
ABI-CODE: Increasing the portability of assembly language words

M. Anton Ertl∗

TU Wien

David Kühling

Abstract

Codewords are not portable between Forth systems,
even on the same architecture; worse, in the case
of Gforth, they are not even portable between dif-
ferent engines nor between different installations.
We propose a new mechanism for interfacing to as-
sembly code: abi-code words are written to com-
ply with the calling conventions (ABI) of the tar-
get platform, which does not change between Forth
systems. In the trade-off between performance and
portability, abi-code provides a new option be-
tween code words and colon definitions. Compared
to code words, the abi-code mechanism incurs an
overhead of 16 instructions on AMD64. Compared
to colon definitions, we achieved a speedup by a fac-
tor of 1.27 on an application by rewriting one short
colon definition as an abi-code word.

1 Introduction

Code words are not portable between Forth sys-
tems, even between Forth systems running on the
same architecture1. The main reason for that is
that there are no standard registers for the stack
pointers.

For Gforth2, the situation is even worse: Be-
cause it uses GCC to build its inner interpreter,
and GCC decides the register allocation on its own,
code words are not even portable between Gforth
installations3 and engines (in particular, not be-
tween gforth and gforth-fast).

In this paper, we describe the new abi-code fa-
cility of Gforth that allows writing code in assembly

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1We will use this notion of portability between Forth sys-
tems running on the same architecture in the rest of this
paper.

2Gforth is a fast and portable Forth implementation. It
achieves portability by for creating the machine code of the
primitives with a C compiler.

3In particular, Gforth 0.6.2 compiled with one ver-
sion of GCC is not necessarily compatible with the same
Gforth version compiled with another version of GCC;
also, Gforth 0.6.2 configured with explicit register allocation
(--enable-force-reg) is not necessarily compatible with the
same Gforth version configured without this option. These
problems should be less frequent in Gforth 0.7.0, because
there explicit register allocation is tried by default.

language that is portable between different Gforth
installations and engines. If other Forth systems
implement this facility, too, it could enable port-
ing assembly language code to other Forth systems
running on the same platform.

2 Basic Idea

2.1 abi-code

Abi-code words are called according to the calling
convention of the platform, passing and returning
the stack pointers through parameters. The calling
convention is usually described in the application
binary interface (ABI) documentation of the plat-
form, leading to the name abi-code.

The data-stack pointer is passed as first parame-
ter, and is returned as result. An address to a mem-
ory cell containing the FP-stack pointer is passed as
second parameter, and the FP-stack pointer is re-
turned by storing the changed value in this memory
cell; if the FP stack is not accessed, the second pa-
rameter can be ignored. In C terms, an abi-code

word has the following prototype:

Cell *word(Cell *sp, Float **fp_pointer)

The stack layout and the sizes of the stack items
are also relevant: In Gforth both data and FP stack
grow towards lower addresses, and the sizes of the
items on the stack are the same as in memory (i.e.,
1 cells and 1 floats).

Here is an example of using abi-code on Linux-
AMD644:

abi-code my+ (n1 n2 -- n3)

\ SP passed in rdi, returned in rax

lea rax,[rdi+8] \ new sp in result reg

mov rdx,[rdi] \ get old tos

add [rax],rdx \ add to new tos

ret \ return from my+

end-code

To make our examples easier to read, we present
them in Intel syntax (destination first) rather than
the syntax of the Gforth assembler. You can find
a version of this example in Gforth syntax (so you

4Unfortunately, Windows uses a different convention on
AMD64

Ertl, Kühling ABI-CODE

can try it out) in the Gforth manual (development
version5).

Most calling conventions pass the parameters in
registers, but IA-32 calling conventions usually pass
them on the architectural stack, and therefore re-
quire slightly more overhead:

abi-code my+

mov eax,4[esp] \ sp in result reg

mov ecx,[eax] \ tos

add eax,#4 \ update sp (pop)

add [eax],ecx \ sec = sec+tos

ret \ return from my+

end-code

And here is an example of an FP abi-code word
on Linux-AMD64:

abi-code my-f+

mov rdx,[rsi] \ load fp

fld qword ptr[rdx] \ r2

add rdx, 8 \ update fp

fadd qword ptr[rdx] \ r1+r2

fstp qword ptr[rdx] \ store r

mov [rsi],rdx \ store new fp

mov rax,rdi \ sp in result reg

ret \ return from my-f+

end-code

Here we have some extra overhead, because the
FP stack pointer fp is passed in and out in a mem-
ory location; also, here we do not need to update
the data stack pointer sp, so moving sp to the result
register requires a separate instruction.

