26th EuroForth Conference
September 24-26, 2010

Haus Rissen
Hamburg
Germany

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 26th Euro-
Forth finds us in Hamburg for the first time. The three previous EuroForths
were held in Schloss Dagstuhl, Germany (2007), in Vienna, Austria (2008)
and in Exeter, England (2009). Information on earlier conferences can be
found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track.

For the refereed track, two papers were submitted, and both were ac-
cepted (100% acceptance rate). For more meaningful statistics, I include the
numbers since 2006: 11 submissions, 7 accepts, 64% acceptance rate. Each
paper was sent to at least three program committee members for review,
and they all produced reviews. One refereed paper was co-authored by me
(the primary program committee chair); Ulrich Hoffmann served as acting
program chair for this paper, and these reviews are anonymous for me. The
other paper was co-authored by a program committee member, and the re-
views of that paper are anonymous to him as well. I thank the authors for
their papers, the reviewers for their reviews, and Ulrich Hoffmann for serving
as secondary chair.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. In addition, the printed proceedings
include slides for talks that will be presented at the conference without being
accompanied by a paper and that were submitted in time.

These online proceedings also contain late presentations that were too
late to be included in the printed proceedings. Also, some of the presenta-
tions included in the printed proceedings were updated to reflect the slides
that were actually presented. Workshops and social events complement the
program.

This year’s EuroForth is organized by Klaus Schleisiek and Ulrich Hoff-
mann.

Anton Ertl

Program committee

Sergey N. Baranov, Motorola ZAO, Russia

M. Anton Ertl, TU Wien (chair)

Ulrich Hoffmann, FH Wedel University of Applied Sciences (secondary chair)
Phil Koopman, Carnegie Mellon University

Jaanus Poial, Estonian Information Technology College, Tallinn

Bradford Rodriguez, T-Recursive Technology

Bill Stoddart, University of Teesside

Reuben Thomas, Adsensus Ltd.

Contents

Refereed papers
M. Anton Ertl, David Kiihling: ABI-CODE: Increasing the Portability of As-

sembly Language Words i 5
Campbell Ritchie, Bill Stoddart: A Compiler which Creates Tagged Parse
Trees and Executes them as FORTH Programs 15

Non-refereed papers

S. N. Arhipov, N. J. Nelson: Securing a Windows 7 Public Access System

Using Forth ... 31
James Bowman: J1: A Small Forth CPU Core for FPGAs 43
Manfred Mahlow: Using Glade to Create GTK+ Applications with FORTH
... 47
Presentations

Andrew Haley: Forth Concurrency for the 21st Century 53

Late presentations

Klaus Schleisiek: uCore progress (with remarks on arithmetic overflow) .60
Bernd Paysan: net2o0: vapor — reality L. 64

Late papers
Gerald Wodni, M. Anton Ertl: The Forth Net 68

ABI-CODE: Increasing the portability of assembly language words

M. Anton Ertl*
TU Wien

Abstract

Code words are not portable between Forth systems,
even on the same architecture; worse, in the case
of Gforth, they are not even portable between dif-
ferent engines nor between different installations.
We propose a new mechanism for interfacing to as-
sembly code: abi-code words are written to com-
ply with the calling conventions (ABI) of the tar-
get platform, which does not change between Forth
systems. In the trade-off between performance and
portability, abi-code provides a new option be-
tween code words and colon definitions. Compared
to code words, the abi-code mechanism incurs an
overhead of 16 instructions on AMD64. Compared
to colon definitions, we achieved a speedup by a fac-
tor of 1.27 on an application by rewriting one short
colon definition as an abi-code word.

1 Introduction

Code words are not portable between Forth sys-
tems, even between Forth systems running on the
same architecture!. The main reason for that is
that there are no standard registers for the stack
pointers.

For Gforth?, the situation is even worse: Be-
cause it uses GCC to build its inner interpreter,
and GCC decides the register allocation on its own,
code words are not even portable between Gforth
installations® and engines (in particular, not be-
tween gforth and gforth-fast).

In this paper, we describe the new abi-code fa-
cility of Gforth that allows writing code in assembly

*Correspondence Address: Institut fiir Computer-
sprachen, Technische Universitdt Wien, Argentinierstrafle 8,
A-1040 Wien, Austria; anton@nips.complang.tuwien.ac.at

LWe will use this notion of portability between Forth sys-
tems running on the same architecture in the rest of this
paper.

2Gforth is a fast and portable Forth implementation. It
achieves portability by for creating the machine code of the
primitives with a C compiler.

3In particular, Gforth 0.6.2 compiled with one ver-
sion of GCC is not necessarily compatible with the same
Gforth version compiled with another version of GCC;
also, Gforth 0.6.2 configured with explicit register allocation
(--enable-force-reg) is not necessarily compatible with the
same Gforth version configured without this option. These
problems should be less frequent in Gforth 0.7.0, because
there explicit register allocation is tried by default.

David Kiihling

language that is portable between different Gforth
installations and engines. If other Forth systems
implement this facility, too, it could enable port-
ing assembly language code to other Forth systems
running on the same platform.

2 Basic Idea
2.1

Abi-code words are called according to the calling
convention of the platform, passing and returning
the stack pointers through parameters. The calling
convention is usually described in the application
binary interface (ABI) documentation of the plat-
form, leading to the name abi-code.

The data-stack pointer is passed as first parame-
ter, and is returned as result. An address to a mem-
ory cell containing the FP-stack pointer is passed as
second parameter, and the FP-stack pointer is re-
turned by storing the changed value in this memory
cell; if the FP stack is not accessed, the second pa-
rameter can be ignored. In C terms, an abi-code
word has the following prototype:

abi-code

Cell *word(Cell *sp, Float **fp_pointer)

The stack layout and the sizes of the stack items
are also relevant: In Gforth both data and FP stack
grow towards lower addresses, and the sizes of the
items on the stack are the same as in memory (i.e.,
1 cells and 1 floats).

Here is an example of using abi-code on Linux-
AMD64%:

abi-code my+ (nl n2 -- n3)

\ SP passed in rdi, returned in rax
lea rax, [rdi+8] \ new sp in result reg
mov rdx, [rdi] \ get old tos

add [rax],rdx \ add to new tos

ret \ return from my+
end-code

To make our examples easier to read, we present
them in Intel syntax (destination first) rather than
the syntax of the Gforth assembler. You can find
a version of this example in Gforth syntax (so you

4Unfortunately, Windows uses a different convention on
AMDG64

Ertl, Kiihling

can try it out) in the Gforth manual (development
version®).

Most calling conventions pass the parameters in
registers, but IA-32 calling conventions usually pass
them on the architectural stack, and therefore re-
quire slightly more overhead:

abi-code my+

mov eax,4[esp] \ sp in result reg
mov ecx, [eax] \ tos

add eax,#4 \ update sp (pop)
add [eax],ecx \ sec = sec+tos
ret \ return from my+
end-code

And here is an example of an FP abi-code word
on Linux-AMDG64:

abi-code my-f+

mov rdx, [rsi] \ load fp
f1d qword ptr[rdx] \ r2

add rdx, 8 \ update fp
fadd qword ptr[rdx] \ ri+r2
fstp qword ptr[rdx] \ store r

mov [rsi],rdx \ store new fp

mov rax,rdi \ sp in result reg
ret \ return from my-f+
end-code

Here we have some extra overhead, because the
FP stack pointer fp is passed in and out in a mem-
ory location; also, here we do not need to update
the data stack pointer sp, so moving sp to the result
register requires a separate instruction.

Unlike ordinary code words, abi-code words
need a special routine to invoke them out of a
threaded-code inner interpreter. The definition
of abi-code in gforth-fast on Linux-AMDG64 is
equivalent to the following:

: abi-code ("name" --)

create also assembler
;code (... — ..)
\ doabicode routine
mov [ri15],r14 \ 1)store TOS to memory
mov rdi,r1b \ 2)sp to 1st arg reg
movsd [r12],xmm8 \ 1)store FP TOS

lea rax, [r9+10H] \
mov [rsp+6bOH],r12 \
lea rsi, [rsp+6bOH] \

3)body of name
2)store fp in memory
2)2nd arg: fp address

call rax \ 4)call name’s body

mov rdx, [rsp+6bOH] \ 2)load fp

mov ril4,[rax] \ 1)load TOS

mov rib5,rax \ 2)copy sp to sp reg
movsd xmm8, [rdx] \ 1)load FP TOS

mov rl2,rdx \ 2)copy fp to fp reg
NEXT \ 5)threaded dispatch
end-code

ABI-CODE

my-value
header
code field
threaded
code
native
code

foo
header
do;abicode

code field

5

Figure 1: Code field layout for ;abi-code-defined
words

The doabicode routine consists of the following
components (the numbers in the comments above
refer to the component numbers):

1. Saving the tops of the stacks to memory to
comply with the memory-stack convention of
abi-code words; and loading the tops of the
stacks back into registers afterwards. This is
needed because gforth-fast keeps the tops of
both the data stack and the FP stack in regis-
ters (r14 and xmm8).

2. The FP stack pointer is stored in memory, and
argument registers are set up. And after the
call the new stack pointers are moved to the
registers of sp (r15) and fp (r12).

3. The address of the called routine is computed
(it starts at the body address, which is com-
puted by adding 2 cells (10H) to the CFA in
r9.

4. The actual call.

5. Invoke the next primitive (NEXT).

Gforth also contains a primitive abi-call that
is used for invoking abi-code words (primitive-
centric code [Ert02]®); it has the same components
except that the address of the called routine is
found as immediate argument of the primitive, not
through the CFA.

This overhead will probably be a little lower in
native-code compilers, but most of the components
will be there too.

Shttp://www.complang.tuwien.ac.at/forth/gforth/
cvs-public/

SIn primitive-centric threaded code every non-primitive
(colon definition, constant, etc., and abi-code words) is com-
piled to a primitive followed by an immediate argument.

Ertl, Kiihling

2.2 ;abi-code

;abi-code is to ;code what abi-code is to code.
The routine after ;abi-code is passed a third pa-
rameter: the body address of the word for which
the routine provides the behaviour. In C terms, the
routine has the following prototype:

Cell xword(Cell *sp, Float **fp_pointer,
char #*body)

Here is an example of using ;abi-code on Linux-

AMD64:

: my-value (w "name" --)
create ,
;abi-code (—— w)

\ sp in rdi, address of fp in rsi
\ body address in rdx, temp reg: rcx
lea rax, [rdi-0x8] \ new sp in return reg
mov rcx, [rdx] \ load value from body
mov [rax],rcx \ store value on stack
ret

end-code

5 my-value foo

Unlike for ; code routines, we cannot use the start
address of this routine as code address in the CFA
of an indirect-threaded Forth. Instead, we have
to use a solution like the one we use for does>-
defined words: The code address points to a rou-
tine do;abicode that calls ;abi-code routines. It
finds the address of the routine to call in the cell
right after the CFA (see Fig. 1). Gforth has two
cells for the xt field, the second being used for
does>-defined and ;abi-code-defined words. The
do;abicode routine and the ;abi-code-exec prim-
itive contains components similar to the doabicode
routine shown above.

3 Discussion

3.1 Compared to code

The main disadvantage of abi-code words com-
pared to code words is that they have additional
calling overhead. We will look at the performance
difference resulting from this overhead in Section 4.

The advantage of the abi-code approach is that
it provides a simple and stable interface.

For programmers the advantage of that stability
is that their assembly language words are portable
between Gforth engines (gforth, gforth-fast,
gforth-itc), and portable across installations (in
particular, indepedent of the GCC version used). If
abi-code was implemented by other Forth systems,
abi-code words could be written to be portable
across systems.

ABI-CODE

For the system implementor, the advantage of the
stable interface is that the system is not tied to us-
ing the same register assignments internally forever.
It can change, e.g., the number of stack items in
registers, or move the data stack pointer to a differ-
ent register if that results in faster code on a new
processor.

The simplicity helps programmers by not having
to learn and remember top-of-stack registers that
the system may use internally; and it helps the sys-
tem implementor by not having to teach that to
programmers. Indeed, Mitch Bradley once com-
mented that he went back from keeping the TOS
in a register to keeping all stack items in memory
in order to provide a simpler interface to the users.
Abi-code provides the same benefit at a lower cost:
we pay the additional overhead only when executing
an abi-code word, not in the whole system.

3.2 Why use the ABI?

Why did we choose to use the ABI? Couldn’t the
same benefits not be achieved with another ap-
proach?

The major reason we chose to use the ABI is that
it is easy to get GCC to generate an ABI call. There
are some other benefits, however:

e We can use this facility to call functions written
in non-assembly languages that conform to the
ABI; these functions would have to be writ-
ten to access the stacks, though. Indeed, we
will probably modify the implementation of the
libce C interface [Ert07] to use this mechanism
rather than the less refined calling mechanism
it uses now.

e For each platform, the ABI is already given, so
the system implementor does not need to de-
cide what the interface should be. As long as
there is only one system involved, this is not
a particular advantage, but as soon as several
systems implement a common interface, they
would have to standardize on a common in-
terface for each platform they support, and as
anybody witnessing a standards process knows,
that tends to be rather time-consuming. And
that’s the best case; instead, each vendor might
go their own way on a new platform, so the
advantage of a common interface would disap-
pear.

There is also a disadvantage to using the ABI:
ABIs often require passing the stack pointers in
ways that are suboptimal. E.g., in our AMDG64
example, the data stack pointer is passed in in a
different register than it is passed out, and on TA-
32 it is even passed in through memory; and the
limitations of common ABIs have led us to pass the

Ertl, Kiihling

FP stack pointer through memory in any case (see
Section 3.4).

3.3 Alternatives

An alternative would be to have conventional code
words, but supply macros that switch from the sys-
tem’s register-and-stack setup to a fixed register
setup and back, just like the NEXT macro invokes the
next word, whether the system is direct-threaded,
indirect-threaded or subroutine-threaded.

In terms of overhead for a given interface this ap-
proach would save relatively little compared to an
abi-code-like implementation: Only the computa-
tion of the call target, the call itself and the return
would be eliminated.

One reason why we did not choose this approach
is that we have no good way to get the register
allocation for Gforth’s engines out of GCC and into
these macros; in contrast, with abi-code GCC does
the setup of the call and the restoration for us.

Similarly, we could use code words, but abstract
away from the concrete register allocation of a Forth
system and the concrete implementration of the
stack by providing macros for accessing the stacks
and/or for the logical registers (e.g., stack pointers,
temporary registers); if several systems implement
the same macros, code may be portable between
them even if their register allocation differs.

A problem with this approach is that some sys-
tems keep the top-of-stack in a register and others
in memory. On most architectures you cannot use
a memory access wherever you can use a register,
so it would be tricky to set up the macros such that
they can be implemented on all systems. More-
over, we again cannot use this approach for Gforth,
because we have no automatic way to get the ac-
tual register allocation out of GCC and into these
macros. And, to achieve true portability, Forth ven-
dors would have to agree on the macros (and these
may be architecture-specific, e.g., how many tem-
porary registers are usable by code words), whereas
someone else has already standardized the ABI.

Another approach that might be implementable
in Gforth would be to do the setup and call in C
code with asm () statements. This would allow us to
use an arbitrary interface, not limited by the ABI.

A problem of this approach is that there is no
guarantee that GCC plays along; it could run into
a situation where it cannot allocate registers and
would then fail to build Gforth. Or it could pro-
duce an abysmal register allocation that slows down
Gforth significantly (that actually happens often
enough without us playing such games).

The benefit of this approach over abi-code words
does not appear to be big enough to merit the effort
of implementing it.

ABI-CODE

3.4 What parameters and how to
pass them

Gforth has four stacks visible to the engine: data,
return, FP, and locals stack. Moreover, there is the
instruction pointer (IP). Which of these pointers
should be passed to the called word?

We decided to pass only the data and FP stack
pointers (sp and fp), because these are the stacks
normally used for dealing with general-purpose and
floating-point data. The other stacks and IP are
typically used for implementing Forth-system inter-
nal stuff like control flow or locals. Most users of
abi-code will probably not want to implement such
words; passing and returning them would increase
the cost of executing every abi-code word, so we
decided not to pass them.

How do we pass these two stack pointers and how
do we return them? At first we passed sp and fp as
parameters, and returned them in a struct, leading
to the following prototype:

struct ac_ret {Cell *sp; Float *fp;};
struct ac_ret word(Cell *sp, Float *fp);

However, when we looked at the generated code,
we found that this is implemented inefficiently on
most platforms: The calling convention on most
platforms returns a struct by storing it to memory
before returning and loading it from memory in the
caller (pcc calling convention). So, with two stack
pointers in the struct this costs two stores and two
loads. And, what’s more, the programmer would
have to write these stores and have to deal with the
target address for this struct.

