
Forth concurrency for the 21st century

Andrew Haley

Where are we?

Moore's law has not been cancelled: every 18 months, the number

of transistors per unit area doubles

However, clock speeds have not been increasing for several

years, and if anything have got slightly slower

Performance can still be increased with new pipeline and cache

designs, but not by much.

There seems to be a 4 GHz barrier

Where are we going?

Shared-memory multiprocessors are the dominant technology for

servers and desktops

Today we have four cores per die

According to Moore's law, in ten years we'll have 100 cores per

die

But they may not be very much faster than the cores we have

today

We need language support so that normal human beings can

program these beasts

Where were we?

Chuck Moore's Forth multi-tasking design, from early 1970s:

Round-robin scheduler

Non-preemptive

Because of the lack of preemption, this design is very easy to use,

because

You don't have to lock data structures unless there is a PAUSE or

I/O

However

This design doesn't work for shared-memory multiprocessors,

where there are several cores working on the same memory at the

same time

Where are we now?

Almost no concurrency support in the Forth language standard

Some Forths use language support from OS: POSIX threads

GET and RELEASE primitives using mutexes for shared data

structures

Difficult and unreliable to program, and doesn't scale well:

deadlocks, races, etc.

The heart of the problem is that no-one knows how to organize

and maintain large systems that rely on locking

Locks are not composable

Where are we?

Alternatively, lock-free data structures using CompareAndSet

But almost no-one in the world knows how to program them, and

even those few people make mistakes

The principal difficulty is that synchronization primitives such as

CompareAndSet work on only a single word, and this often forces

a complex and unnatural structure on algorithms

Even a lock-free queue is an order of magnitude more complex

Lock-free structures are not composable either

In summary

Locks are hard to manage effectively

CompareAndSet operates on only one word at a time, resulting in

complex algorithms

It is difficult to compose multiple calls to multiple objects into

atomic units

Transactions and Atomicity

Wouldn't it be nice if we could say

begin-atomic

 x @ if x foo then

 true y !

end-atomic

Everything between begin-atomic and end-atomic is in an

uninterruptable transaction – as long as we don't do any I/O

The code in foo also executes as part of this transaction

Programming this model would be just like the “old” Forth round-

robin multitasker

Transactions and Atomicity

In a simple single-core system, begin-atomic and

end-atomic don't have to do anything except ensure that no

task switch occurs

In the case of a round-robin scheduler, they don't have to do

anything at all

Transactional memory

For every atomic block, there are two possibilities

The transaction commits, so its results become visible outside

the atomic block

The transaction aborts, and it leaves the program's state

unchanged

If the Transactional Memory (TM) system detects a collision

between transactions, it aborts one or more of them and re-

executes those that have failed

This process of re-execution is not visible to the program

Types of Transactional Memory system

Consistent and Inconsistent

Inconsistent TMs can lead to e.g. segfaults and exceptions

Fine-grained and coarse-grained

Fine-grained TMs work on cells. Each time a cell in memory

is accessed, the TM makes sure no other transaction has

altered the cell since this transaction began

Coarse-grained TMs work on entire objects in memory, but

Forth has no idea what an object is

TM for Forth must be consistent and fine-grained

Types of Transactional Memory system

Deferred or direct update

In a direct-update TM, writes are done immediately to

memory. The system must record the original value of an

object so that if a transaction has to be aborted it can be

restored

In a deferred-update TM, the system updates an object in a

location private to the transaction, and only writes the real

object when the transaction succeeds

TL2

Dice, Shalev, and Shavit, Transactional Locking II, DISC 2006

The front-running Software Transactional Memory system – IMO

http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.90.811&rep=rep1&type=pdf

TL2

Uses commit-time locking and a global version clock

Fine-grained, consistent, deferred-update

TL2

Uses commit-time locking and a global version clock

Fine-grained, consistent, deferred-update

A global version-clock is incremented once by each transaction

that writes to memory, and is read by all transactions.

Every cell in memory has a corresponding lock that contains a

version number

Transactions start by reading the global version-clock and

validating every location read against this clock

This guarantees that only consistent memory views are ever

read

TL2

Writing transactions maintain a write set. This is the set of

(address,value) pairs to be committed at the end of the

transaction

Writing transactions also maintain a read set. This is the set of

addresses that have been read during the transaction

Writing transactions need a read set but read-only ones do not

TL2

Writing Transactions

Sample the global version-clock

Run through a speculative execution

Lock the write-set

Increment global version-clock

Validate the read-set

Commit and release the locks

TL2

Low-Cost Read-Only Transactions

Sample the global version-clock

Run through a speculative execution

This is very fast

TL2

Low Contention Global version-clock Implementation

Tricky, but works. Read the paper

STM in Forth

Save the top N elements of the data stack (on the return stack)

Execute the transaction

If the transaction committed, throw away the saved stack items

If the transaction aborted, restore the top N elements of the data

stack (from the return stack) and retry the transaction

If the transaction threw an exception, throw away the saved

stack items and re-throw the exception

STM in Forth

 'transaction @ if
 execute // We're already in a transaction

 else

 'transaction !

 10 depth min n>r // Save 10 cells

 begin nr@ drop

 ['] do-transaction catch

 dup retrytx = while

 drop repeat

 throw

 nrdrop

 0 'transaction !

 then

STM in Forth

We only need two new primitives, begin-atomic and
end-atomic

But for good read-only transaction performance, we also want
begin-readonly-atomic

Begin-atomic selects a wordlist that contains transactional

versions of : ; @ !

Partial-word writes such as c! are hard but can be defined by

using transactional @ and !

Don't use words such as cmove in a transaction

Don't do any I/O in a transaction

STM in Forth

STM is going to be the only game in town

Although atomic transactions have been used in databases

forever, Software Transactional Memory is very new. The key

papers only date from a few years ago

Future processors will have hardware support for TM

GCC will soon have STM, but it's going to be a while before it's

in Standard C

STM is not even on Java's radar

The atomic Forth primitives scale beautifully from the smallest

embedded system to the largest multi-CPU server

Forth could be one of the first languages with STM support.

STM in Forth

There is no law that says Forth must be

trailing-edge!

Questions?