Unlike ordinary code words, abi-code words
need a special routine to invoke them out of a
threaded-code inner interpreter. The definition
of abi-code in gforth-fast on Linux-AMD64 is
equivalent to the following:

: abi-code ("name" --)

create also assembler

;code (... -- ...)

\ doabicode routine

mov [r15],r14 \ 1)store TOS to memory

mov rdi,r15 \ 2)sp to 1st arg reg

movsd [r12],xmm8 \ 1)store FP TOS

lea rax,[r9+10H] \ 3)body of name

mov [rsp+6b0H],r12 \ 2)store fp in memory

lea rsi,[rsp+6b0H] \ 2)2nd arg: fp address

call rax \ 4)call name’s body

mov rdx,[rsp+6b0H] \ 2)load fp

mov r14,[rax] \ 1)load TOS

mov r15,rax \ 2)copy sp to sp reg

movsd xmm8,[rdx] \ 1)load FP TOS

mov r12,rdx \ 2)copy fp to fp reg

NEXT \ 5)threaded dispatch

end-code

my-value
header

code field
threaded

code
native
code

do;abicode

5

code field

foo
header

Figure 1: Code field layout for ;abi-code-defined
words

The doabicode routine consists of the following
components (the numbers in the comments above
refer to the component numbers):

1. Saving the tops of the stacks to memory to
comply with the memory-stack convention of
abi-code words; and loading the tops of the
stacks back into registers afterwards. This is
needed because gforth-fast keeps the tops of
both the data stack and the FP stack in regis-
ters (r14 and xmm8).

2. The FP stack pointer is stored in memory, and
argument registers are set up. And after the
call the new stack pointers are moved to the
registers of sp (r15) and fp (r12).

3. The address of the called routine is computed
(it starts at the body address, which is com-
puted by adding 2 cells (10H) to the CFA in
r9.

4. The actual call.

5. Invoke the next primitive (NEXT).

Gforth also contains a primitive abi-call that
is used for invoking abi-code words (primitive-
centric code [Ert02]6); it has the same components
except that the address of the called routine is
found as immediate argument of the primitive, not
through the CFA.

This overhead will probably be a little lower in
native-code compilers, but most of the components
will be there too.

5http://www.complang.tuwien.ac.at/forth/gforth/

cvs-public/
6In primitive-centric threaded code every non-primitive

(colon definition, constant, etc., and abi-code words) is com-
piled to a primitive followed by an immediate argument.

Ertl, Kühling ABI-CODE

2.2 ;abi-code

;abi-code is to ;code what abi-code is to code.
The routine after ;abi-code is passed a third pa-
rameter: the body address of the word for which
the routine provides the behaviour. In C terms, the
routine has the following prototype:

Cell *word(Cell *sp, Float **fp_pointer,

char *body)

Here is an example of using ;abi-code on Linux-
AMD64:

: my-value (w "name" --)

create ,

;abi-code (-- w)

\ sp in rdi, address of fp in rsi

\ body address in rdx, temp reg: rcx

lea rax,[rdi-0x8] \ new sp in return reg

mov rcx,[rdx] \ load value from body

mov [rax],rcx \ store value on stack

ret

end-code

5 my-value foo

Unlike for ;code routines, we cannot use the start
address of this routine as code address in the CFA
of an indirect-threaded Forth. Instead, we have
to use a solution like the one we use for does>-
defined words: The code address points to a rou-
tine do;abicode that calls ;abi-code routines. It
finds the address of the routine to call in the cell
right after the CFA (see Fig. 1). Gforth has two
cells for the xt field, the second being used for
does>-defined and ;abi-code-defined words. The
do;abicode routine and the ;abi-code-execprim-
itive contains components similar to the doabicode
routine shown above.