There is at least one platform (Linux-AMDG64),
where the standard calling convention passes small
structs in registers, and on such platforms this could
be the most efficient way of passing the stack point-
ers, but unfortunately GCC generates inefficient
code (redundant stores) even on that platform.

So overall, while this could be an efficient method,
in practice it isn’t. And on most platforms it is
cumbersome to use.

Therefore, we decided to switch to the currently-
used way to pass the stack pointers:

Cell *word(Cell *sp, Float **fp_pointer);

The downside here is that fp is passed and re-
turned in a cumbersome way; but at worst this leads
to as many loads and stores as returning a struct
on platforms with the pcc calling convention, and
in most cases (no FP stack access, or unchanged FP
stack depth) it will have fewer loads and/or stores.
This approach is also easier to learn and to use for
programmers, especially for words that don’t access
the FP stack.

We also considered several other approaches, but
did not implement them:

Ertl, Kiihling

e Put both pointers in memory and pass pointers
to them; as a variation, put them in a struc-
ture in memory and pass one pointer to that.
The main advantage would be that both stack
pointers would be passed in the same way, lead-
ing to a cleaner interface. The disadvantage is
that this approach is less efficient and requires
more loads (and usually stores) than our cho-
sen approach.

e Another, mostly orthogonal option would be to
have different words for different usages: E.g.,
we could have abi-code-sp, where only sp is
passed and returned (avoiding the overhead of
storing fp to memory and loading it back); and
maybe abi-code-fp, where only fp is passed
and returned (in the same way that sp is passed
now). This would increase the efficiency, but it
would also increase the complexity, implemen-
tation and documentation effort of the inter-
face, so we decided not to take this approach
for now.

e A reviewer suggested passing the word’s ar-
guments and returning the result directly as
defined in the calling convention, rather than
through the Forth stack. The called routine
could then also be called from C in the fa-
miliar way without having to set up a mem-
ory area for the stack and passing a pointer to
that. This would require generating a wrap-
per that automatically translates between the
Forth arrangement and the calling convention.
We have done such a thing for calling C func-
tions in the libce C interface [Ert07], and this
approach could also be used here.

But we don’t think that this would be very
useful, for the following reasons: 1) In a C in-
terface we usually want to call pre-existing C
routines, whereas here the typical usage will
be to write new assembly code for this spe-
cific problem, so the exact kind of parame-
ter passing convention does not make a big
difference. 2) Most calling conventions pro-
vide no good way to pass back several re-
sults. 3) The wrapper would probably incur
extra overhead; e.g., transferring the parame-
ters from the Forth stack to the C stack on
TA-32, where it is just as hard to access. 4)
One could not implement words such as roll
with such a mechanism.

For ;abi-code, we have to pass the body address
of the child word in addition to sp and fp. We just
pass it as extra parameter.

ABI-CODE

3.5 Other Forth systems

Abi-code solves a problem of Gforth. Would there
be a benefit to implementing abi-code in other
Forth systems? Yes:

e Code using abi-code would be portable be-
tween Forth systems (on the same platform),
unlike code using code. This could also be
achieved by agreeing on a standard interface
to code words for each platform, but reach-
ing such an agreement can be a long and ardu-
ous process. For the ABI somebody else went
through that process, so if we use that, we save
ourselves that effort. As for the disadvantages,
using the ABI leads to more overhead when
executing abi-code words. What’s worse, on
some architectures there are different ABIs for
different operating systems, so abi-code words
do not necessarily port to other operating sys-
tems, even on the same architecture and Forth
system, unlike code words on most systems.

e The infrastructure used for implementing
abi-code can also be used for calling functions
in other languages that use the ABI. However,
most systems already have a more convenient
C interface that does not require the called
function to access Forth stacks. Still, given
that these Forth systems implement the ABI
for the C interface, it should be easy to imple-
ment abi-code on them.

There are additional requirements to make code
portable across Forth systems: The stacks have to
grow in the same direction in the systems (in Gforth
all stacks grow downwards).” And the stack items
have to have the same size and format; that’s not
a problem for cells, but different Forth systems use
different FP formats/sizes on IA-32 (64-bit vs. 80-
bit floats).

4 Performance

4.1 Benchmarks

The benchmarks are written for Gforth. We
measure both gforth-fast --no-dynamic (direct
threaded code) as well as the default gforth-fast
(with various optimizations). Other systems use
different implementation techniques, with different
effects on performance, so take these results with a
grain of salt.

We compare different ways to implement 1+. This
word is so short that its cost is relatively minor com-
pared to the overheads of the various implementa-
tion techniques, so the overheads should dominate.

"We could get around that requirement by having macros
for accessing the stack at a certain depth.

Ertl, Kiihling

Also, we can implement 1+ both as simple words,
or through defining words. We complement this
micro-benchmark with a result from an application
(Section 4.4).

We compare four different ways of defining simple
words:

primitive Primitives come with Gforth, and
Gforth knows quite a bit about them, in par-
ticular, how to use them in dynamic superin-
structions [RS96, PR98, EG03a]. And Gforth
can also perform other optimizations on them
[Ert02, EG04, EG05]. These optimizations do
not include combining a sequence of 1+ ...
1+ into n +, however.

code-def A code definition. Gforth knows very
little about such words, so these are executed
as direct-threaded code.

abi-code-def Abi-code definitions are usually ex-
ecuted through a primitive abi-call; all
Gforth optimizations can be applied to this
primitive, but the called routine is executed as-
is.

colon-def A simple colon definition. Gforth does
not perform inlining (yet). Colon definitions
are invoked through the primitive call. But
gforth-fast optimizes the body of the colon
definition with a static superinstruction [Ert02]
for the sequence 1it +.

We also compare the corresponding four ways of
defining 1+ through defining words:

field-def Using the built-in field definition word
+field; children of this word are compiled to
a primitive 1it+, which has all the usual opti-
mizations applied. This primitive uses a literal
constant in the threaded code, so it has a little
more overhead than the primitive 1+.

scode-def To maintain the primitive-centric code
[Ert02] in Gforth, the child of such a word can-
not be compiled directly to threaded code like
code-def. Therefore Gforth uses a primitive
lit-execute to invoke it, adding some over-
head; in particular, there is an additional in-
direct branch (from the primitive to the code
after ;code). Moreover, the other indirect
branch will always be mispredicted in some of
our benchmark setups: those where we use dy-
namic superinstructions and run on CPUs with
BTBs.

sabi-code-def Children of a ;abi-code word are
executed through a primitive ;abi-code-exec
similar to abi-call.

ABI-CODE

’ 1+ alias primitive

\ add rbx,0x8 \ increment IP

\ add r14,0x1 \ increment TOS (gcc way)
\ next primitive or NEXT

code code-def

add rbx,0x8 \ increment IP

inc ri14 \ increment TOS
jmp [rbx-0x8] \ NEXT
end-code

abi-code abi-code-def
\ ABI: SP passed in rdi, returned in rax
mov rax,rdi \ sp into return reg
inc QWORD PTR[rdi] \ increment TOS

ret
end-code

: colon-def 1 + ;

\ indirect definitions through defining a
defining word

~

0 +field field-def drop

add ri4, [r9+0x10] \ >body @ +
add rbx,0x8 \ increment IP
NEXT

P

: my-fieldl (n --)
create ,
;code (nl —— n2)
\ sp=ri5, tos=ril4, ip=rbx, cfa=r9
add rbx,0x8 \ increment IP
add ri4, [r9+0x10] \ >body @ +
jmp [rbx-0x8] \ NEXT
end-code
1 my-fieldl ;code-def

: my-field2 (n --)
create ,
;abi-code (nl -- n2)
\ sp in rdi, returned in rax,
\ addr of fp in rsi, body address in rdx
mov rcx, [rdx] \ fetch increment from body
mov rax,rdi \ sp into return reg
add [rdi],rcx \ add increment to TOS
ret
end-code
1 my-field2 ;abi-code-def

: my-field3 (n --)

create ,
does> (n1 -- n2)
e+ ;

1 my-field3 does>-def

Figure 2: Benchmark definitions (Intel syntax for
assembly)

10

Ertl, Kiihling

does>-def Children of does> words are compiled
to be invoked using the primitive does-exec
(which is similar to a sequence of 1lit and
call).

Figure 2 shows the definitions of these words for
the Linux-AMDG64 platform.

The benchmark consists of a loop that contains a
sequence of these implementations of 1+. We mea-
sure a loop with a sequence of 23 1+s, and subtract
the time for a loop with 3 1+s. This gives the time
for executing 20 1+s without the loop overhead or
startup effects. Note that these micro-benchmarks
are unrealistic in their branching behaviour and
therefore give unrealistic branch prediction results.

4.2 Machines

The performance of these benchmarks is influenced
strongly by how well indirect branches are predicted
and by the cost of mispredictions when they hap-
pen. Therefore we measure the performance on two
different CPUs:

Athlon 64 X2 4400+ This processor has a
branch target buffer (BTB), which predicts
(to the first order) that each indirect branch
jumps where it jumped to the last time it
was performed. The misprediction penalty is
around 12 cycles.

Core 2 Duo E8400 This processor has a history-
based indirect-branch predictor that is usually
more accurate than a branch target buffer. The
misprediction penalty is around 12 cycles.

All of these CPUs implement a return stack, so
the returns at the end of abi-code words are pre-
dicted correctly.

We also vary the options
gforth-fast engine:

used with the

no-dynamic This is direct-threaded code.

default All optimizations are on. In particu-
lar, dynamic superinstructions benefits ev-
erything except code-def and ;code-def;
static superinstructions benefit colon-def;
and static stack caching benefits abi-code-def
and ;abi-code-def.

4.3 Results

Figure 3 shows the results for direct-threaded code,
and Fig. 4 shows the results for optimized code.
For both machines, we show instructions, some data
about branches and branch mispredictions, and cy-
cles. The metric we actually care about on a par-
ticular platform is the cycles, but the other metrics
are also interesting, because they help explain the

11

ABI-CODE

cycle counts that we see, and can help understand
what performance to expect on other machines or
for other benchmark settings.

For cycles and instructions, the count per ex-
ecuted word (implementation of 1+) is shown;
branches and branch mispredictions are scaled up
by a factor of 10, for two reasons: to make their
size better visible; and to reflect the approximate
cost of branch mispredictions in cycles.

Cycles and Instructions

The instruction counts are the same between the
machines, because the same binaries are executed
on both machines.

For threaded code (Fig. 3), we see that the prim-
itive has a similar cyle and instruction counts as
code-def; actually, the instruction count and cycle
count is slightly better for the hand-written code
word compared to the gce-generated primitive.

Executing the abi-code word is more expensive
by 13 instructions and 8-9 cycles; for the optimized
code, the difference is 11 instructions and 4-7 cy-
cles. This means that one will still use code words
where their portability disadvantage is acceptable
and the number of dynamically executed instruc-
tions in the word is relatively small on average (sev-
eral dozen instructions or less).

The colon definition performs a similar number of
instructions (and cycles) as the abi-code word for
this micro-benchmark, but that’s because 1+ is such
a tiny word. For words with more functionality, a
colon definition in a threaded-code Forth will re-
quire more instructions (and cycles) compared to a
primitive or code word by a factor of 5-10 in many
cases, whereas the abi-code word will only have
the same 11-13 instructions of overhead as for this
benchmark, not an overhead proportional to the

functionality.
The instruction counts for field-def,
;code-def, ;abi-code-def, and does>-def

are slightly higher than for the corresponding sim-
ple words (they fetch the increment from memory),
but are otherwise similar to their corresponding
simple words.

Branches and Mispredictions

Branch mispredictions have a strong influence on
the cycle count, and the mispredictions in these
micro-benchmarks are not representative of typical
applications, so we have measured the number of
branches and branch mispredictions, and present
the results here.

For the branches, the Core 2 can count indi-
rect branches (and their mispredictions), whereas
the Athlon 64 can count taken branches (and
their mispredictions). For these benchmarks, both

Ertl, Kiihling ABI-CODE
/word gforth-fast --no-dynamic
primitive Hfield-def
Bcode-def M ;code-def
abi-code-def M ;abi-code-def
Hcolon-def Mdoes>-def

301

201

101

core2 athlon64 core2 athlon64

instructions

indirect/taken branches *10 mispredictions *10

athlon64
cycles

core2 athlon64 core2

Figure 3: Performance results for gforth-fast --no-dynamic (direct threaded code)

/word gforth-fast

301

20

101

o ore2 atlon64ore2 atlon64

instructions

indirect/taken branches *10 mispredictions *10

primitive Efield-def
Mcode-def M ;code-def
abi-code-def m;abi-code-def
Hcolon-def BMdoes>-def
core2 athlon64 core2 athlon64
cycles

Figure 4: Performance results for gforth-fast default (with optimizations)

measurements result in the same branch counts
in most cases, except for the abi-code-def and
;abi-code-def cases: There the ret from the
called word is counted as taken branch by the
Athlon 64, but not as indirect branch by the Core 2.
These returns are always predicted correctly by the
return stack on both CPUs, so this difference does
not affect the misprediction counts. The mispre-
dictions differ between the CPUs, because they use
different branch predictors.

Does the number of mispredictions differ system-
atically between code words and abi-code words?

One difference is that code words cannot use
the dynamic superinstruction optimization used for
Gforth primitives, typically leading to more mis-
predictions than for primitives (but only partially
in our micro-benchmark). For abi-code words,
dynamic superinstructions can be applied to the
abi-call primitive; and the indirect call inside
this primitive will be well predictable using BTBs
and more sophisticated predictors, because each in-
stance of abi-call will always call the same code.

Even for this micro-benchmark the Core 2 be-
haves mostly as expected (for the optimizing

12

Ertl, Kiihling

Gforth, see Fig. 4): The branch prediction accu-
racy is worse for code-def than for abi-code-def,
resulting in a similar cycle count for both of these
words.

For threaded code the situation is different:
There primitives, code, and abi-code words all
have to perform an indirect branch at the end of
the word, and that branch will often (= 50% with
a BTB) be mispredicted in real applications. More-
over, because there is only one replica of abi-call
in a threaded-code system, the indirect call inside
abi-call will also often be mispredicted if different
abi-code words are used in the inner loop.

You may notice that the branch prediction ac-
curacy on the Athlon 64 is better on this micro-
benchmark for threaded code than for the opti-
mized version. That is an artifact of this micro-
benchmark; real-world code behaves differently
[EG03b, EGO03a].

4.4 Application performance

In a Mandelbrot set calculation program we re-
placed a short colon definition (7 words, straight-
line code), with an abi-code word containing 11
MIPS instructions®. This resulted in a speedup
by a factor of 1.27 on a 336 MHz Ingenic XBurst
Jz4720 running gforth-fast --dynamic. How-
ever, as with code words, this approach is only cost-
effective if a significant part of the run-time is spent
in one or a few words.

5 Related work

The classical Forth way to define words in assembly
language is code...end-code. It has the disadvan-
tage of being system-specific, or worse, in the case
of Gforth, installation-specific.

Modern Forth systems also provide a C interface.
The main use of this interface is to call libraries
that have been developed independently, but it can
also be used to call C functions written specifically
for a Forth application; and it can be used to call
such functions written in assembly language. How-
ever, these functions usually have to be compiled
or assembled separately before loading the Forth
system?, in contrast to defining words in assembly
language at the appropriate places in a Forth source
file with abi-code and code.

New Micros’ Max-Forth for the 68hc11 has a word
called code-sub where the definitions have to end
with an rts (return from subroutine) rather than

8http://mosquito.dyndns.tv/freesvn/trunk/
nanonote/forth/mandelbr.fs

9Exception: Bernd Paysan used Gforth’s libcc interface
to generate the C code from Forth code upon loading, and
that C code is compiled and linked right away.

ABI-CODE

a jmp next [Dum]. This avoids the need to hard-
code the address of next and therefore increases the
portability of hand-assembled machine code (there
was not enough space for a Forth assembler). The
implementation uses a run-time routine like Gforth
does, but which is less elaborate than doabicode
(no adjustment to an ABI necessary).

Looking beyond Forth, the Java Native Interface
(JNI) [Lia99] shares a number of similarities with
abi-code. It allows Java to call functions through
an interface based on the calling conventions (ABI)
combined with additional conventions. The called
functions are portable across Java VM implemen-
tations, and even across platforms, if written in a
portable language like C. There are also differences:
JNT functions are compiled separately, and they are
usually not written in assembly language.

