EG03b] M. Anton Ertl and David Gregg. Optimiz-
ing indirect branch prediction accuracy in
virtual machine interpreters. In SIGPLAN
’03 Conference on Programming Language
Design and Implementation, 2003.

[EG04] M. Anton Ertl and David Gregg. Combin-
ing stack caching with dynamic superin-
structions. In Interpreters, Virtual Ma-
chines and Emulators (IVME ’04), pages
7–14, 2004.

[EG05] M. Anton Ertl and David Gregg. Stack
caching in Forth. In 21st EuroForth Con-
ference, pages 6–15, 2005.

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[FW86] Philip J. Fleming and John J. Wallace.
How not to lie with statistics: The cor-
rect way to summarize benchmark results.
Communications of the ACM, 29(3):218–
221, March 1986.

[GE04] David Gregg and M. Anton Ertl. Inlining
in Gforth: Early experiences. In Euro-
Forth 2004 Conference Proceedings, pages
33–40, 2004.

[PR98] Ian Piumarta and Fabio Riccardi. Opti-
mizing direct threaded code by selective
inlining. In SIGPLAN ’98 Conference on
Programming Language Design and Im-
plementation, pages 291–300, 1998.

[PV08] Gregory B. Prokopski and Clark Ver-
brugge. Compiler-guaranteed safety in

code-copying virtual machines. In Com-
piler Construction (CC’08), pages 163–
177. Springer LNCS 4959, 2008.

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction
dispatch techniques for byte-code inter-
preters. Technical Report TKO-C79,
Faculty of Information Technology,
Helsinki University of Technology, May
1996.



Ertl Gforth Performance

A Extra data

A.1 Individual benchmarks

IA64 Itanium II

IA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270

PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321

PPC 970

AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed benchgc

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

IA64 Itanium II
IA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270

PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321

PPC 970

AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed brainless

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

IA64 Itanium IIIA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321
PPC 970

AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed cd16sim

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

IA64 Itanium II

IA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270

PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321

PPC 970

AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed fcp

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1



Ertl Gforth Performance

IA64 Itanium II

IA32 Pentium 4 Northwood

PPC64 PPC970

IA32 Opteron 270

PPC 7447A

IA32 Xeon 5450

IA32 Athlon MP

ARM Xscale IOP80321

PPC 970
AMD64 Opteron 270

AMD64 Xeon 5450

Alpha 21264B

gforth version

speed lexex

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

A.2 Debugging vs. benchmarking

engine

gforth

gforth-fast

gforth version

speed Alpha 21264B

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

gforth

gforth-fast

gforth version

speed IA32 Pentium 4 Northwood

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2



Ertl Gforth Performance

gforth

gforth-fast

gforth version

speed IA32 Athlon MP

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

0.07

gforth

gforth-fast

gforth version

speed IA32 Opteron 270

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.14

0.1

0.07



Ertl Gforth Performance

gforth

gforth-fast

gforth version

speed AMD64 Opteron 270

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

gforth

gforth-fast

gforth version

speed IA64 Itanium II

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

gforth

gforth-fast

gforth version

speed ARM Xscale IOP80321

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

gforth

gforth-fast

gforth version

speed PPC 970

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2



Ertl Gforth Performance

gforth

gforth-fast

gforth version

speed PPC64 PPC970

0.5.0
0.6.1nd

0.6.1
0.6.2ns

0.6.2
0.7.0ssc

0.7.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

A.3 GCC versions

0.5.0

0.6.1 no dynamic
0.6.1
0.6.2 no superinst

0.6.2

0.7.0 simple stack cache0.7.0

gcc version

speed Alpha 21264B

2.95.2
2.95

3.3
3.4

4.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache

0.7.0

gcc version

speed IA32 Pentium 4 Northwood

2.95
3.3

3.4
4.0

4.1
4.2

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache

0.7.0

gcc version

speed IA32 Athlon MP

2.95
3.3

3.4
4.0

4.1
4.2

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2



Ertl Gforth Performance

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache

0.7.0

gcc version

speed IA32 Opteron 270

2.95
3.3

3.4
4.0

4.1
4.2

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0
0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache0.7.0

gcc version

speed AMD64 Opteron 270

3.3
3.4

4.0.0
4.0

4.1
4.2.0

4.2
4.3

4.4.0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0
0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache0.7.0

gcc version

speed IA64 Itanium II

3.4
4.1

4.2
4.3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache0.7.0

gcc version

speed ARM Xscale IOP80321

3.3
4.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2



Ertl Gforth Performance

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache
0.7.0

gcc version

speed PPC 970

2.95
3.2

3.3
3.4

4.0
4.1

4.3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.5.0

0.6.1 no dynamic0.6.10.6.2 no superinst

0.6.2

0.7.0 simple stack cache
0.7.0

gcc version

speed PPC64 PPC970

3.4
4.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

A.4 Forth systems

speed IA32 Opteron 270

5.6

4

2.8

2

1.4

1

0.7

0.5

0.3

0.2

iforth
bigforth
gforth
vfxlin
spf4

benchgc4
brainless

brew
cd16sim

fcp
lexex