3 Discussion

3.1 Compared to code

The main disadvantage of abi-code words com-
pared to code words is that they have additional
calling overhead. We will look at the performance
difference resulting from this overhead in Section 4.

The advantage of the abi-code approach is that
it provides a simple and stable interface.

For programmers the advantage of that stability
is that their assembly language words are portable
between Gforth engines (gforth, gforth-fast,
gforth-itc), and portable across installations (in
particular, indepedent of the GCC version used). If
abi-codewas implemented by other Forth systems,
abi-code words could be written to be portable
across systems.

For the system implementor, the advantage of the
stable interface is that the system is not tied to us-
ing the same register assignments internally forever.
It can change, e.g., the number of stack items in
registers, or move the data stack pointer to a differ-
ent register if that results in faster code on a new
processor.

The simplicity helps programmers by not having
to learn and remember top-of-stack registers that
the system may use internally; and it helps the sys-
tem implementor by not having to teach that to
programmers. Indeed, Mitch Bradley once com-
mented that he went back from keeping the TOS
in a register to keeping all stack items in memory
in order to provide a simpler interface to the users.
Abi-code provides the same benefit at a lower cost:
we pay the additional overhead only when executing
an abi-code word, not in the whole system.

3.2 Why use the ABI?

Why did we choose to use the ABI? Couldn’t the
same benefits not be achieved with another ap-
proach?

The major reason we chose to use the ABI is that
it is easy to get GCC to generate an ABI call. There
are some other benefits, however:

• We can use this facility to call functions written
in non-assembly languages that conform to the
ABI; these functions would have to be writ-
ten to access the stacks, though. Indeed, we
will probably modify the implementation of the
libcc C interface [Ert07] to use this mechanism
rather than the less refined calling mechanism
it uses now.

• For each platform, the ABI is already given, so
the system implementor does not need to de-
cide what the interface should be. As long as
there is only one system involved, this is not
a particular advantage, but as soon as several
systems implement a common interface, they
would have to standardize on a common in-
terface for each platform they support, and as
anybody witnessing a standards process knows,
that tends to be rather time-consuming. And
that’s the best case; instead, each vendor might
go their own way on a new platform, so the
advantage of a common interface would disap-
pear.

There is also a disadvantage to using the ABI:
ABIs often require passing the stack pointers in
ways that are suboptimal. E.g., in our AMD64
example, the data stack pointer is passed in in a
different register than it is passed out, and on IA-
32 it is even passed in through memory; and the
limitations of common ABIs have led us to pass the

Ertl, Kühling ABI-CODE

FP stack pointer through memory in any case (see
Section 3.4).

3.3 Alternatives

An alternative would be to have conventional code
words, but supply macros that switch from the sys-
tem’s register-and-stack setup to a fixed register
setup and back, just like the NEXT macro invokes the
next word, whether the system is direct-threaded,
indirect-threaded or subroutine-threaded.

In terms of overhead for a given interface this ap-
proach would save relatively little compared to an
abi-code-like implementation: Only the computa-
tion of the call target, the call itself and the return
would be eliminated.

One reason why we did not choose this approach
is that we have no good way to get the register
allocation for Gforth’s engines out of GCC and into
these macros; in contrast, with abi-codeGCC does
the setup of the call and the restoration for us.

Similarly, we could use code words, but abstract
away from the concrete register allocation of a Forth
system and the concrete implementration of the
stack by providing macros for accessing the stacks
and/or for the logical registers (e.g., stack pointers,
temporary registers); if several systems implement
the same macros, code may be portable between
them even if their register allocation differs.

A problem with this approach is that some sys-
tems keep the top-of-stack in a register and others
in memory. On most architectures you cannot use
a memory access wherever you can use a register,
so it would be tricky to set up the macros such that
they can be implemented on all systems. More-
over, we again cannot use this approach for Gforth,
because we have no automatic way to get the ac-
tual register allocation out of GCC and into these
macros. And, to achieve true portability, Forth ven-
dors would have to agree on the macros (and these
may be architecture-specific, e.g., how many tem-
porary registers are usable by code words), whereas
someone else has already standardized the ABI.

Another approach that might be implementable
in Gforth would be to do the setup and call in C
code with asm() statements. This would allow us to
use an arbitrary interface, not limited by the ABI.