6 Conclusion

Abi-code allows programmers to write assembly
language words that work across Gforth engines
and versions. If other Forth systems implement
abi-code, too, they work even across Forth sys-
tems.

These words use the standard calling convention
(ABI) of the platform, so they are easy to imple-
ment in Forth systems that are implemented with
the help of a C compiler (like Gforth).

The price we pay for these advantages is an over-
head of 11-13 instructions on AMDG64 (4-9 cycles on
current implementations) when invoking abi-code
words. However, compared to colon definitions
abi-code words can provide quite a bit of speedup
(a factor of 1.27 by replacing one colon definition
in one example application), at the cost of being
architecture-specific. So abi-code provides a new
option between colon definitions and code words in
the tradeoff between performance and portability.

Acknowledgments

We thank the anonymous reviewers for their com-
ments and suggestions, which helped improve the

paper.

References

[Dum] Randy M. Dumse.

FORTH. New Micros.

User Manual Max-

[EG03a] M. Anton Ertl and David Gregg. Op-
timizing indirect branch prediction ac-
curacy in virtual machine interpreters.
In SIGPLAN Conference on Program-
ming Language Design and Implementa-

tion (PLDI03), 2003.

13

Ertl, Kiihling ABI-CODE

[EG03b] M. Anton Ertl and David Gregg. The
structure and performance of Ffficient in-
terpreters. The Journal of Instruction-
Level Parallelism, 5, November 2003.
http://www.jilp.org/vol5/.

[EG04] M. Anton Ertl and David Gregg. Combin-
ing stack caching with dynamic superin-
structions. In Interpreters, Virtual Ma-
chines and Emulators (IVME 04), pages
7-14, 2004.

[EG05] M. Anton Ertl and David Gregg. Stack
caching in Forth. In M. Anton Ertl, edi-
tor, 21st EuroForth Conference, pages 6—
15, 2005.

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[Ert07] M. Anton Ertl. Gforth’s libce C function
call interface. In M. Anton Ertl, editor,
23rd EuroForth Conference, pages 7-11,
2007.

[Lia99] Sheng Liang. Java Native Interface:
Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[PRI8] Tan Piumarta and Fabio Riccardi. Opti-
mizing direct threaded code by selective
inlining. In SIGPLAN ’98 Conference on
Programming Language Design and Im-
plementation, pages 291-300, 1998.

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction
dispatch techniques for byte-code inter-
preters. Technical Report TKO-CT79,
Faculty of Information Technology,
Helsinki University of Technology, May
1996.

14

A Compiler which Creates Tagged Parse Trees and Executes
them as FORTH Programs

Campbell Ritchie and Bill Stoddart
Formal Methods and Programming Research Group, Teesside University, Middlesbrough, England

Abstract

Most compilers use separate scanning and parsing, and scan their input from left to right.
Lynas and Stoddart (2008) demonstrated an alternative technique where an input string is split
into multiple sub-expressions, divided at each operator.

We demonstrate an expression parser which extends this work. It runs in two passes. The
first pass scans code left-to-right or right-to-left depending on the associativity of the operator
sought, creating pointers to strings which together represent a parse tree. At the end of the first
pass, it uses lexical analysers to infer the type of each token, or find the type in a lookup table.

The types follow the theory of the B language, building up more complex types as if
with the powerset (P) and Cartesian product (X) operators. The “parser” operations, whose titles
all begin with “P” assemble the elements into a postfix model of the parse tree, with the
operators tagged with a _ character.

The second pass can be run together with the first, or later, allowing the intermediate
representation of the code, as a tagged parse tree, to be inspected. The output can be executed as
FORTH code; each operator tagged with a _ is matched by a corresponding operation which tests
the types supplied, and leaves the type and postfix representation on the stack; the latter is
identical to the FORTH representation of the original expression.

We discuss possible uses of such a compiler, and possible problems about its efficiency,
since it runs in quadratic time.

Keywords

FORTH, compiler, recursion, parse tree, postfix notation, type tagging.

Address for Correspondence

C Ritchie, Formal Methods and Programming Research Group, Rm P1.10, Teesside University,
Borough Rd, Middlesbrough, England TS1 3BA.
work@ critchie.co.uk and bill@tees.ac.uk

15

Introduction

Many programming languages are written in infix notation (e.g. “1 + 27), but most
computers execute the contents of a stack, which is most easily expressed in postfix notation (e.g. “1
2 +7). Both languages used for training only (e.g. “VSL” = very simple language (Bennett (1996))
and commercial production languages (e.g. Java™ (Gosling et al (2005)) are compiled by
conversion to an intermediate form in postfix notation. Since FORTH programs are written in
postfix notation, a compiler which produces its intermediate representation in a form similar to
FORTH syntax can use a FORTH virtual machine as its back-end. This allows one to write a
compiler consisting only of its front-end.

Lynas and Stoddart (2008) introduced such a compiler, originally for teaching
undergraduates. This parses an expression differently from most compilers. Instead of scanning the
code and dividing it into tokens, their compiler scans the code for operators and connectives,
splitting the expression into sub-expressions at each connective. After the code has been subdivided
at every operator, it is held in pointers to strings, which together represent a parse tree. Later, a
second pass of operations is used to rejoin the strings along with the operators. This resultant string
is identical to FORTH syntax for that expression, and can be executed as FORTH code.

Lynas and Stoddart (2008) introduced operations called by an operator followed by an
underscore character; for example, the +_ -_ *_ and /_ operations handle addition, subtraction,
multiplication, and division respectively. The first pass of compilation produces a parse tree, which
can be tagged for types; Lynas and Stoddart’s example shows “1 + 2.5 being converted to

" 1" INT " 2.5" FLOAT +_
by the first pass of compilation.

The values INT and FLOAT are constants representing integer and floating-point numbers,
and the other two values are Strings containing the operands. The second pass executes the values
on the stack as a FORTH program. The +_ operation requires four values on the stack representing a
parse tree. It compares the types, and places two values on the stack: a pointer to the output String

“1 S>F 2.5 F+”

which is itself executable as FORTH code, and the constant FLOAT denoting the type of the result.
This implementation technique permits one to use polymorphic operators, providing different
operations for different types of operand.

Rather than passing through the code from left to right, separating it into tokens, this parsing
technique seeks operators in the code and splits an expression into sub-expressions. It scans the
code from left to right for a right-associative operator, and vice versa.

We call programs such as +_ tagged operations. We showed plans to use tagged operations,
which can be executed as FORTH code last year (Ritchie and Stoddart, 2009). At the end of the first
stage of parsing, the operator, along with an underscore “_” is added to the intermediate
representation. This produces an output which can be executed as the second stage of parsing.
Rather than using integers to represent types, we use strings, allowing types of arbitrary complexity
to be declared. This same grammar as we used before, expanded by the addition of Boolean
expressions, is shown as an appendix to this paper.

16

The Structure of this Paper

We first look at sets, and how our typing theory uses sets. Then we describe how this
compiler has grown from earlier work, and the three operations used in the parser, the “P”
operations which splits the text around an operator, and two tagged operations, ©_ and +_. Then
follows a section about creating and manipulating sets, and the results of using this parser. Finally,
we discuss its potential use, and planned future work.

17

Sets And Types

Following the type theory of the formal specification and development languages Z and B
(Abrial, 1996), we regard each value as having the type of the set to which it belongs. A whole
number is a member of the integer set Z expressed in FORTH as “INT”, and a decimal fraction a
member of the set R for real numbers called “FLOAT” in FORTH. It is possible to use the
constructor [P for power-set to produce a set whose members are themselves sets; this can be
expressed as “INT POW”. Similarly the Cartesian Product operator x can be used to produce a set
or ordered pairs; for example the ordered pair (1, 2) or 1 = 2 is a member of the set ZxZ, called
“INT INT PROD”. Using these constructors, one can create set types of arbitrary complexity, which
the set package introduced to RVM FORTH by Stoddart and Zeyda (2002) handles.

Methods

We maintain the convention of Lynas and Stoddart (2008) of appending an underscore to the
operator, to give the name of an operation which tests the appropriateness of the typing for that
operator. There is however a new problem; we are using arbitrarily complex types, and compound
types, in addition to the built-in types “INT” “FLOAT” and “STRING”. These cannot be readily
expressed as constants, but can be incorporated in Strings which denote those types in the final
FORTH code, and which can be compared and manipulated with simple String operations.

Compiling the Expression Grammar

The grammar is shown as an appendix. It consists of a series of recursive equations, starting
with the lowest-precedence operator < and gradually increasing precedences. The
lowest-precedence operator appears in this line:

E=E e E;, E,
... meaning that the Strings forming E (for expression) consist of strings from E followed by the «
symbol and a string from E,, as well as any strings in E,. Note this grammar permits left recursion.

The equivalence (“iff”) symbol « takes two values, to test for equivalence. It is a binary,
infix, left-associative operator. The expression a < b can be parsed to form this parse tree:-

=4
a b
... and the expression a ¢ b e c gives this tree:
=1
e c
a b

In the case where several operators are included in an expression, one splits the expression
on the lower precedence operators first. In the case of a left-associative symbol, where there is more
than one operator with the same low precedence, the rightmost operator is used to split first (for

18

right-associative operators, one splits first on the leftmost symbol). The values in a b and ¢ will
themselves be expressions from lower lines in the grammar, which are passed on to parsers for
expressions from the next line of the grammar.

The second lowest-precedence connective is the implication symbol =, which is a binary
infix, right-associative operator. The expression a = b = ¢ gives this parse tree:

The final output from a parser (Pg) for a string from “E” depends whether the string contains
the operator from that line or not. If it does, the right sub-expression is parsed as an E;, and the left
sub-expression as an E; otherwise the whole expression is regarded as an E, and passed unchanged
to the E, parser. The final output from an string e, a member of E can be expressed as

Pu(e” “=7 ¢,)=Pgle) Pr(e) “o” or PE(e) = Pgi(e)

... where P and Pk, are parsing operations for strings e and e; which are members of E and
E,. This maintains the form shown by Lynas and Stoddart (2008). This can be expressed as an
intermediate representation from the first pass of parsing; for example, Pr(e “©” e;) gives

29

“n PE(e)" n Tll n PEl(el)“ n UII @_”

This is the result of parsing the left string e followed by its type “T” followed by the the
result of parsing the right string e, and its type “U” followed by the tagged operator <_. The output
is a string including the "straight" quote marks, which can be executed as FORTH code. “T” and
“U” must both be Boolean type for the < operator.

The maplet operator +— creates ordered pairs and accepts operands of any type. As an
example, “f = b”, where the types of f and b are foo and bar respectively would be parsed to give
this intermediate representation: “" f" " foo" " b" " bar" +_". This can itself be executed as FORTH
code to leave “f b P as the postfix form of the expression, and its type, “foo bar PROD”, on the
stack.

The “Isplit” and “rsplit” Operations and the First Stage of Lexical Analysis.

The first stage parsing is to analyse the input string representing the expression into its
operator and two arguments or operands, left and right. This is done with operations called Isplit
and rsplit; Isplit explores the expression from right to left, looking for left-associative operators, and
rsplit explores from left to right, to find a right-associative operator. Each requires two values on the
stack, the text to be analysed and a sequence containing the operators sought at the present level of
precedence.

The Isplit operation is shown here. It uses the following values internally as local variables:
the cardinality of the sequence, the end of the string, a loop count index, and a value as a place-
holder for the operator string. These are in addition to the two arguments. It also uses the prefix?
function, which tests whether a string is a prefix of another, endaz which finds the end of a
O-terminated string, myazlength which determines its length, and the bracket-avoider-for-lsplit

19

function, which skips backwards over any text in brackets.

The essence of the operation is two nested loops. The outer loop counts backwards from the
end of the text (skipping any text in brackets) and the inner loop compares each value in the
sequence in turn to see whether the operator sought has been found; starting from the current value
of “end” this would appear to be a prefix to the string.

The original value of “op” is O (null); whenever a matching prefix is found, “op” is replaced
by that value, and both loops terminate. The left sub-expression can be terminated simply by placing
a null (\0) character in the location of the “end” pointer with the C! instruction, and the right
sub-expression by adding the length of the “op” string to the current “end” pointer.

: 1lsplit (s seq -- sl s2 op)
(s is a string in the form "a + b" and seq is a sequence of strings e.g.)
(["+", "-"], sl is the string as far as the operator, s2 after it, and op)
(is the operator. If op is null = 0, the value below it must be regarded as a)
(nonsense value and deleted from the stack.)
(This function skips over any text in “”, (), [] and {})
(string seq already on stack) 0 0 0 0 (6 values now on stack)
(: string seq end op count size :)
string endaz to end (One of the 0s gone)

seq CARD to size (Second 0 gone)
BEGIN

end string >= op 0= AND
WHILE

0 to count
end bracket-avoider-for-1lsplit to end (Skip text in brackets etc.)

BEGIN
size count > op 0= AND (Not reached start of string, nor found op)
WHILE
count 1+ to count (Go through potential operators)
seq count APPLY end prefix?
IF
seq count APPLY to op
THEN
REPEAT
end 1- to end (Count backwards to start of string)
REPEAT
op
IF
end 1+ to end (Terminate string at op)
0 end C!
end op myazlength + to end (Move forward length of op)
THEN

string end op

.
4

Note that if no “op” string is found, a 0 will be left on the stack. In that case, the “left” value
will be the original text unchanged, and the “right” value must be discarded as a “nonsense” value.
The rsplit operation, which is used for right-associative operators, is very similar but slightly
simpler, because there is no need to seek the end of the string before starting the two loops.

In this example, passing “f < b” and the sequence STRING [" <" ,] to Isplit places the
following three string values on the stack:

f b e
. . whereas passing “f * b” and the sequence STRING [" +", " -",] would produce the
result
f *b 2?22 null

. 1.e. the original input unchanged, an undefined or nonsense value, and null (= \0).

20

Passing “1+2-3-4” and the sequence STRING [" +" , " -",] however, splits the input at the second
minus, leaving this result on the stack:

1+2-3 4 -
In all cases where there are several left-associative operators which can be found at the same
precedence, the input is split at the rightmost symbol, meaning the left string is parsed recursively;

similarly the right string (second value on the stack) is parsed recursively if there are several
right-associative operators found with rsplit.

The Parser Operations

The parser operations are similar to one another; an example is shown.

: Pequiv (s -- sl)
(: text :) text equivalence lsplit
VALUE left VALUE right VALUE op

op
IF

left RECURSE right Pimplies op bar-line AZ" AZ" AZ"
ELSE

left Pimplies
THEN
;

. . where “equivalence” is defined as STRING [" <=>", " " |] (allowing “<=>" as a

]

synonym for “e”") and bar-line a string containing “_\n”". The parser splits the “text” into three
parts, “left” “right” and “op”. Passing “f = b” as input results in “f” being parsed recursively, “b”
being passed to a Pinies parser, and the results being catenated (using the AZ” operation) with the
operators and “_\n”. If no operator is found, only the “left” sub-expression represents a real value,
which is passed to the next parser in the sequence. In the case of a right-associative operator, rsplit
is used, and the recursion is applied to the “right” sub-expression Eventually the recursion reaches a
stage where the expression can be subdivided no more; then the parsers return the text and its type
with the necessary quotes and spaces included. For example “f”” would be parsed to “" f" " foo"”” and
the type is sought in a lookup table. This has the corollary that variables must be declared in
advance, so their type can be entered into the lookup table. The parser above requires one string as
input; for “f & b”, it returns “" f" " foo" " b" " bar" <_" onto the stack.

It is possible to create versions of the parsers which call the operations directly, e.g. with the
©_ instruction, and these will call both phases of compilation together.

The Tagged Operators as Operations

The ~_ operation as a Simple Example

The output from the parsing operations can be passed to a FORTH virtual machine; the
output “" f" " foo" " b" " bar" +_" puts the four values f foo b bar onto the stack and calls the +_
operation. The +_ operation has the simplest typing of any; it accepts any type except null, and is
shown below:

1 Here, \n is the line-feed character 0x10.

21

: » (sl s2 s3 s4 -- ssl ss2)

(¢ l-value l-type r-value r-type :)

" p" l-type r-type check-types-not-null

l-value sspace AZ" r-value AZ" " " AZ" l-type sspace AZ" r-type AZ"
" PROD" AZ"

The check-types-not-null operation simply checks that null has not been passed as a type
because + has no restriction about its types of operand. Then, +_ takes the two operand values
“l-value” and “r-value”, catenating them with spaces and . Then is catenates the two type values
“l-type” and “r-type” with “PROD” and the appropriate spaces, leaving those two values on the
stack. The equivalence operator < causes the <_ operation to be invoked; this uses the
check-types-for-booleans operation, which tests that both operands have a Boolean type. Almost
every tagged operation is similar to +_, except those for unary operators which only take one value
and one type, and those where the output may differ with the type of input.

Every “check” operation emits an error message and then calls ABORT; this means only one
error message is displayed, even if there are several errors.

The +_ Operation as a More Complex Example

As described by Lynas and Stoddart (2008), arithmetical operations may take different input
types and produce different output. In a simpler version which accepts only integer numbers, the +_
operation is very similar to —_. In the version which accepts floating-point numbers as well, it may
be necessary to change the type of the argument with the S>F operator, and prefix the + with an F.
The complex version follows:

: + (sl s2 s3 s4 -- ssl ss2)
(: l-value l-type r-value r-type :)
" +" VALUE op op l-type r-type check-types-for-arithmetic
l-type " FLOAT" string-eq r-type " FLOAT" string-eq OR
(Either or both is float)

IF
" F+" to op
l-type " INT" string-eq
IF (Add S>F as appropriate)
l-value " ©S>F" AZ” to l-value
ELSE
r-type " INT" string-eq
IF
r-value " S>F" AZ" to r-value
THEN
THEN
" FLOAT" to l-type
THEN

l-value sspace AZ" r-value AZ" op AZ" l-type

~e

The check-types-for-arithmetic operation confirms that both types are “INT” or “FLOAT”.
On checking whether either operand is a “FLOAT”, the operator is changed to *“ F+”, and whichever
of the operands is an INT has “ S>F” appended. Also the type to return is changed to “FLOAT”.
This operation will take " 1" " INT" " 1.34" " FLOAT" +_ and return “ 1 S>F 1.34 F+” and the type
“FLOAT™.

22

Sets and Types
A set expression such as {1, 2, 3} can be implemented in FORTH by executing the code

INT {1, 2, 3, }
where each token is a FORTH operation. The INT provides the type of the set, by placing a pointer
to an empty set of INTs on the stack, which is opened by the { operation. Each number is placed on
the stack in turn, and added to the current set by the comma operator, and the } operation completes
the set construction, leaving a new reference to the whole set on the stack.
Sets may contain individual values, or pairs, or sets. {{1, 2}, {3}} is an example of a set of
sets, which is represented in FORTH as

INT SET { INT {1, 2, } , INT {3, } , }
and the following is an example of a set of pairs (called a “relation”) from Strings to integers:
{“Bill” » 2673, *“Campbell” » 2680, “Dave” » 2680}
The set of its left-hand elements ({“Bill”, “Campbell”, “Dave”} is called its Domain, and the set of

its right-hand elements ({2673, 2680}) is its Range. It can be translated into FORTH as
STRING INT PAIR { " Bill" 2673 » , " Campbell" 2680 » , " Dave" 2680 » , }
It is possible to retrieve a value from the range of that relation, which we are calling “r”, in infix
notation by writing r(“Bill”’) which translates to FORTH postfix notation as
r " Bill" APPLY

If that relation is inverted and the value 2680 applied, there are two possible results, “Campbell”
and “Dave”; the choice can be made non-deterministically and on a reversible FORTH
implementation the choice can be altered on backtracking.

Sequences can be represented similarly, but using square brackets [...] instead of curly braces
{...}; in terms of sets, a sequence is regarded as a relation from integers to another type, T
(INT T PROD). In the case of a sequence, its domain is equal to the set of consecutive integers up to
its cardinality c¢, expressed as 1 ... ¢* It is possible to have relations from integers to T whose
domain does not consist of consecutive numbers, and which do not represent sequences. All the set
operations can be applied to sequences. As an example where this might be useful, one can compare
two sequences of the same type, s and #; s is a prefix of ¢, if s is a subset of 7 and the union of s and ¢

equalst (s Cr A (sUt=1)).

Operations to Create a Set

The operations to create a set are used in the following order:

{_ Puts “{” on the stack (twice) and O (= null) because the type is not yet known.

1 Puts the value 1 on the stack, and the string “INT” being its type.

- Catenates the type { 1 and , to leave “ INT { 1, ”, and changes the type on the stack
to “INT”.

2 Puts the value 2 and its type “INT” onto the stack.

+_ Checks the “INT” is the correct type and catenates the previous value with 2 and , to
produce “ {1,2,”.

3 Puts the value 3 and its type “ INT” onto the stack.

} Checks the remaining “{‘ matches “}”, and that the type “INT” is the same as

before, and catenates 3 comma and } to leave “INT { 1,2, 3, }” and the type “INT
SET” on the stack. This resultant code can be executed as a FORTH instruction.

Since the type of variable is checked, we restrict sets to homogeneous sets, i.e. those which
only contain one kind of element.

2 We are using 1, not 0, for the number of the first element in the sequence.

23

Other Set Operations and Typing

In the case of set union and intersection and difference, the types must be checked that the
two operands are the same sort of set, i.e. each shows its type as “T POW”. Relational overriding,
using the & operator replaces values in a relation on the left by values in the same domain in the
right operand; overriding of s by ¢ is written as s & ¢ and can be implemented in FORTH as
“s t OVERRIDE”. So each operand must be a relation of the same type, e.g. “S T PROD”.

The typing for other operations can be more difficult. For example the domain restriction
operation, using the < operator requires the left operand be a set of type “T” and the right operand
be a relation from “T” to a type “U”. So R < S returns a relation from S of all those elements whose
domain is included in the set R, and if the type of R is “T POW”, the type of S must be
“T U PROD POW”.

24

Results

We demonstrate a compiler for expressions which can be simply constructed with a recursive
architecture. Each component is relatively simple, the most complicated one being a version of rl-lex
which can distinguish “-” as a binary or infix operator, for subtraction, from “-” as a unary prefix
operator, which occupies 41 lines when comments are excluded. The operation of the compiler can
easily be seen by running a FORTH virtual machine. The expression can be fed onto the stack,
followed by the name of the operation to compile it, and the output (highlighted in pale grey) can be
seen with the .AZ command; feeding this output back to FORTH e.g. with “copy-and-paste”
initiates the second pass of compilation, which produces the type “INT” and the postfix expression
123 *+ 4/ which evaluates to 2.

"1+ 2 * 3/ 4" Pexpression .Az " 1" " INT" " 2" " INT" " 3" " INT" *_
" 4" " INT" /

| _|

ok

* 1™ " INT™ " 2" "™ INT" "™ 3" "™ INT" * ok....

+_ ok..

" 4" " INT" /_ ok..

.AZ INTok.

.AZ 1 2 3 * + 4 /ok
123 *+4/ .20k

More complicated expressions can also be analysed. This set expression produces the
intermediate result highlighted in grey, and the second output “INT POW” and “INT { 1,2,3, }

" {1, 2, 3}" Pexpression .AZ {_

" 1" " INT" ,_

"o2" " INT" ,_

" 3" " INT" }_
{_ok...

"1" " INT" , ok...
"2" " INT" r_ ok...
" 3" " INT" } ok..

.AZ INT POWok.
LAZ INT {1, 2, 3, jok
INT {1, 2, 3, } .SET {1,2,3}0k

Similarly, nested and bracketed expressions can be compiled, for example:

" (1 + 2) * 3/ 4" Pexpression .Az " 1" " INT" " 2" " INT" +_
" 3" " INT" *_

" 4" " INT" /_

ok

" 1" " INT" "™ 2" " INT" + ok..

" 3" " INT" *_ ok..

" 4" " INT" /_ ok..

.AZ INTok.

AZ 1 2 + 3 *x 4 /ok
12+ 3 * 4/ .2 ok

This expression also evaluates to 2.

25

Discussion

“The primary criterion for a parsing algorithm is that it must be efficient.” (Bennett 1996,
page 80).

Unfortunately, for each stage, it is necessary to traverse the String representing the
expression at each of these stages. As described humorously by Spolsky (2001), traversing a
null-terminated (or ASCIIZ) String takes a time proportional to the length of the String. Also, the
number of traversals is roughly proportional to the number of operators, which again depends on the
String’s length. Our compiler must therefore run in quadratic time (O(n?) complexity). So its utility
for compiling long programs must be limited, but performance will be better if a large program can
be divided into small functions or operations. It may be possible to enhance the FORTH RVM by
adding persistent memory, allowing the output from the first pass of compilation to be retained for
use by the second pass.

We have, however, demonstrated a compiler for expressions which the writer and reader can
simply understand, and which can easily be expanded to complicated expressions. This compiler has
the unusual feature that it recursively seeks operators or connectives, rather than going through the
text from left to right. It is quite easy to examine and interpret the code, which makes this technique
a potential teaching and research tool. Compilers created with automated tools, e.g. yacc (Johnson,
1975) and lex (Lesk 1975) create much code which is difficult to understand at first reading, and
does not lend itself to didactic use.

This compiler is suitable for expansion. For example, it would be easy to add Boolean
expressions, including conjunction disjunction and implications. It would also be possible to add
more operators of different precedences to the grammar, and intersperse parsers to accommodate
those operators.

The grammar, as we have written it, easily permits arbitrary recursion both to left and right.
This can be seen in the parse trees, and can be seen where the keyword RECURSE appears in the
parsers.

Further Work

We plan to add control structures, to implement assignments, loops and selection
(if-then-else blocks). These will necessitate Boolean values to control their flow. For assignment, it
will be necessary to declare variables before use, so a technique to add variables and their types to a
lookup table is needed. Since Bohm and Jacopini (1966) demonstrated that programs of arbitrary
complexity can be assembled from elements of sequence, selection and iteration, these control
structures are sufficient to build a language capable of any operations. As well as these, additional
control structures, including choice and guards, can take advantage of the reversible virtual machine
described by Stoddart Lynas and Zeyda (2010).

We shall need a parsing method for Strings, using the opportunity for nesting “smart” quotes
provided by Unicode support. It will be necessary for such quotes to be nested in pairs; this
following example, which quotes Milne (1926) shows such nesting:

“ “In Which Pooh Goes Visiting and gets Stuck in a Tight Place” by A A Milne
includes the following:

“Pooh . . . said that he must be going on. “Must you?” said Rabbit politely.
“Well,” said Pooh, “I could stay a little longerif...”””

It is easy to count from end to end of such a String, until both opening and closing quotes

26

have been identified.

We hope to implement higher order functions, including A expressions; these may require
both a definition of the function and insertion of its input and output types into a lookup table.
Some functions may be implementable as sets of ordered pairs from input to output.

It may also be possible, after a full language is written, to bootstrap the compiler by
rewriting it in the new language.

Conclusion

We have demonstrated a two-pass compiler for a rich expression language; one can execute
the two passes separately or together. It supports strongly-typed sets and sequences, following the
conventions of B. This compiler is made up of small, mostly simple modules which are assembled
to form a parse tree, and uses operations called after the operators, tagged with a _ character, to
complete the compilation.

Since parse trees have a structure very similar to the postfix notation used in FORTH, it is
simple to convert a parse tree to FORTH code which can be executed directly.

27

References
Abrial J-R 1996. the B Book Cambridge: Cambridge University Press.

Bennett J P 1996. Introduction to Compiling Techniques. A First course using ANSI C, lex and yacc
2/e (the McGraw-Hill International Series in Software Engineering) Maidenhead: McGraw-Hill

Hehner Eric C R 1981. Bunch Theory: a Simple Set Theory for Computer Science. Information
Processing Letters 12(1): 26-30

Bohm C, Jacopini G. Flow diagrams, Turing machines and languages with only two formation
rules, Communications of the Association for Computing Machinery 9(5): 366-371

Gosling J, Joy B, Steele G and Bracha G 2005, The Java Language Specification 3/e (Java Series)
Upper Saddle River NJ: Prentice-Hall, also available at
http://java.sun.com/docs/books/jls/third edition/html/j3TOC.html Accessed 15th September 2010

Hehner Eric C R 1993. A Practical Theory of Programming. Texts and Monographs in Computer
Science. Berlin: Springer-Verlag. A more recent edition is available at
http://www.cs.toronto.edu/~hehner/aPToP/ accessed 17th June 2010.

Johnson S C 1975. Yacc—Yet Another Compiler-Compiler. Comp. Sci. Tech. Rep. No 32, Murray
Hill NJ: AT&T Bell Laboratories, July 1975.

Lesk M E 1975. Lex—A Lexical Analyzer Generator. Comp. Sci. Tech. Rep. No 39, Murray Hill NJ:
AT&T Bell Laboratories, October 1975.

Levine J R, Mason T, Brown D 1992. lex & yacc 2/e. Sebastopol CA: O’Reilly & Associates, Inc.

Lynas A R, Stoddart W J 2008. Using Forth in a Concept-Oriented Computer Language Course, in
ed. A Ertl, Proceedings of the 25th EuroForth Conference, Wien, pages 7-19. Available at
http://www.complang.tuwien.ac.at/anton/euroforth/ef08/papers/proceedings.pdf, accessed

15th June 2010.

Milne A A, 1926. Winnie the Pooh London: Methuen & Co Ltd., and other publishers.

Ritchie C, Stoddart W J 2009. Formulating Type Tagged Parse Trees as Forth Programs. in ed. A
Ertl, Proceedings of the 25th EuroForth Conference, Exeter, pages 11-22. Available at

http://www.complang.tuwien.ac.at/anton/euroforth/ef09/papers/proceedings.pdf, accessed
16th June 2010.

Spolsky J 2001, Back to Basics http://www.joelonsoftware.com/articles/fog0000000319.html
accessed 15th June 2010, also available as Back to Basics, in Spolsky J 2004, Joel on Software.
Berkeley CA: Apress, pages 5-15

Stoddart W J, Lynas A R, Zeyda F 2010. A Virtual Machine for Supporting Reversible Probabilistic
Guarded Command Languages. Electronic Notes in Theoretical Computer Science 253(6): 33-56,
also available at http://www.www.elsevier.com/locate/entcs accessed 17th June 2010

W. J. Stoddart and F. Zeyda. Implementing Sets for Reversible Computation. In ed. A Ertl, 18th
EuroForth Conference Proceedings, 2002. On-line proceedings, available at
http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/ accessed 21st June 2010.

28

Appendix

The expression grammar is given here, in bunch notation (Hehner, 1981 and Hehner, 1993).
The comma is an operator representing bunch union, including all members of both bunches which
are its operands. As an example, if “A” means the bunch of all strings representing arithmetic
expressions and “A;” means the bunch of all strings representing terms in arithmetic, and “+” means
joining or catenating two strings around a + sign (with or without spaces), etc., we can regard the
top line in an arithmetic grammar as

A=A “+" A, A “—* A, A

... 1.e. the bunch of strings constituting arithmetic expressions followed by + followed by an
arithmetic term, AND arithmetic expressions followed by — followed by a term, AND arithmetic
terms. There may be white-space between the sub-expressions and the operator. Another definition
of “arithmetic term” or A, is an arithmetical expression which does not contain + or — as its
lowest-precedence operator.

The following abbreviations are used:

e L A comma separated list of expressions. In this case, the underlined comma , is used
to represent a literal comma rather than bunch union. L=L_E, L

An expression

A boolean expression

An expression representing a pair

An expression representing a set

An expression representing a string or a set

An arithmetic expression (expression representing a number)

Numeric literal

String literal

An identifier

Details of the grammar of some non-terminals, e.g. string and numeric literals, are omitted below.