A problem of this approach is that there is no
guarantee that GCC plays along; it could run into
a situation where it cannot allocate registers and
would then fail to build Gforth. Or it could pro-
duce an abysmal register allocation that slows down
Gforth significantly (that actually happens often
enough without us playing such games).

The benefit of this approach over abi-codewords
does not appear to be big enough to merit the effort
of implementing it.

3.4 What parameters and how to

pass them

Gforth has four stacks visible to the engine: data,
return, FP, and locals stack. Moreover, there is the
instruction pointer (IP). Which of these pointers
should be passed to the called word?

We decided to pass only the data and FP stack
pointers (sp and fp), because these are the stacks
normally used for dealing with general-purpose and
floating-point data. The other stacks and IP are
typically used for implementing Forth-system inter-
nal stuff like control flow or locals. Most users of
abi-codewill probably not want to implement such
words; passing and returning them would increase
the cost of executing every abi-code word, so we
decided not to pass them.

How do we pass these two stack pointers and how
do we return them? At first we passed sp and fp as
parameters, and returned them in a struct, leading
to the following prototype:

struct ac_ret {Cell *sp; Float *fp;};

struct ac_ret word(Cell *sp, Float *fp);

However, when we looked at the generated code,
we found that this is implemented inefficiently on
most platforms: The calling convention on most
platforms returns a struct by storing it to memory
before returning and loading it from memory in the
caller (pcc calling convention). So, with two stack
pointers in the struct this costs two stores and two
loads. And, what’s more, the programmer would
have to write these stores and have to deal with the
target address for this struct.

There is at least one platform (Linux-AMD64),
where the standard calling convention passes small
structs in registers, and on such platforms this could
be the most efficient way of passing the stack point-
ers, but unfortunately GCC generates inefficient
code (redundant stores) even on that platform.

So overall, while this could be an efficient method,
in practice it isn’t. And on most platforms it is
cumbersome to use.

Therefore, we decided to switch to the currently-
used way to pass the stack pointers:

Cell *word(Cell *sp, Float **fp_pointer);

The downside here is that fp is passed and re-
turned in a cumbersome way; but at worst this leads
to as many loads and stores as returning a struct
on platforms with the pcc calling convention, and
in most cases (no FP stack access, or unchanged FP
stack depth) it will have fewer loads and/or stores.
This approach is also easier to learn and to use for
programmers, especially for words that don’t access
the FP stack.

We also considered several other approaches, but
did not implement them:

Ertl, Kühling ABI-CODE

• Put both pointers in memory and pass pointers
to them; as a variation, put them in a struc-
ture in memory and pass one pointer to that.
The main advantage would be that both stack
pointers would be passed in the same way, lead-
ing to a cleaner interface. The disadvantage is
that this approach is less efficient and requires
more loads (and usually stores) than our cho-
sen approach.

• Another, mostly orthogonal option would be to
have different words for different usages: E.g.,
we could have abi-code-sp, where only sp is
passed and returned (avoiding the overhead of
storing fp to memory and loading it back); and
maybe abi-code-fp, where only fp is passed
and returned (in the same way that sp is passed
now). This would increase the efficiency, but it
would also increase the complexity, implemen-
tation and documentation effort of the inter-
face, so we decided not to take this approach
for now.

• A reviewer suggested passing the word’s ar-
guments and returning the result directly as
defined in the calling convention, rather than
through the Forth stack. The called routine
could then also be called from C in the fa-
miliar way without having to set up a mem-
ory area for the stack and passing a pointer to
that. This would require generating a wrap-
per that automatically translates between the
Forth arrangement and the calling convention.
We have done such a thing for calling C func-
tions in the libcc C interface [Ert07], and this
approach could also be used here.

But we don’t think that this would be very
useful, for the following reasons: 1) In a C in-
terface we usually want to call pre-existing C
routines, whereas here the typical usage will
be to write new assembly code for this spe-
cific problem, so the exact kind of parame-
ter passing convention does not make a big
difference. 2) Most calling conventions pro-
vide no good way to pass back several re-
sults. 3) The wrapper would probably incur
extra overhead; e.g., transferring the parame-
ters from the Forth stack to the C stack on
IA-32, where it is just as hard to access. 4)
One could not implement words such as roll

with such a mechanism.