— ¥ Z» < ®n T WM

E = B“="B,, E

E, = B,*="B,, BE

E2 = Bz “/\” B3 . B2 « V” B3 N E3

E; = “=" Bs, E4

E,4 = E“€” S, E“¢”S, E,“="Es, E, “#” Es

Es = A“<” A, A“<" A, A7 A, A“2" A, E¢

E¢ = S“C”S, S“g”S, S“C”S, S«“¢” S, E;

E; = E;“»”Ey, Eg

Es = Es “\VV Eo, Es“U”Ey, Es“nN”Ey, Es“®”Ey, Eo

E9 S3 “g” Sz . S3 ‘g Sz 5 E10

E10 = Sz ““”E . \% > W1 , S2 “>” S3 N Sz ‘o S3 N Sz “U7A ,
Sz “17 A . EM

EH = A “+” A1 , A <7 A1 , E12

E12 AI o AZ s Al “r AZ ’ E13

E13 “ A3) E]4

Ew = N, S, L, F, ‘L.
LU SCEYY, A

29

B,
B;
B,
Bs
Bs
B,

S>

S;

W,

A,
As
As

B“="B,
B,“="B,
B, “A” Bs,
" B,
E“e” S,
A“< A,
S“C”S,
“true” ,

S G‘\” S1 ,
S “4” Sl ,
S 6‘ 29 E

A“+7 Ay,
A A,
A,

I,

NI<E

B,

B,
B,“V”B;,
B4
E«“¢”S
A7 A,
S “,¢_” S
“false

”

b

S“U”S,,
S, “a” Sy,
S:7 85,

82 “l” A)

F,

W< mwW,,
82 “l” A ,
F,

A A
AT A,,
A,
F,

B;

E «_» E4 ,
A2 A,
S“C”S,
I,

S “ 29 S] ,
S,

S “ ” S3 ,
S;

13 &l (13 A
{"L*}7,

S2 “D” S3 ,
W,

I3 i (IR R&i
{"L*}7,

E4 “¢” E4
A “S” A, B6
S “¢” S , B7

I“C"L ™7, “"BY)”
S“®@”S,, Sy

S “>-"S3, St A,
‘L, eSS, A
S, “>-" S5, ST A,

“[7’ L ‘6]’9 , GG(” W 6‘)” , A

“(7’ A 6‘)”

3 Here the underlined A is used to represent a literal A in the text, rather than a A expression.

30

EuroForth 2010
Securing a Windows 7 Public Access System Using Forth

S.N. Arhipov Mg.Sc.Eng. apx @micross.co.uk
N.J. Nelson B.Sc C.Eng. M.LLE.E. njn@micross.co.uk
Micross Automation Systems, Units 4-5, Great Western Court, Ross-on-Way,
Herefordshire HR9 7XP, Tel. +44 1989 768080, Fax. +44 1989 768163.

Abstract

Very often in industrial conditions the real time program system is used by one or more
operators, who have computer qualification and experience only in using this program.
Therefore, it is very important, that this special group of users is allowed to use only this
program and not allowed to use all other programs in the computer. At the same time it is
necessary to keep multi user environment and allow the administrator to use all system
opportunities. Herewith, only the administrator can switch between desktops, it should be
quick and should continue executing the programs. In this article the Forth programmatical
technique of disabling some functional features of Windows 7 is described.

Introduction

TRACKNET is a universal software package for tracking and control of work in commercial
laundries. The software consists of two parts. The first is an operator interface program which
runs on a network of Personal Computers (PCs) under the Windows operating system. It is a
Windows application and therefore it can be run simultaneously with all business software.
The TRACKNET operator interface program works with authorised users, who, accordingly,
can have two roles: as an operator and as MICROSS administrator. These roles are specified
and registered in the TRACKNET program and while using this program an operator has some
functional limitations and also has no opportunity to switch to another program application or
to press Ctrl1+Alt+Del keys, because this action is intercepted and forbidden by the
TRACKNET program.

Nevertheless, in the Windows Vista and Windows 7 operating systems it is impossible to
intercept Ctrl+Alt+Del. Experiments with keyboard hooking, using
SetWindowsHookEx () function, and the WM_HOTKEY message trapping code injection
into the main windows procedure did not give a positive result because of the hook procedure

LRESULT KeyboardProc(...)

{
if (Key == VK_CTRLALTDEL) return 1;
return CallNextHookEx(...);

and hot key catching in Windows main procedure

LRESULT CALLBACK NewWindowProc
(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM

31

1Param)

{
if (uMsg == WM_HOTKEY)
if (lparam == MAKELONG (MOD_CONTROL | MOD_ALT, VK_DELETE))
return 1;
return CallWindowProc (OldWindowProc, hWnd, wParam, lParam);

is activated later than Ct r1+A1t+Del typing event happens, an operating system sets focus
on Windows log off screen.

Therefore, it was decided to use a desktop switching technique, creating a new desktop and
run the TRACKNET program on it in order not to lock into program such system keys as
Alt+Esc, Alt+Tab, Ctrl+Shift+Esc etc., but to isolate one process from another.
Other processes continue running on the "Default" desktop and the screen saver runs on
the "Screen-saver" desktop. All these desktops must be locked until the TRACKNET
process runs on a new desktop and does not finish, or an authorised user switches back to the
"Default" desktop.

| |

Sileger Tracknet is locked.
=~ changa Eine Please press cancel
3 to resume!

Figure 1. Winlogoft desktop before and after commands disabling.

However, the logoff process runs on the "Winlogoff" desktop, which always switches on in
Windows 7 and Windows Vista when the user presses Ct r1+Alt+Del. In this case, when
creating a new desktop, it is necessary to change the background and disable all commands
the "Winlogoff" desktop, except for pressing the “Cancel” button, and resetting the
"Winlogoff" desktop to initial state, when an authorised user switches on the "Default"
desktop. The initial state of the logoff screen and its transformation are illustrated in Figure 1.

Startup program overview

Program TrStarter.exe manages two processes: creating, if it does not exist, a new
executable process TRACKNET . EXE in a new desktop, and disable all desktop commands:
“Log off”, “Lock this computer”, “Change a password...”, “Start
Task Manager”, “Switch User” as well as disable “Shut down” and “Ease of
access” buttons (Figure 1.) on the "Winlogoff" desktop. On starting the program

32

TrStarter.exe a new desktop is switched on with a new background image
backgroundDefault. jpg from a specially created directory
Currentdirectory\DESKTOPRES. Now any user has an opportunity to work solely
with TRACNET program.

All another programs continue running on the "Default" desktop. Only a user with
corresponding privileges, using “File\Switch desktop” command, can switch the
desktop back without closing the TRACNET program. Next time when a starter program tries
to return the focus to a new desktop, it can recognize if the TRACNET program is running or
not and correspondingly not create a new process. In the TRACNET program, with the help of
the “File\Exit” command, the start up desktop takes the focus and TRACKNET is closed
(Figure 2.).

Starter process

e pr—————————

{ Create deskiop]

Y

Fal
P A
il

N Mo

Is Tracknet [C reate Tracknet pro cess]---
runrng 7
Yes]

.................................... .

Tracknet
process

| processing

Disable Logoffcommands]

¥

Switch On "MyDesk” deskio p] Iy

e

[————————— Eey———

\ ; >

i N/

:: Is user

1 =

i admi or?
n *F’ i

I
i [SwitchOn s
¥ i: L'D&ﬁlult" desktap i

Enable Logoffcommands

MG

o
S

Figure 2. Starter TrStarter.exe and Tracknet .exe processes activity diagram.

TRACNET is a program which is implemented using ProForth for Windows V2.100 and
which already has been successfully commercially used more than ten years [1].
TrStarter starter program is implemented using VFX Forth for Windows (4.41. 29
March 2010) [3] in order to execute the TRACKNET program in the operating systems Vista
or Windows 7 [2] .It uses WinApi 32 functions for processes, windows registry, files and
directories management.

33

C structures mapping in Forth

To create a new process it is necessary to use two structures. The first of them 1is
STARTUPINFO, which specifies a window station, desktop, standard handles, and the
appearance of the main window for a process at the time of creation. The table below
specifies this structure in Forth and C notations, and fields, which are used in a process
creation, are represented as comments in the third column of the table below.

Forth notation C definition Used fields
STRUCT STARTUPINFO typedef
struct _STARTUPINFO ({
DWORD field SI.CB DWORD cb; \ Size of structure
DWORD field lpReserved LPTSTR lpReserved;
DWORD field SI.LPDESKTOP LPTSTR lpDesktop; \ Name of desktop
DWORD field 1lpTitle LPTSTR lpTitle;
DWORD field dwX DWORD dwX;
DWORD field dwyY DWORD dwy;
DWORD field dwXSize DWORD dwXSize;
DWORD field dw¥YSize DWORD dwYSize;
DWORD field dwXCountChars DWORD dwXCountChars;
DWORD field dwYCountChars DWORD dwYCountChars;
DWORD field dwFillAttribute DWORD dwFillAttribute;
DWORD field dwFlags DWORD dwFlags;
WORD field wShowWindow WORD wShowWindow;
WORD field cbReserved2 WORD cbReserved?2;
DWORD field lpReserved2 LPBYTE lpReserved2;
DWORD field hStdInput HANDLE hStdInput;
DWORD field hStdOutput HANDLE hStdOutput;
DWORD field hStdError HANDLE hStdError;
END-STRUCT }
STARTUPINFO,
*LPSTARTUPINFO;

The second structure that needed to create a new process is PROCESSINFORMATION. It
contains information about the newly created process and its primary thread. In the table
below this structure is specified in Forth and C notations. This structure is used as an output
parameter of the CreateProcess () function in order to use process handle closing time.

Forth notation C language definition
STRUCT PROCESSINFORMATION typedef struct _PROCESS_INFORMATION ({
DWORD field hProcess HANDLE hProcess;
DWORD field hThread HANDLE hThread;
DWORD field dwProcessId DWORD dwProcessId;
DWORD field dwThreadId DWORD dwThreadId;
END-STRUCT }
PROCESS_INFORMATION,
*LPPROCESS_INFORMATION;

Entry function of starter program is

RUN (-——) { | si[STARTUPINFO] pi[PROCESSINFORMATION]
res }
’
, Where local variables si[and pi[are defined. Structure si [is initialised in a Forth
program by setting values into two fields:
STARTUPINFO si[SI.CB ! \ Set size of structure

34

DESKTOPNAME si[SI.LPDESKTOP ! \ Set name of desktop
The function RUN creates a new desktop with the help of function CreateDesktop (),

using parameter values in Forth notation:

Forth notation C notation

\ |HDESK CreateDesktop (
DESKTOPNAME \ |in LPCTSTR lpszDesktop, \ The name of the desktop to be created.
NULL \ LPCTSTR lpszDevice, \Reserved; must be NULL.
NULL \ DEVMODE * pDevmode, \ Reserved; must be NULL.
0 \ |in DWORD dwFlags, \ The access to the desktop
DESKTOP_SWITCHDESKTOP \ [in ACCESS_MASK dwDesiredAccess, \The access to the desktop
NULL \ |in LPSECURITY_ATTRIBUTES lpsa \ A pointer to a structure
CreateDesktop \)

After a new desktop and startup information has been created TRACKNET process is created
on a new desktop.

Process creation and monitoring

Using Win32-based Spy++ (SPYXX.EXE) utility, it is possible to view the system’s
processes, threads, windows, and window messages, but impossible to view the name of a
desktop, or the name of both the desktop and window station for those processes. The starter
program was executed in two different ways — on a default and a new separated desktop, and
the results can be seen on Figure 3. When the starter program is running on a new desktop (
right window), but Spy++ is running on a default desktop, it is possible to view only a
process and its threads, but the actual desktop and windows of process are invisible.
Anywhere Spy++ gives useful information about system's object names and its identification.
It is important information, that can be used during testing of the process of creating new
desktop.

i y g
& Microsoft Spy++ - Processes 1 L"‘:’ = ﬁ A] Microsoft Spy++ - Processes 2
Sp}r Tree Search View Wlndow Help Sp'_l,r Tree Search View Wlndcvw Help
O® o | |5 d i 0 *Z:*DIC:TI%IMP B
@ Processest (=8B X o el |
Qe; Process E-H-DDMMSYSTEM @) Procese 00000004 SYSTEM
4y Process 00000238 CSRSS @ Process 00000238 CSRSS
-4 Process 00000270 WINLOGON Mgy Process 00000270 WINLOGON
-} Thread 00000274 WINLOGON & Thread 00000274 WINLOGON
& Thread 00000380 WINLOGON & Thread D0000380 WINLOGON
w4 Thread 00000838 WINLOGON & Thread 00000838 WINLOGON
-4 Process D0000D28 TRACKNET [Process 00000890 TRACKMNET
& Thread 000009AD TRACKNET [0| & Thread 00000918 TRACKNET
i Window D04BOEF2 "TRACKNET starter” MPE_1C
I 1 Window 001FD4F4 "MSCTFIME UI" MSCTFIME UI
: Window 004311AD "Defautt IME" IME
5@ Process DODDO7AS SPYXX
For Help, press F1 NUM I Fcrr Help press F1 NU

Figure 3.
"Default" desktop (left window) and when running on new desktop (right window).

Starter TrStarter processes, threads and windows when running on

35

The first step of the starter program TrStarter is to identify if the TRACKNET process is
running or not. Forth function

CHECKISTRACKNETRUNNING

{ | res processhandle modulehandle —-- £ }

’
examines all processes that are running (Figure 6.) and compares the names of the modules
with the name TRACKNET . EXE. If there are no such names in the module name list then the
function returns the value false, and for the rest, value t rue.

Set result=true
et result=true s
cat Etiin 2N Open Get a handle Get N
result=false FOCES5Es » ' M ent Tor e of igin - o
g oA Process process base name
Ard all I= module nane
prOCEsses "Tracknet”
exam|ned ¥
Hres O
Figure 4. Activity diagram of function CHECKISTRACKNETRUNNING

There are three local variables in CHECKISTRACKNETRUNNING function. Result variable
res is a temporary value storage. In the loop, variable processhandle sequentially sets
the values, which are the handles of the all processes running in the system. Variable
modulehandle sets a value, which is a handle of the module of each process. There may be
many modules in one process, but function CHECKISTRACKNETRUNNING examines only
first module in each process and therefore there is only one loop for looking over all
processes.

The fist used WinApi function has the signature
BOOL WINAPI EnumProcesses

(out DWORD *pProcessIds, in DWORD cb, out DWORD
*pBytesReturned) ;
and it retrieves the process identifier for each process object in the system. The use of this
function is necessary in three objects:
. an array size constant, correspondent to input parameter cb
| 4096 CONSTANT SIZEOFARR
. a pointer to an array of process identifiers, correspondent to the output parameter
pProcessIds
‘ CREATE ARROFPROCIDS SIZEOFARR ALLOT
. the number of bytes returned in the array of process identifiers, correspondent to the
output parameter pBytesReturned
‘ VARTIABLE NUMBEROFBYTESRETURNED

In this case calling of EnumProcesses () function in Forth notation is:
ARROFPROCIDS SIZEOFARR NUMBEROFBYTESRETURNED FnumProcesses
DROP

36

Mo

When all system processes are enumerated it is possible to examine every process cyclically
using the function
HANDLE OpenProcess (in DWORD dwDesiredAccess,

in BOOL bInheritHandle,

in DWORD dwProcessId);
that opens an existing local process object and returnes the handle to the process according to
its identifier. Function
BOOL EnumProcessModules (in HANDLE hProcess, out HMODULE
*1phModule, in DWORD cb, out LPDWORD lpcbNeeded) ;
retrieves a handle for each module in the specified process.

In every loop before process opening, into the variable, that is defined as
‘VARIABLE PROCESSID

the identifier of current process is loaded

‘ARROFPROCIDS I CELLS+ @ PROCESSID ! \Set the current process ID

Using the current process identifier, which is the PROCESSID variable, calling the
OpenProcess () function returns an open handle to the specified process.
PROCESS_QUERY_INFORMATION PROCESS_VM_READ OR \The access to the process
FALSE \ Processes do not inherit this handle
PROCESSID (@ \ Current process ID

OpenProcess —> processhandle

Continuing a loop, the function EnumProcessModules () retrieves a list of handles of
process modules

processhandle \ A handle to the process from OpenProcess()

ADDR modulehandle \ An array that receives the list of module handles
SIZEOFDWORD \ The size of the array, in bytes\
NUMBEROFBYTESNEEDED \ The number of bytes required to store handles in the array
EnumProcessModules —> res \If the function succeeds, the return value is nonzero.

There are two specifics calling this function in the Forth program. The first of them is the use
of the second parameter modulehandle, witch must be specified by type HMODULE *.
Basically, it is an address of variable modulehandle and in Forth program the ADDR word
is used. The second specific aspect is the using of the third parameter. In the function
signature it is defined as DWORD type number, but it is not a count of elements in an array, but
textually it is the size of the module handle address — simply constant

| 4 CONSTANT SIZEOFDWORD

Last WinApi function in the loop is
DWORD GetModuleBaseName (in HANDLE hProcess, in HMODULE
hModule, out LPTSTR lpBaseName, in DWORD nSize);

that retrieves the base name of the specified module. The handle of module is loaded in a
local variable modulehandle and the handle of process is loaded in local variable

processhandle

Therefore, calling this function
processhandle \ A handle to the process that contains the module.

37

modulehandle \ A handle to the module.