For ;abi-code, we have to pass the body address
of the child word in addition to sp and fp. We just
pass it as extra parameter.

3.5 Other Forth systems

Abi-code solves a problem of Gforth. Would there
be a benefit to implementing abi-code in other
Forth systems? Yes:

• Code using abi-code would be portable be-
tween Forth systems (on the same platform),
unlike code using code. This could also be
achieved by agreeing on a standard interface
to code words for each platform, but reach-
ing such an agreement can be a long and ardu-
ous process. For the ABI somebody else went
through that process, so if we use that, we save
ourselves that effort. As for the disadvantages,
using the ABI leads to more overhead when
executing abi-code words. What’s worse, on
some architectures there are different ABIs for
different operating systems, so abi-codewords
do not necessarily port to other operating sys-
tems, even on the same architecture and Forth
system, unlike code words on most systems.

• The infrastructure used for implementing
abi-code can also be used for calling functions
in other languages that use the ABI. However,
most systems already have a more convenient
C interface that does not require the called
function to access Forth stacks. Still, given
that these Forth systems implement the ABI
for the C interface, it should be easy to imple-
ment abi-code on them.

There are additional requirements to make code
portable across Forth systems: The stacks have to
grow in the same direction in the systems (in Gforth
all stacks grow downwards).7 And the stack items
have to have the same size and format; that’s not
a problem for cells, but different Forth systems use
different FP formats/sizes on IA-32 (64-bit vs. 80-
bit floats).

4 Performance

4.1 Benchmarks

The benchmarks are written for Gforth. We
measure both gforth-fast --no-dynamic (direct
threaded code) as well as the default gforth-fast
(with various optimizations). Other systems use
different implementation techniques, with different
effects on performance, so take these results with a
grain of salt.

We compare different ways to implement 1+. This
word is so short that its cost is relatively minor com-
pared to the overheads of the various implementa-
tion techniques, so the overheads should dominate.

7We could get around that requirement by having macros
for accessing the stack at a certain depth.

Ertl, Kühling ABI-CODE

Also, we can implement 1+ both as simple words,
or through defining words. We complement this
micro-benchmark with a result from an application
(Section 4.4).

We compare four different ways of defining simple
words:

primitive Primitives come with Gforth, and
Gforth knows quite a bit about them, in par-
ticular, how to use them in dynamic superin-
structions [RS96, PR98, EG03a]. And Gforth
can also perform other optimizations on them
[Ert02, EG04, EG05]. These optimizations do
not include combining a sequence of 1+ ...

1+ into n +, however.

code-def A code definition. Gforth knows very
little about such words, so these are executed
as direct-threaded code.

abi-code-def Abi-code definitions are usually ex-
ecuted through a primitive abi-call; all
Gforth optimizations can be applied to this
primitive, but the called routine is executed as-
is.

colon-def A simple colon definition. Gforth does
not perform inlining (yet). Colon definitions
are invoked through the primitive call. But
gforth-fast optimizes the body of the colon
definition with a static superinstruction [Ert02]
for the sequence lit +.

We also compare the corresponding four ways of
defining 1+ through defining words:

field-def Using the built-in field definition word
+field; children of this word are compiled to
a primitive lit+, which has all the usual opti-
mizations applied. This primitive uses a literal
constant in the threaded code, so it has a little
more overhead than the primitive 1+.

;code-def To maintain the primitive-centric code
[Ert02] in Gforth, the child of such a word can-
not be compiled directly to threaded code like
code-def. Therefore Gforth uses a primitive
lit-execute to invoke it, adding some over-
head; in particular, there is an additional in-
direct branch (from the primitive to the code
after ;code). Moreover, the other indirect
branch will always be mispredicted in some of
our benchmark setups: those where we use dy-
namic superinstructions and run on CPUs with
BTBs.

;abi-code-def Children of a ;abi-code word are
executed through a primitive ;abi-code-exec

similar to abi-call.

’ 1+ alias primitive

\ add rbx,0x8 \ increment IP

\ add r14,0x1 \ increment TOS (gcc way)

\ next primitive or NEXT

code code-def

add rbx,0x8 \ increment IP

inc r14 \ increment TOS

jmp [rbx-0x8] \ NEXT

end-code

abi-code abi-code-def

\ ABI: SP passed in rdi, returned in rax

mov rax,rdi \ sp into return reg

inc QWORD PTR[rdi] \ increment TOS

ret

end-code

: colon-def 1 + ;

\ indirect definitions through defining a

\ defining word

1 0 +field field-def drop

\ add r14,[r9+0x10] \ >body @ +

\ add rbx,0x8 \ increment IP

\ NEXT

: my-field1 (n --)

create ,

;code (n1 -- n2)

\ sp=r15, tos=r14, ip=rbx, cfa=r9

add rbx,0x8 \ increment IP

add r14,[r9+0x10] \ >body @ +

jmp [rbx-0x8] \ NEXT

end-code

1 my-field1 ;code-def

: my-field2 (n --)

create ,

;abi-code (n1 -- n2)

\ sp in rdi, returned in rax,

\ addr of fp in rsi, body address in rdx

mov rcx,[rdx] \ fetch increment from body

mov rax,rdi \ sp into return reg

add [rdi],rcx \ add increment to TOS

ret

end-code

1 my-field2 ;abi-code-def

: my-field3 (n --)

create ,

does> (n1 -- n2)

@ + ;

1 my-field3 does>-def

Figure 2: Benchmark definitions (Intel syntax for
assembly)

Ertl, Kühling ABI-CODE

does>-def Children of does> words are compiled
to be invoked using the primitive does-exec

(which is similar to a sequence of lit and
call).

Figure 2 shows the definitions of these words for
the Linux-AMD64 platform.

The benchmark consists of a loop that contains a
sequence of these implementations of 1+. We mea-
sure a loop with a sequence of 23 1+s, and subtract
the time for a loop with 3 1+s. This gives the time
for executing 20 1+s without the loop overhead or
startup effects. Note that these micro-benchmarks
are unrealistic in their branching behaviour and
therefore give unrealistic branch prediction results.

4.2 Machines

The performance of these benchmarks is influenced
strongly by how well indirect branches are predicted
and by the cost of mispredictions when they hap-
pen. Therefore we measure the performance on two
different CPUs:

Athlon 64 X2 4400+ This processor has a
branch target buffer (BTB), which predicts
(to the first order) that each indirect branch
jumps where it jumped to the last time it
was performed. The misprediction penalty is
around 12 cycles.

Core 2 Duo E8400 This processor has a history-
based indirect-branch predictor that is usually
more accurate than a branch target buffer. The
misprediction penalty is around 12 cycles.

All of these CPUs implement a return stack, so
the returns at the end of abi-code words are pre-
dicted correctly.

We also vary the options used with the
gforth-fast engine:

no-dynamic This is direct-threaded code.

default All optimizations are on. In particu-
lar, dynamic superinstructions benefits ev-
erything except code-def and ;code-def;
static superinstructions benefit colon-def;
and static stack caching benefits abi-code-def
and ;abi-code-def.

4.3 Results

Figure 3 shows the results for direct-threaded code,
and Fig. 4 shows the results for optimized code.
For both machines, we show instructions, some data
about branches and branch mispredictions, and cy-
cles. The metric we actually care about on a par-
ticular platform is the cycles, but the other metrics
are also interesting, because they help explain the

cycle counts that we see, and can help understand
what performance to expect on other machines or
for other benchmark settings.

For cycles and instructions, the count per ex-
ecuted word (implementation of 1+) is shown;
branches and branch mispredictions are scaled up
by a factor of 10, for two reasons: to make their
size better visible; and to reflect the approximate
cost of branch mispredictions in cycles.

Cycles and Instructions

The instruction counts are the same between the
machines, because the same binaries are executed
on both machines.

For threaded code (Fig. 3), we see that the prim-
itive has a similar cyle and instruction counts as
code-def; actually, the instruction count and cycle
count is slightly better for the hand-written code
word compared to the gcc-generated primitive.