MODULEBASENAME \ A pointer to the buffer that receives the base name of the module
MODULEBASENAMESIZE \The size of the buffer, in characters

GetModuleBaseName DROP

retrieves the base name of the specified module into the output parameter
MODULEBASENAME. Its corresponding parameter in the function signature has LPTSTR type.
In the Forth program this parameter is defined as a buffer with length 1024:

1024 CONSTANT MODULEBASENAMESIZE
CREATE MODULEBASENAME MODULEBASENAMESIZE ALLOT

Likewise, the received value of the current module name is compared with the “TRACKNET”
string and if they are equal then function CHECKISTRACKNETRUNNING returnes the value
true.

Windows registry editing

When a new desktop has been created, it is necessary to disable all commands (Figure 1.)
except “Cancel”. This command disabling technique is based on Windows registry key
editing. The data structure of Windows registry structure is represented in Figure 5. It is a
hierarchical structure of keys and their sub keys. Every key can have many or no values at all;
every key value is a structure with three attributes — name of value, type of value and data that
is stored into the key value.

REG_SZ
REG_QWORD
REG_DWORD
3 REG_BINARY
ubkey Type
Key Value 1 Data
’ 17 1] Name
HKEY_CURRENT_USER 1
HKEY_LOCAL_MACHINE - — = -
stry Editor D e e
| HKEY_USERS 2 Registy —
File Edit View Favorites Help
| HKEY_CLASSES_ROOT « 78 Computer — il Dk

| HKEY_CLASSES_ROOT

| HKEY_CURRENT USER || oot
HKEY_LOCAL_MACHINE
HKEY_USERS
HKEY_CURRENT_CONFIG

Computer\HKEY_CURRENT_USER

Figure 5. Structure of Windows registry

In order to disable a command on the Ilogoff window, it 1is necessary in
HKEY_CURRENT_USER root for

Software \Microsoft\Windows\CurrentVersion\Policies\Explorer key
to create a value with a corresponding name type and data as seen in table below.

38

Name of key value Type of key value Data of key value Disable action

NoLogoff DWORD 1 “Logg off”
NoClose DWORD 1 “Shut Down”
But for the

Software\Microsoft\Windows\CurrentVersion\Policies\System
key it is necessary to create a value according to the table below.

Name of key value Type of key value Data of key value Disable action

DisableLockWorkstation DWORD
DisableChangePassword DWORD
DisableTaskMgr DWORD
HideFastUserSwitching DWORD

“Lock this computer”
“Change a password...”
“Start Task Manager”
“Switch User”

In order to enable any command, the corresponding data of key value must be deleted or set
to zero. It is possible to do it manually using the regedit .exe editor. But there are four
WinApi functions for key management (Figure 6.) and two WinApi functions, with the help
of which it is possible to manage values for the given key.

T
s Key Value

<<yses>>

management management

<<uses>> <<|ses>> —

X Delete

user

Figure 6. Functionality of Windows registry keys and values

The starter program uses such registry functions as:
* RegOpenKeyEx () - opens the specified registry key,
* RegCloseKey () -closes ahandle to the specified registry key,
* RegSetValueEx () - sets the data and type of a specified value under a registry key,
* RegDeleteKeyValue () - removes the specified value from the specified registry key
and sub key.
In the disable command the sequence of calling functions is shown on Figure 7. This is the
activity sequence of the Forth word
REGKEYSETVALUE (predefinedkey keyname valuename value —--—-)
{ predefinedkey keyname valuename value | res }
, which set the value into the registry key. It receives input values into local variables
* predefinedkey, that must be a predefined constant HKEY_CURRENT_USER,
* keyname, that has one of two string values “. . . \Explore”or “...\System”,
* valuename - isone of the strings from the first column from the tables above,
* value - mustbe 1 to disable a command.

39

¢ '_4“){ et value)—){ Close key

Figure 7. Activity diagram of function, that disable command

Mot ok

The fourth function REGKEYSETVALUE tries to open the key using function
RegOpenKeyEx () with input parameter values predefinedkey and keyname (table
below). If the function fails, the return value is a nonzero error code.

Forth notation C language signature
\ |[LONG WINAPI RegOpenKeyEx (
predefinedkey\ |in HKEY hKey, \ handle to registry key = HKEY_CURRENT_USER
keyname \ |[in LPCTSTR lpSubKey, \The name of the registry subkey to be opened.. f
0 \ [DWORD ulOptions, \mustbe zero

KEY_SET_VALUE\ |in REGSAM samDesired,\A mask that required to create, delete, or set a registry value
PHKEYRESULT \ |out PHKEY phkResult \A pointertoa variable that receives a handle to the opened key
RegOpenKeyEx \ |);

-> res

Key value setting is executed calling function RegSetValueEx () in Forth notation, that
can be seen in table below.

Forth notation C language signature

LONG WINAPI RegSetValueEx (
PHKEYRESULT @ \' |in HKEY hKey, \ A handle to an open registry key
valuename \' |in LPCTSTR lpValueName, \The name of the value to be set
0 \ DWORD Reserved, \ must be zero
REG_DWORD \' |in DWORD dwType, \ int type of data
ADDR value \ |in const BYTE * 1lpData, \ The data to be stored
4 \ |in DWORD cbData \ The size of the data to be stored
RegSetValueEx \)

The use of RegSetValueEx () function has some particular features. The function fourth
parameter dwType is predefined and has a value from the set — REG_BINARY,
REG_DWORD, REG_QWORD etc. depending on the type (Figure 5.) of the value data to be
stored. In the case of the command’s disability it uses only value 1, that has type int or
predefined value REG_DWORD. The second particular feature is that there are many of data
types which it is possible to store in the registry key value. Therefore in the general case it is
specified as const BYTE *1lpData — pointer to first byte of memory segment with
storage data. In Forth notation the ADDR word is used, which is the address of a variable
value, that is received as an input parameter of the REGKEYSETVALUE word. The last
parameter value of RegSetValueEx () function is simply 4 — the size of int type.

Function RegCloseKey () (table below) closes the opened registry key, using its handle as
the parameter.

40

Forth notation C language signature

LONG WINAPI RegCloseKey (

PHKEYRESULT @ in HKEY hKey \ A handle to an open registry key
RegCloseKey) ;

Switching the "Default" desktop, program TRACKNET back on enables all logoff
commands. It deletes key values NoLogoff, NoClose DisableLockWorkstation,
DisableChangePassword, DisableTaskMgr, HideFastUserSwitching
from the registry using function RegDeleteKeyValue (table below).

Forth notation C language signature

LONG WINAPI RegDeleteKeyValue (
predefinedkey in HKEY hKey, \ A handle to an open registry key.
keyname in LPCTSTR lpSubKey, \ The name of the registry subkey
valuename in LPCTSTR lpValueName \The registry value to be removed from the key
RegDeleteKeyValue) ;

Desktop background changing

Using function CopyFile () a new background image, placed in a reserved folder and has
the same name as original desktop image backgroundDefault. jpg, is copied into the
folder C:\Windows\System32\oobe\Info\backgrounds and replaces the original
background with the new one. Switching "Default" desktop back on, the original
background image is restored from the reserved folder, replacing the image in its own folder.
Function CopyFile () signature and its usage is represented in table below.

Forth notation

LOGINIMAGENAME \The name of an existing login image file from reserved folder.

LOGONINFOIMAGE \The name of the new login image file in C:\Windows\System32\oobe\Info\backgrounds
FALSE \ Overwrite if file already exist

CopyFile

C language signature

BOOL CopyFile (

in LPCTSTR lpExistingFileName,
in LPCTSTR lpNewFileName,

in BOOL bFailIfExists);

In order to make the copying process successful, it is necessary to set corresponding
permissions for the MICROSS administrator role. It is passible to do manually, using the
Application Data Property editor for changing file ownership and security settings. But these
steps can be executed programmatically.

Setting administrator permissions
To enable administrators to take ownership of shares is possible, using the command-line

utility TakeOwn, but to manage security settings of files and folders is possible, using
command-line tool Icacls. In order to use them, the Win32 function ShellExecute () 1S

41

used in a program. This function signature and its usage are represented in the tables below.

Forth notation C language signature

HINSTANCE ShellExecute (
0 in HWND hwnd, \A handle to the owner window
z" open" in LPCTSTR lpOperation,\A verb, that specifies the action

\ to be performed: ,.,edit”, ,,open”, ,,print” etc.
7" cmd.exe" in LPCTSTR lpFile, \The object on which to execute
\ the verb.
Z" /c takeown /f C:\im.jpg" in LPCTSTR lpParameters,\The parameters to be passed
\ to the application

z" " in LPCTSTR lpDirectory, \Pointer to working directory
0 in INT nShowCmd \The flag how to display
ShellExecute \ application

)

Forth notation

\ Applaing stored DACLs to files in specified directories for Administrators
0
Z n Open n
Z" cmd.exe" \opencmd.exe and execute Icacls utility
z" /c Icacls C:\im.]jpg /grant BUILTIN\Administrators: (F) "
Z n n
0
ShellExecute

Conclusions

In result, the program TrStart allows to start any program in separated desktop and to
restrict some users from all others program's execution, including task manager and all logoff
commands. It is possible to tune the TrStart program in order to configure concrete user
permissions. For users with the appropriate privilege it is enable to switch on default desktop
by the new “Switch desktop” menu entry. The program TrStart allow return to the
new desktop without restarting the base program, if it is already running.

Information sources

[1] N.J. Nelson, “Experiments in real time control in Windows using Forth”, 20
euroForth Conference, Dagstuhl Castle, November 19-22" 2004.

[2] Yochay Kiriaty, Laurence Moroney, Sasha Goldshtein, Alon Fliess “Introducing Win-
dows® 7 for Developers”, Microsoft Press, 2010.

[3] Microprocessor Engineering Limited, VFX Forth for Windows Native Code ANS
Forth Implementation, User manual 4.41 29 March 2010

42

J1: a small Forth CPU Core for FPGAs

James Bowman
Willow Garage
Menlo Park, CA

jamesb@willowgarage.com

Abstract— This paper describes a 16-bit Forth CPU core,
intended for FPGAs. The instruction set closely matches the
Forth programming language, simplifying cross-compilation.
Because it has higher throughput than comparable CPU cores,
it can stream uncompressed video over Ethernet using a simple
software loop. The entire system (source Verilog, cross compiler,
and TCP/IP networking code) is published under the BSD
license. The core is less than 200 lines of Verilog, and operates
reliably at 80 MHz in a Xilinx Spartan®-3E FPGA, delivering
approximately 100 ANS Forth MIPS.

I. INTRODUCTION

The J1 is a small CPU core for use in FPGAs. It is a 16-
bit von Neumann architecture with three basic instruction
formats. The instruction set of the J1 maps very closely to
ANS Forth. The J1 does not have:

« condition registers or a carry flag

 pipelined instruction execution

o 8-bit memory operations

¢ interrupts or exceptions

o relative branches

o multiply or divide support.

Despite these limitations it has good performance and code
density, and reliably runs a complex program.

II. RELATED WORK

While there have been many CPUs for Forth, three current
designs stand out as options for embedded FPGA cores:

MicroCore [1] is a popular configurable processor core
targeted at FPGAs. It is a dual-stack Harvard architecture,
encodes instructions in 8 bits, and executes one instruction
in two system clock cycles. A call requires two of these
instructions: a push literal followed by a branch to Top-
of-Stack (TOS). A 32-bit implementation with all options
enabled runs at 25 MHz - 12.5 MIPS - in a Xilinx Spartan-
2S FPGA.

bl6-small [2], [3] is a 16-bit RISC processor. In addition
to dual stacks, it has an address register A, and a carry flag C.
Instructions are 5 bits each, and are packed 1-3 in each word.
Byte memory access is supported. Instructions execute at a
rate of one per cycle, except memory accesses and literals
which take one extra cycle. The b16 assembly language re-
sembles Chuck Moore’s ColorForth. FPGA implementations
of b16 run at 30 MHz.

eP32 [4] is a 32-bit RISC processor with deep return and
data stacks. It has an address register (X) and status register
(T). Instructions are encoded in six bits, hence each 32-
bit word contains five instructions. Implemented in TSMC’s

43

0.18um CMOS standard library the CPU runs at 100 MHz,
providing 100 MIPS if all instructions are short. However a
jump or call instruction causes a stall as the target instruction
is fetched, so these instructions operate at 20 MIPS.

III. THE J1 CPU
A. Architecture

This description follows the convention that the top of
stack is 7, the second item on the stack is N, and the top
of the return stack is R.

J1’s internal state consists of:

e a 33 deep x 16-bit data stack
e a 32 deep x 16-bit return stack
e a 13-bit program counter

There is no other internal state: the CPU has no condition
flags, modes or extra registers.

Memory is 16-bits wide and addressed in bytes. Only
aligned 16-bit memory accesses are supported: byte memory
access is implemented in software. Addresses 0-16383 are
RAM, used for code and data. Locations 16384-32767 are
used for memory-mapped I/O.

The 16-bit instruction format (table I) uses an unencoded
hardwired layout, as seen in the Novix NC4016 [5]. Like
many other stack machines, there are five categories of
instructions: literal, jump, conditional jump, call, and ALU.

Literals are 15-bit, zero-extended to 16-bit, and hence use
a single instruction when the number is in the range 0-32767.
To handle numbers in the range 32768-65535, the compiler
follows the immediate instruction with invert. Hence the
majority of immediate loads take one instruction.

All target addresses - for call, jump and conditional branch
- are 13-bit. This limits code size to 8K words, or 16K bytes.
The advantages are twofold. Firstly, instruction decode is
simpler because all three kinds of instructions have the same
format. Secondly, because there are no relative branches,
the cross compiler avoids the problem of range overflow in
resolve.

Conditional branches are often a source of complexity in
CPUs and their associated compiler. J1 has a single instruc-
tion that tests and pops 7, and if 7" = 0 replaces the current
PC with the 13-bit target value. This instruction is the same
as Obranch word found in many Forth implementations,
and is of course sufficient to implement the full set of control
structures.

ALU instruction have multiple fields:

field width action

T’ 4 ALU op, replaces T, see table II P BB 09 8765 43 210
T— N 1 copy T to N 1 value } literal
R — PC 1 copy R to the PC
T — R 1 Copy T tO R 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
dstack + 2 sTgned mcrement data stack 000 target jump
rstack + 2 signed increment return stack
N — [T] 1 RAM write 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Table III shows how these fields may be used together 001 target }Conditional jump
to implement several Forth primitive words. Hence each of —t——
these words map to a single cycle instruction. In fact J1
executes all of the frequent Forth words - as measured by 010 target }Caﬂ
[6] anq [7] - in a. Single clock CyCle‘ . . 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
As in the Novix and SC32 [8] architectures, consecutive B 2 lx|E |«
ALU instructions that use different functional units can be 01 1]4 T T 1| }ALU
merged into a single instruction. In the J1 this is done by the = i B

assembler. Most importantly, the ; instruction can be merged
with a preceding ALU operation. This trivial optimization, TABLE I: Instruction encoding
together with the rewriting of the last call in a word as a
jump, means that the ; (or exit) instruction is free in almost
all cases, and reduces our measured code size by about 7%,
which is in line with the static instruction frequency analysis

in [7]. code operation
The CPU’s architecture encourages highly-factored code: (1) J{f

o the call instruction is always single-cycle 2 T+ N

o ; and exit are usually free i TTM%V
. or

o the return stack is 32 elements deep 5 TxorN
. 6 ~T

B. Hardware Implementation 7 N=T

Execution speed is a primary goal of the J1, so particular g NN h< thT

. rsni
attention needs to be paid to the critical timing path. This 10 T_1
is the path from RAM read, via instruction fetch to the 11 R
computation of the new value of 7. Because the ALU 12 [T]

. . 13 NlshiftT
operations (table II) do.not depend on any fields in tl}e 14 depth
instruction, the computation of these values can be done in 15 Nu<T
parallel with instruction fetch and decode, ﬁgur.e 1. TABLE II: ALU operation codes

The data stack D and return stack R are implemented
as small register files; they are not resident in RAM. This
conserves RAM bandwidth, allowing @ and ! to operate in
a single cycle. However, this complicates implementation of
pick and roll. ’ . _ 8 N TR T,

Our FPGA vendor’s embedded SRAM is dual-ported. The N AR
core issues an instruction read every cycle (port a)~ and a word 3 o el w _% g | =
memory read from 7" almost every cycle (port b), using the dup T . 1] 0
latter only in the event of an @ instruction. In case of a over N o +1 10
memory write, however, port b does the memory write in the lm’frt TN+TN 01 8
following cycle. Because of this, @ and ! are single cycle swap N o 0ol o
operations'. nip T Y

In its current application - an embedded Ethernet camera - drop]j\f . '(; _(i
the core interfaces with an Aptina imager and an open source - N 1| 41
Ethernet MAC using memory mapped I/O registers. These r> R o o | +1 | -l
registers appear as memory locations in the $4000-$7FFF r@@ [% ° ° +01 8
range so that their addresses can be loaded in a single literal | N 11 o

instruction. TABLE III: Encoding of some Forth words.

Ithe assembler inserts a drop after ! to remove the second stack
parameter

44

addrA dataA| addrA dataA|

RAM

8Kx16

RAM

8Kx16

laddrB dataB|
dataB
weB

laddrB dataB|
dataB
weB

R R

Fig. 1: The flow of a single instruction execution. ALU operation
proceeds in parallel with instruction fetch and decode. Bus widths
are in bits.

C. System Software

Because the target machine matches Forth so closely. the
cross assembler and compiler are relatively simple. These
tools run under gforth [9]. The compiler generates native
code, sometimes described as subroutine-threaded with inline
code expansion [8].

Almost all of the core words are written in pure Forth, the
exceptions are pick and roll, which must use assembly
code because the stack is not accessible in regular memory.
Much of the core is based on eforth [10].

D. Application Software

The J1 is part of a system which reads video from an
Aptina image sensor and sends it as UDP packets over
Ethernet. The PR2 robot running ROS [11] uses six of these
cameras, two in stereo pairs in the head and one in each arm.

The main program implements a network stack (MAC
interface, Ethernet, IP, ARP, UDP, TCP, DHCP, DNS, HTTP,
NTP, TFTP and our own UDP-based camera control proto-
col), handles T>C, SPI, and RS-232 interfaces, and streams
video data from the image sensor.

The heart of the system is this inner loop, which moves
32 bits of data from the imager to the MAC:

begin
begin MAC_tx_ready @ until
pixel_data @ MAC_tx_0 !
pixel _data @ MAC_tx_1 !
1- dup 0=

until

IV. RESULTS

The J1 performs well in its intended application. This sec-
tion attempts to quantify the improvements in code density
and system performance.

45

Static analysis of our application gives the following
instruction breakdown:

instruction usage
conditional jump 4%
jump 8%
literal 22%
call 29%
ALU 35%

An earlier version of the system used a popular RISC
soft-core [12] based on the Xilinx MicroBlaze®architecture,
and was written in C. Hence it is possible to compare code
sizes for some representative components. Also included are
some tentative results from building the same Forth source
on MicroCore.

component MicroBlaze J1 MicroCore
code size (bytes)

I’C 948 132 113

SPI 180 104 105

flash 948 316 370

ARP responder 500 122 -

entire program 16380 6349 -

The J1 code takes about 62% less space than the equivalent
MicroBlaze code. Since the code store allocated to the CPU
is limited to 16 Kbytes, the extra space freed up by switching
to the JI has allowed us to add features to the camera
program. As can be seen, J1’s code density is similar to
that of the MicroCore, which uses 8-bit instructions.

While J1 is not a general purpose CPU, and its only
performance-critical code section is the video copy loop
shown above, it performs quite well, delivering about 3X the
system performance of the previous C-based system running
on a MicroBlaze-compatible CPU.

V. CONCLUSION

By using a simple Forth CPU we have made a more
capable, better performing and more robust product.

Some directions for our future work: increasing the clock
rate of the J1; using J1 in other robot peripherals; imple-
menting the ROS messaging system on the network stack.

Our source code and documentation are available
at: http://www.ros.org/wiki/wgelO0_camera_
firmware

VI. ACKNOWLEDGMENTS

I would like to thank Blaise Glassend for the original
implementation of the camera hardware.

REFERENCES

[1] K. Schleisiek, “MicroCore,” in EuroForth, 2001.
[2] B. Paysan. http://www. jwdt.com/~paysan/bl6.html.
[3] B. Paysan, “bl6-small — Less is More,” in EuroForth, 2004.

(4]

91

[10]
[11]

[12]

E. Hjrtland and L. Chen, “EP32 - a 32-bit Forth Microprocessor,”
in Canadian Conference on Electrical and Computer Engineering,
pp. 518-521, 2007.

E. Jennings, “The Novix NC4000 Project,” Computer Language,
vol. 2, no. 10, pp. 3746, 1985.

D. Gregg, M. A. Ertl, and J. Waldron, “The Common Case in Forth
Programs,” in EuroForth, 2001.

P. J. Koopman, Jr., Stack computers: the new wave. New York, NY,
USA: Halsted Press, 1989.

J. Hayes, “SC32: A 32-Bit Forth Engine,” Forth Dimensions, vol. 11,
no. 6, p. 10.

A. Ertl, B. Paysan, J. Wilke, and N. Crook. http://www. jwdt .
com/~paysan/gforth.html.

B. Muench. http://www.baymoon.com/~bimu/forth/.

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics
and Automation (ICRA) Workshop on Open Source Robotics, (Kobe,
Japan), May 2009.

S. Tan. http://www.aeste.my/aemb.

46

Using Glade to create GTK+ Applications with FORTH.

euroFORTH 2010 - manfred.mahlow@forth-ev.de

September 8, 2010

Abstract

When talking about GUI development with
FORTH, one of the most expressed desires is to
have an IDE or a graphical editor. Some years
ago, when I wrote an object-oriented GTK+
interface for cspForth, an IDE or graphical ed-
itor was not my concern. But, when I recently
decided to port the GTK+ interface to MIN-
FORTH, I remembered that often expressed de-
sire and had a look at Glade and found that
Glade and FORTH can be quite good compan-
ions.

What i1s Glade ?

Glade is a graphical user interface builder for
GTK+. It’s neither an IDE nor a code edi-
tor. It allows to design graphical user interfaces
saved as XML files. The XML files describe the
layout of the GUI, the properties of the widgets
and the signal handling. Since version 3.5.0 two
file formats are supported, an older one to be
used with Libglade and a newer one for Libgtk.

Using a GUI created with Glade is not a tough
task. The usual steps to write the required pro-
gram code are

1. Decision what library to use, Libglade or
Libgtk.

2. Initializing GTK+.

3. Creating a GladeXML or a GtkBuilder ob-
ject per widget hierarchy.

4. Loading the widget hierarchies from the
XMTF file into this objects.

5. Reading widget identifiers from the

GladeXML or GtkBuilder objects.
6. Writing signal handlers.
7. Assigning signal handlers to widgets.
8. Displaying the GUI.

9. Starting the GTK+ main loop.

A GUI created with Glade can be used with
any program language, as long as the language
gives access to the required Libgtk or Libglade
functions.

Glade and FORTH

FORTH and Glade can be great companions.
Let’s have a quick look at a small example, writ-
ten for MINFORTH 1.5(p).

An Example ...

The Graphical User Interface

Our starting point is a GUI created with Glade.
The newer GtkBuilder format is used. The GUI
consists of two widget hierarchies, the main ap-
plication window (windowl in Fig. 1) and a
modal dialog (dialogl in Fig. 2).

Fig. 1 and Fig. 2 show the same Glade instance.
The only difference is the selected widget. In
Fig. 1 it’s windowl, in Fig. 2 it’s dialogl.

The main window is a GtkWindow with only
one child, which is a GtkLabel (labell). The
dialog is a GtkDialog widget and has some
more children, packed into container widgets.
A GtkImage (imagel) and a GtkLabel (la-
bel2) are packed into a GtkHBox (hbox2) which
is packed into the dialogs internal GtkVBox
(dialog-vbox1) and two GtkButton widgets
(buttonl, button2) are packed into the dialogs
internal GtkHBox (dialog-action_ areal).

All packing has been done and all widget, prop-
erties have been set with Glade. The only thing
that can not be done when using FORTH, is to
assign signal handlers with Glade. This is only
possible when using the program language C.

The GUI specification is stored in XML format
(Fig. 3) to be used with the GtkBuilder object
defined in Libgtk.

IMINFORTH 1.5(p) is MINFORTH 1.5 (for LINUX)
with some additional hooks and minor extensions for
the object-oriented GTK+ interface.

47

File Edit View Projects Help

L& i &= SRS » K

v Actions | = o | |< search widgets >
B @Em @ . — windowl

using GtkBuilder with minForTH 1.5(p) = RS
or | ma [gbell
| v Toplevels s : - d:ait?gl
This is a toplevel window. - B dialog-vbox1
O - [0 hbox2
= Closing this window will popup a modal dialog. & imagel
= =at [gbel2
5 a — ooo dialog-action_areal
- buttonl

L—ﬂ&' button2

m e H Objects

=)

= =] Window Properties - GtkWindow [wind...
L General Packing Common Signals |d&,
=l s Name: |window1

- O [H

b- & Accel Groups: |

-0 WMhErnA e Tirme. |Tknlm-n|
| ¥ Control... |

®-

Figure 1: Glade GUI editor, window1 selected

The GTK+ Interface

To transform the GUI into a GUI application,
some program code is required. We’ll use an
object-oriented GTK+ interface here.

The GTK+ classes are mapped to classes of
the same name in FORTH. Classes are loaded
on demand as required.

A widget is an instance of its widget class. The
methods to create and initialize a widget and
to modify its properties are defined in its class.

Widget properties are implemented as instance
variables. Property and method names are
choosen to be close to the corresponding GTK+
names.

The FORTH Code

Now lets have a look at the program code in
Fig. 4.

The required classes are loaded in line 8 to 11.

A String object is needed for the name of the
XML file, a GtkBuilder object to load the GUI
specification from the file and a GtkDialog and
a GtkWindow object to get access to the GUIs
main window and to the dialog. The objects
are created in line 15 to 18.

In line 18 and 19 two signal slots are created to
be used to connect signals and signal handlers
to the main window(window1).

A first signal handler is defined in line 23. It
is called when a ’destroy’ signal is received by
the main window (window1). It’s very simple
here. Its only task is to terminate the GTK+
event processing by leaving the GTK+ main
loop. It’s called with two parameters. Both are
not used here.

The second signal handler is defined in line
25 to 27. It is called, when the main win-
dow(window1) receives a ’delete-event’ signal
from the window manager. Its task is to open
the dialogl, wait for a button press, destroy the
dialog when a button is pressed and return a
button-specific value. A ’destroy’ signal will be
send to the main window (windowl) if FALSE
is returned. This is the case if the ’‘QUIT’ but-
ton (button2) was pressed. Otherwise no ’de-
stroy’ signal will be emitted and the ’delete-
event’ signal will have no further effect.

In line 26 the GtkBuilder object (builder) is ini-
tialized from the XML file with the GUI speci-
fication for the dialog (dialogl). All widgets of
the dialogs widget hierarchy are created here.
Then, in line 27, the GtkDialog object for dia-
log1 is initialized by reading its widget identifier
from the builder object and the dialog is shown

48

File Edit View Projects Help

@8 SRS » K
v Actions < search widgets =
kB m @= _ Quit this Application ? - 3 window1l =
or | Pl .) ma [gbell
ease click on the Cancel Button, if you ——
v Toplevels do not want to quit this application. = dlal{_)gl
- & dialog-vbox1
= | cancel || Quit - D hbox2
(=] B imagel
=at [gbel2
— ooo dialog-action_areal
buttonl
button2
Objects

Dialogue Box Properties - GtkDialog [di...

General Packing Common Signals |d&,

Name: |'dialog1
Has |
separator:

No

Figure 2: Glade GUI editor, dialogl selected

to the user (dialogl run), waiting for the user
to press one of the dialog buttons.

In line 29 to 34 the word to start the application
is defined.

In line 30 the GtkBuilder object (builder) is ini-
tialized from the XML file with the GUI spec-
ification for the main window (windowl). All
widgets of the main windows widget hierarchy
are created here.

In line 31 the GtkWindow object for the main
window (window1) is initialized by reading its
widget identifier from the builder object.

Line 32 connects the on.destroy signal handler
from line 23 to the ’destroy’ signal at windowl,
using the signal slot cb.destroy and line 33 con-
nects the on.delete-event signal handler from
line 25 to the ’delete-event’ signal at windowl,
using the signal slot cb.delete.

The code in line 34 makes the main window
(windowl) visible on the computer display and,
finally, the application is started in line 36.

Two modes of event processing are supported
here. If MINFORTH runs in a terminal win-
dow, the GTK+ events are processed in the
background while waiting for terminal input,
to preserve FORTHs interactivity. Otherwise a
GTK+ main loop is entered for event process-
ing.

GtkBuilder: GtkDialog exampl

¢ using GtkBuilder with minForTH 1.5(p)
g

© @ GtkBuilder: GtkDialog examplel

Quit this Application ?

@ Please click on the Cancel Button, if you

do not want te quit this application.

it
stroy connect
vent cb.delete

tkWidget GtkObject GSignalslot cbslot GObject

Figure 5: The running GUI example.

Up and Running

Fig. 5 shows the running application with the
dialog waiting for user response after the close
button of the main window was clicked.

The Benefit of using Glade

The advantage of creating a GUI with Glade
instead of creating it from source code is, that
no code needs to be written to create the wid-
gets, to set the widget properties and to pack
the widgets into container widgets to get the

iS)

1 <?xml version="1.0"7=
2 <interface>

3 <requires lib="gtk+" version="2.16"/=
4 <!-- ipterface-naming-policy project-wide -->
5 <object class="GtkWindow" id="windowl"=
6 <property name="border width">24</property>
7 <property name="title" translatable="yes">GtkBuilder: GtkDialog examplel</
property=
8 <property name="resizable">False</property=
9 <property name="window position"=center</property=
10 <child>
11 <object class="GtkLabel" id="labell"=
12 <property name="visible">True</property=
13 <property name="label">&1t;b>Using &Llt;span size="xx-

large'> GtkBuilder< /span> with MINFORTH 1.5(p)≪/b>

16 &1t;span size='x-large'>This is a toplevel window.
17

18

19 Closing this window will popup a modal dialog.

20 </property>

Figure 3: First twenty lines of Glades XML output.

1% euroFORTH-2010/GtkBuilder/examplel.mf

Bl - e
3\ GtkBuilder 00P Library for MINFORTH MM-100801
N I i
5% Copyright (C) 2010 manfred.mahlow@forth-ev.de

6\

Bl - e

8 requires String

9 requires GtkBuilder
10 requires GtkWindow
11 requires GtkDialog

12

13 forth definitions decimal

14\ === mmmm i mmmmm e ooooooooooo
15 String new xml-file

16 GtkBuilder new builder
17 GtkDialog new dialogl

18 Gtkwindow new windowl GSignalSlot new cb.destroy

19 GSignalSlot new cb.delete

20

21 s" euroFORTH-2010/GtkBuilder/examplel.glade" xml-file !

22

23 : on.destroy (data oid --) 2drop gtk main quit ;

24

25 : on.delete-event (event data oid -- f) 2drop drop

26 xml-file @ s" dialogl" builder init

27 dialogl init from builder dialogl run dialogl destroy ;

28

29 srun (--)

30 xml-file @ s" windowl" builder init

31 windowl init from builder

32 ['] on.destroy 0 windowl signal destroy cb.destroy connect

33 ['] on.delete-event ©® windowl signal delete-event cb.delete connect
34 windowl show all ;

35

36 run term? [if] cr ?? [else]l gtk main bye [then]

K e R e EE LTS

38 % Last revision: MM-100903

Figure 4: The FORTH code for the GUI created with Glade.

desired layout. Widgets that do not need to be
manipulated by the program require no code at
all.

Another advantage is that the GUI can be
changed aesthetically and widget properties
can be changed, without the need to change
the code. The only restriction is not to change
the widget names.

To see the benefit of using Glade take a look at
Fig. 6 and 7. It’s the listing of the code that is
required to create the same small GUI example
as in Fig. 4 but without using Glade.

Obviously the difference is significant and can
be expected to be much more significant when
writing real applications instead of small exam-
ples.

And - the same is true when using Libglade
instead of Libgtk. The advantage of Libgtk is,
that Libglade is not required at runtime.

References

[1] Andrew Krause. Foundations of GTK+ De-
velopment. Apress, 2007.

[2] Matthias Warkus. Das GTK+/GNOME
Entwicklerhandbuch. dpunkt.verlag, 2008.