Executing the abi-code word is more expensive
by 13 instructions and 8–9 cycles; for the optimized
code, the difference is 11 instructions and 4–7 cy-
cles. This means that one will still use code words
where their portability disadvantage is acceptable
and the number of dynamically executed instruc-
tions in the word is relatively small on average (sev-
eral dozen instructions or less).

The colon definition performs a similar number of
instructions (and cycles) as the abi-code word for
this micro-benchmark, but that’s because 1+ is such
a tiny word. For words with more functionality, a
colon definition in a threaded-code Forth will re-
quire more instructions (and cycles) compared to a
primitive or code word by a factor of 5-10 in many
cases, whereas the abi-code word will only have
the same 11–13 instructions of overhead as for this
benchmark, not an overhead proportional to the
functionality.

The instruction counts for field-def,
;code-def, ;abi-code-def, and does>-def

are slightly higher than for the corresponding sim-
ple words (they fetch the increment from memory),
but are otherwise similar to their corresponding
simple words.

Branches and Mispredictions

Branch mispredictions have a strong influence on
the cycle count, and the mispredictions in these
micro-benchmarks are not representative of typical
applications, so we have measured the number of
branches and branch mispredictions, and present
the results here.

For the branches, the Core 2 can count indi-
rect branches (and their mispredictions), whereas
the Athlon 64 can count taken branches (and
their mispredictions). For these benchmarks, both

Ertl, Kühling ABI-CODE

primitive
code-def
abi-code-def
colon-def

field-def
;code-def
;abi-code-def
does>-def

core2

instructions

athlon64 core2

indirect/taken branches *10

athlon64 core2

mispredictions *10

athlon64 core2

cycles

athlon64

/word gforth-fast --no-dynamic

0

10

20

30

Figure 3: Performance results for gforth-fast --no-dynamic (direct threaded code)

primitive
code-def
abi-code-def
colon-def

field-def
;code-def
;abi-code-def
does>-def

core2

instructions

athlon64 core2

indirect/taken branches *10

athlon64 core2

mispredictions *10

athlon64 core2

cycles

athlon64

/word gforth-fast

0

10

20

30

Figure 4: Performance results for gforth-fast default (with optimizations)

measurements result in the same branch counts
in most cases, except for the abi-code-def and
;abi-code-def cases: There the ret from the
called word is counted as taken branch by the
Athlon 64, but not as indirect branch by the Core 2.
These returns are always predicted correctly by the
return stack on both CPUs, so this difference does
not affect the misprediction counts. The mispre-
dictions differ between the CPUs, because they use
different branch predictors.

Does the number of mispredictions differ system-
atically between code words and abi-code words?

One difference is that code words cannot use
the dynamic superinstruction optimization used for
Gforth primitives, typically leading to more mis-
predictions than for primitives (but only partially
in our micro-benchmark). For abi-code words,
dynamic superinstructions can be applied to the
abi-call primitive; and the indirect call inside
this primitive will be well predictable using BTBs
and more sophisticated predictors, because each in-
stance of abi-call will always call the same code.

Even for this micro-benchmark the Core 2 be-
haves mostly as expected (for the optimizing

Ertl, Kühling ABI-CODE

Gforth, see Fig. 4): The branch prediction accu-
racy is worse for code-def than for abi-code-def,
resulting in a similar cycle count for both of these
words.

For threaded code the situation is different:
There primitives, code, and abi-code words all
have to perform an indirect branch at the end of
the word, and that branch will often (≈ 50% with
a BTB) be mispredicted in real applications. More-
over, because there is only one replica of abi-call
in a threaded-code system, the indirect call inside
abi-call will also often be mispredicted if different
abi-code words are used in the inner loop.

You may notice that the branch prediction ac-
curacy on the Athlon 64 is better on this micro-
benchmark for threaded code than for the opti-
mized version. That is an artifact of this micro-
benchmark; real-world code behaves differently
[EG03b, EG03a].

4.4 Application performance

In a Mandelbrot set calculation program we re-
placed a short colon definition (7 words, straight-
line code), with an abi-code word containing 11
MIPS instructions8. This resulted in a speedup
by a factor of 1.27 on a 336MHz Ingenic XBurst
Jz4720 running gforth-fast --dynamic. How-
ever, as with code words, this approach is only cost-
effective if a significant part of the run-time is spent
in one or a few words.

5 Related work

The classical Forth way to define words in assembly
language is code...end-code. It has the disadvan-
tage of being system-specific, or worse, in the case
of Gforth, installation-specific.

Modern Forth systems also provide a C interface.
The main use of this interface is to call libraries
that have been developed independently, but it can
also be used to call C functions written specifically
for a Forth application; and it can be used to call
such functions written in assembly language. How-
ever, these functions usually have to be compiled
or assembled separately before loading the Forth
system9, in contrast to defining words in assembly
language at the appropriate places in a Forth source
file with abi-code and code.

New Micros’ Max-Forth for the 68hc11 has a word
called code-sub where the definitions have to end
with an rts (return from subroutine) rather than

8http://mosquito.dyndns.tv/freesvn/trunk/

nanonote/forth/mandelbr.fs
9Exception: Bernd Paysan used Gforth’s libcc interface

to generate the C code from Forth code upon loading, and
that C code is compiled and linked right away.

a jmp next [Dum]. This avoids the need to hard-
code the address of next and therefore increases the
portability of hand-assembled machine code (there
was not enough space for a Forth assembler). The
implementation uses a run-time routine like Gforth
does, but which is less elaborate than doabicode

(no adjustment to an ABI necessary).
Looking beyond Forth, the Java Native Interface

(JNI) [Lia99] shares a number of similarities with
abi-code. It allows Java to call functions through
an interface based on the calling conventions (ABI)
combined with additional conventions. The called
functions are portable across Java VM implemen-
tations, and even across platforms, if written in a
portable language like C. There are also differences:
JNI functions are compiled separately, and they are
usually not written in assembly language.

6 Conclusion

Abi-code allows programmers to write assembly
language words that work across Gforth engines
and versions. If other Forth systems implement
abi-code, too, they work even across Forth sys-
tems.

These words use the standard calling convention
(ABI) of the platform, so they are easy to imple-
ment in Forth systems that are implemented with
the help of a C compiler (like Gforth).

The price we pay for these advantages is an over-
head of 11–13 instructions on AMD64 (4–9 cycles on
current implementations) when invoking abi-code

words. However, compared to colon definitions
abi-code words can provide quite a bit of speedup
(a factor of 1.27 by replacing one colon definition
in one example application), at the cost of being
architecture-specific. So abi-code provides a new
option between colon definitions and code words in
the tradeoff between performance and portability.

Acknowledgments

We thank the anonymous reviewers for their com-
ments and suggestions, which helped improve the
paper.

References

[Dum] Randy M. Dumse. User Manual Max-
FORTH. New Micros.

[EG03a] M. Anton Ertl and David Gregg. Op-
timizing indirect branch prediction ac-
curacy in virtual machine interpreters.
In SIGPLAN Conference on Program-
ming Language Design and Implementa-
tion (PLDI’03), 2003.

Ertl, Kühling ABI-CODE

[EG03b] M. Anton Ertl and David Gregg. The
structure and performance of Efficient in-
terpreters. The Journal of Instruction-
Level Parallelism, 5, November 2003.
http://www.jilp.org/vol5/.

[EG04] M. Anton Ertl and David Gregg. Combin-
ing stack caching with dynamic superin-
structions. In Interpreters, Virtual Ma-
chines and Emulators (IVME ’04), pages
7–14, 2004.

[EG05] M. Anton Ertl and David Gregg. Stack
caching in Forth. In M. Anton Ertl, edi-
tor, 21st EuroForth Conference, pages 6–
15, 2005.

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[Ert07] M. Anton Ertl. Gforth’s libcc C function
call interface. In M. Anton Ertl, editor,
23rd EuroForth Conference, pages 7–11,
2007.

[Lia99] Sheng Liang. Java Native Interface:
Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[PR98] Ian Piumarta and Fabio Riccardi. Opti-
mizing direct threaded code by selective
inlining. In SIGPLAN ’98 Conference on
Programming Language Design and Im-
plementation, pages 291–300, 1998.

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction
dispatch techniques for byte-code inter-
preters. Technical Report TKO-C79,
Faculty of Information Technology,
Helsinki University of Technology, May
1996.