[3] http://www.gtk.org/documentation.html

51

1% euroFORTH-2010/GtkDialog/examplel.mf

8 requires GtkToplevel

9 requires GtkDialog

10 requires GtkHBox

11 requires GtkImageFromStock
12 requires GtkLabel

13

14 forth definitions decimal

1 T N
16 GtkDialog new dialogl

17 GtkHBox new hbox2

18 GtkImage new imagel
19 GtkLabel new label2

20 String new markup2

21 GtkLabel new labell

22 String new markupl

23 GtkToplevel new windowl GSignalSlot new cb.delete-event
24 GSignalSlot new cb.destroy

25

26 176 chars markupl init

27 s" <b=Using <span size='xx-large'=GTKBuilder</span= " markupl !

28 s" with MINFORTH 1.5(p)" markupl +!cr

29 s" " markupl +'cr

30 5" =span size='x-large'sThis is a toplevel window.</span=" markupl +!cr
31 s" " markupl +!'cr

32 s" Closing this window will popup & modal dialog" markupl +!

34 118 chars markup2 init
35 s" <b=Quit this Application ?</b=" markup2 !'cr

36 s" " markup2 +!'cr
37 s" Please click on the Cancel Button, if you" markup2 +!cr
38 s" do =<u=not</u= want to quit this application." markup2 +!
39
40 : destroy (data oid --) 2drop gtk main quit ;
41
42 : delete-event (event data oid -- f)
43 nip nip % event and data are not used here
44 s" GtkDialog examplel" dialogl init GtkWindow @ dialogl transient-for !
45 6 dialogl border-width ! dialegl resizable no
46
Figure 6: FORTH code to create the GUI without using Glade, page 1.
47 false 6 hbox2 init dialogl vbox pack start defaults
48 s" gtk-dialog-question" imagel from-stock dialog-size init
49 hbox2 pack start defaults 6 imagel xpad !
50 markup2 @ label2 init hbox2 pack end defaults
51 label2 use-markup yes label2 justify center 12 label2 ypad !
52
53 s" gtk-cancel" -4 dialogl add button
54 s" gtk-quit" false dialogl add button
55 false dialogl default-response ! dialogl run dialogl destroy ;
56
57 srun [--)
58 5" GtkDialog examplel" windowl init
59 24 windowl border-width ! windowl position center
60
61 markupl @ labell init windowl add
62 labell use-markup yes labell wrap yes labell justify center
63
64 ['] delete-event 0 windowl signal delete-event cb.delete-event connect
65 ['] destroy © windowl signal destroy cb.destroy connect
66
67 windowl show all ;
68
69 run term? [if] cr 77 [else] gtk main bye [then]
L R e R

71% Last revision: MM-100903

Figure 7: FORTH code to create the GUI without using Glade, page 2.

5p

o/
10 3SNVd B S! 819y} SS8|UN S8INJONJIS BIEP 00| 0] 8ABY 1,UOP NOA

asneosaq
‘asn 0] Asea Alon si ubisap siy) ‘uondwaaid Jo yor| 8y} Jo asneodayg

anijdwealid-uop
1a|npayos uigqoi-punoy
:50/6 1 Aj4es wouy ‘ubisap Bupisel-ljNw yuo4 S,8100)\ Yonyo

¢ OM 3JoM I3y

leypad ‘

siseaq asay} weiboud
ued sbuleq uewny [ewJou Jeyl os uoddns ebenbue| paau app

Aepoy
9ABY OM S2109 8y} UeY] J81Sk} yonw AloA aq 1ou Aew Aay) Ing

alp
Jad s8100 00| 9ABY ||,0M SJBBA UB) Ul ‘ME]| S,8100\ 0} BuIpi0dDY

alp Jad s2102 Inoj aAey am Aepo |

sdopysep pue siaAlas
1o} ABojouyoa) JueUILIOP 8y} 8Je S10ssadoidiynw Alowaw-paseys

¢ Buiob am ale asaym

Jalueq zHY e 8q 0} SWass aIsy |

"yonw Aq 1ou Inq ‘subisap
ayoeo pue auljadid mau Yum pasealoul aq ||IiS Ued 8ouBWLIONad

Jamols Ajybis 106 aney BuiylAue Ji pue ‘sieak
[eJoA8S 10} Buisealoul usaq Jou aAry spaads %00[0 ‘JOASMOH

se|gnop eaJe Jun Jad siojsisuel] Jo
laquinu ay] ‘syluow 8| A1aAs :pa||@ourd usag 10U Sey Me| S,8100[\

¢ 9M dJe a1y

Jeypad c

AajeH maipuy

AInuad sz 9y} 10} Aoua4induo0d yuo4

53

leypal ‘ leyped oo

8/qesodLwoo 10U e S0

Buoo| uo Ajal 1ey; swalsAs abie| urelurew pue
8z1uefio 0} MOY SMOUY 8U0-0U Jey) sI wajqold ay) jo Lesay ay]

*0]0 ‘saoel ‘Syo0|pesp

SHUN DIWOJe ;[|om 8Jeds Lusaop pue ‘weiboid 0} 8|gelj@4un pue YNaILIg
ojul s108[go ajdiynw 0} sjjed ajdijnw 8sodwod 0} }NJIP SI i sainjonis
swyoBe xe|dwoo Blep paJeys 1o} sexainw Buisn saAniwld 3SyY313yY pue 139
ul Bunsai ‘ewi € 1e pJom auo Ajuo uo sajeiado Jogpuyaledwon spealyl X|SOd :SO wo.j Loddns abenbue| asn sypo4 swos
AjaAnosye abeuew 0} piey aJe $%007 pJepuels abenbue| yuo4 ayl ur uoddns Aoua1INdu0d ou 1Sow |y
Aewwns uj ¢MOU 9M 3k 3I9YM

leypad ' leypad c

<t
To]

Jayue a|qesodwod 10U 8Je S8INjonJIs 8a4)-%007
xo|dw oo aiow spnjiubew Jo J8pI0 Ue S| ananb 8a84)-400| B UsAg

swiypioble uo ainjonuis [einjeuun pue xa|dwod e
$9210} UB}0 SIy} pue ‘piom a]buls B Ajuo uo yiom }agpuyasedwo)
Se yons saaijwiid uoieziuoiyouAs ey si Aynoiyip rediouud ay

soyelsiw ayew ojdoad ma) asoy] uand

awli awes
pue ‘way} weiboid 0} MOy SMOUY PIOM 8} Ul 8UO-OU JSOW[E Ing oy} 1e Alowaw swes sy} uo BuIIOM S8109 [BIOASS SJe 218y} Ioym
19Spuyasedwon Buisn sainoniis Blep aal)-%00]| ‘AjpAneulaly ‘sjossadoidiynw Alowasw-paJeys 10} YoM Jusaop ubisep syl

¢ OM 3k 319U\ JOASMOH

leypad ‘ leypal ‘

pauieib-aul pue Jus)sISuod 8q 1SNW YUo4 10} L

s11098[go ue 1eym BOpI OU SBY Y10
g ‘Alowsw Ul s108[qo aJ1jud Uo HIoM S|\ paulelb-asie0)

uebaq uonoesUEI] SIY} S0UIS ||99 By} paidle
SBy UONOBSUR.] J8YJ0 OU 8INS SO)BW |\ 8yl ‘PeSSe00E S|
Alowauw Ul ||90 B awWi} yoeg "S|[80 U0 YIOM S|\|L paurelB-sui

paulelb-as1e09 pue paulelb-sul
suondaoxs pue s)nejbas 60 0] pes| ued Sp\ L JUSISISUOIU|
1UB]ISISUODU| PUE JUd]SISU0D

walsAs Alowapy jeuonoesuel] Jo sadA |

leypad '

weiboid ay] 0] 9|qISIA 10U S| UOIINDSXd-al JO ssad0.d siy |

pajie} aABY 1Byl 8S0Y} S8IN0aXa
-] puE Way] JO 810W JO SUO SLIOQE 1 ‘SUOIIDBSURI] USaMIS(
UoISI||09 B s}10819p W)SAS (INL) Alows|y [euonoesuel] ayl j|

pabueyoun
arels s,welboid ay) seAe9|)l pue ‘SLi0ge UonoBeSURl] Y|

%0]q OIWoe 8y}
8PISINO |qISIA 8W028q S}NS8J S 0S ‘SHWILWO0D Uoioesue.) 8y |

sal|Iqissod om] aJe 818y} X90|q dlwole AISAS 104

Alowauw Jeuoljoesuel |

leypad ‘

[Ie 1e BuiyihAue
op 0] aAeY Luop Asy} I8INPaYIS UIqoJ-puUNO. B JO 8SBeD 8y) U|

SINO20 YOUMS HSB}
ou ey} ainsus 1deoxs BuiylAue op 0} AeY },UOp D Twoj3e—pud
pue oTwojze-utbeq ‘Wa)sAs 81020-9|buls aidwis e u|

Auo1woly pue suonjoesue. |

leypad c

Jayseyynw uiqoi
-punoJ yuo4 .p|o, ayl a1 1snl aq pjnom jgpow sy} buiwweiboid

uonoesuel] sy} Jo Led Se $alNdaxe 0S|e ©0F Ul 9p02 8y |

O/ Aue op Luop am se Buo| se — uonoesuel} aigeldnusiuiun
UB Ul S| DTwo3e—pus pue dTwole-utbaq usemieq bulyifiong

DTwoje-pus
i £ enxa
usyy o003 x JT P X
oTwoje-utbaq

Aes pjnod am Ji 801U 8 1l L,UPINOM

Alo1Wo)y pue suoljoesued |

leypal ‘

55

peal

J9A8 ale smalA Alowsw Jualsisuod Ajuo 1ey) sesiuesenb siy|
30019 siy} 1suiebe peas uonedso| Aiaas Buljepljea

pue »00j2-uoIsiaA [eqolb ayl Buipea. AQ Lels suonoesuel |
Jaquinu UoISIaA

B SuIeluod ey} 00| Buipuodsaliod e sey Alowsw ul |99 A1en]

"suonoesuel] ||e Aq peal si pue ‘Alowa 0] SallIM Jey]
uonoesues) yoes Agq 9oUO PaIUBLWIBIOUI SI ¥00[0-UOISIBA [8q0|6 W

ajepdn-pallajep ‘Juslsisuod ‘paulelBb-aul
300[0 uoISIaA [Bqo|b e pue Bu¥o0| SWwIl-iWWod Sasn

¢l1L

leypad '

alepdn-pallajep ‘JuslsISuod ‘paulelb-aul
300[0 uoISIaA [eqo|b e pue Buo0| swIl-iWwWod sasn

¢l1L

leypad ‘

Jpd=edAyg|dai=dasrg | 18°06° L }'0=I0p
¢, PEOJUMOP/20pMBIA/NPB NSd*1SI"XI88S8110//:dNy

OWN| — waisAs Alows| [euonoesuel] alemyos Buiuuni-juol) ay
9002 OSIa ‘|l BupiooT [euonoesuel | ‘IABYS pue ‘As[eys ‘edig

¢l1L

leypad c

SP2829Ns uol}oeSuUERl} 8y} uaym 108lqo

[eal 8yl salum Ajuo pue ‘uonoesued] ayl o} aleald uoiedo|
e Ul 199[qo ue sejepdn walsAs ay) ‘L 81epdn-pa.lisjep e u|

paloisal

8Q Ued }I paUIOge 8Q O} Sey UOoIlDESURI] B JI 1Byl 0s 108[qo

ue Jo anjeA [eulblio ayj pJodal 1snw walsAs ay| -Alowsw
0] AjoreIpawiwl 8UOop aJe SalluMm ‘|| 81epdn-1o8.ip € u|

a1epdn 10a.41p 40 padsyaQ

walsAs Alowapy Jeuonoesuel] Jo sadA |

leypal ‘

56

S)00| 8y} 8SE9|8) PUB HWWOD
18s-peal 8y} arepliep

%00[0-UOISIaA [Bq0|6 1uawaiou|
18S-alum 8y} %007

uonnoaxa aAlle|noads e ybnoayl uny

Jaded sy} peay "sylom Inqg ‘Axou] 300|0-uoIsiaA [eqo|b ay} aidwes
uonejuswa|dw| ¥O0[0-UOISISA [EQO|L) UOIUSIUOD) MO suonoesues] Bunup
¢lL ¢l1L
leypad ' leypad c

N~
0

10U Op S8uOo Ajuo-peal INg 18S peal B pasu suoioesuel] Bunupn

uonoesuel] 8y} Buunp peal usaq aAey Jey) sessalppe

1se) Ao st siyL 10 18S 8y} SI SIY| J8S peaJ e Ulelulew 0S[e Suoioesuel] Bunp

uonnoaxa aAlle|noads e ybnouy; uny

uonoesuel]

¥00[0-uoisiaA [eqo|f ey} s|dwes aU} JO PUS U} Je PaRIWIWOD 3 0} Siied (anjeA‘ssaippe)
suonoesuel] AjUQ-peay 1S0D-MO J019S 8Y1 SI SIYJ 78S 8JLM E Ulejulew suoijoesuel) Bunupm
¢l1L ¢l1L

leypad ‘ leypal ‘

‘uoddns | 1S yum sabenbue 1si1) 8y} JO BUO 8Q PN Ylo4

lanias NdD-1nw 1sabue| syl 0} walsAs peppaquis
1S9|[eWwS 8y} woJ} Ajinjineaq ajeas saAliwld yuo4 oTwole oy

JepeJ s,;eAe UO UBAS JoU SI NLS

0 pIepuE]S Ul
s.)1 210}90 9|IyM € 89 0} BuIoB S)1 ING ‘NLS SABY UOOS [IM DDD

INL 10} woddns arempliey aaey ||Im S10SS8204d aining

obe sieaA ma} e wolj ayep Ajuo siaded
Aoy 8yl 'mau Aiaa sI Aiowsypy [euoloBSUBL] 9I/BMIOS ‘JONDI0)
saseqelep Ul pasn usaq aABY Suolloesuel} olWole ybnoyly

umo} ul sweb Ajuo sy aq o} buiob sI N1 S

yHo4 ut N1S

leypad '

uonoesues) e ul Q| Aue op 1,uoQ
UOIJOBSUEJ] B Ul ®A0WD SB YONS SPIOM SN J,uoq

i pue d [euonoesuel; Buisn

AQ paulep 8q ueod Ing piey 8Je i Se Yons So)lIMm pIom-[eilied
i ® ! : jJosuolsion

[euonOBSURI] SUIBIUOD 1Byl 1SI[PJOM B S]09|8S S Twoje-utbeg

oTwoje-ATuopeaz-utbaq
Juem os[e am ‘edouewlopad uonoesuel) Ajuo-peal poob 1o} Ing

DTwWoje—-pus
pue oTwojze-utbeq ‘saaliwLd mau oM} pasau AJuo ap\

yHo4 ul N1S

leypad ‘

usy3
i uortioesuexy, (0
doapau
moxy3g
jeadsx doap
STTYM = x3Ax39x dnp
yojed uoTrjioesuexl-op [,]
doap pPau utbaq
STTo® QT ®aes // a<u utw yadsp QT
i uortjoesuexy,
osT®
uorjoesuell ® ut Apesife S1,9M // °3no9SxS
JT P uoTjloesuery,

yHo4 ul N1S

leypad c

uondaoxe 8y} MOIY}-8] PUB SWaY HOr)S
paAes ay] Aeme MoJy) ‘uondaoxe UB maiy) uoloesuel] ay] J|

uolnjoesuel) syl Adjal pue (3oels uinial syl woly) yoels
Blep 8y} Jo sjuawajd N dol 8y} 810]sal ‘paloge uolioesuel) 8yl §|

SWa)l YOB]S POABS 8] ABME MO} ‘PaIILLIWIOD UoloBSURI) 8U} J|
uoljoBSURI} 8y} 81Nd9x]
(yoels uin}al 8y} uo) Yorls elep ayl Jo suswale N dol ay} aaes

YHo4 ul N1S

leypal ‘

58

,suonsanp
jobpa-buljen
aQ 1snw yuo- sAes eyl me| ou sl aiay |

YHo4 ul N1S

leypal ‘

59

SJ°S3UR3SUOD SPNTOUT
S wWsSesTp SpnIouT

SJ ' 9I0D00IDTW SPNTOUT

PyA - sjuejlsuod/sI0Dn/ " ° SpNIOUT
S3°TPya SpniouT

j1asi 19]1dwo2-ss04D
8y} Buipeo| ai032q Y104 ojul pepeo| aq 0} sey AHA'SLNV.LISNOD ‘elojeleyl

uoijelasdiajul apod JaHA

QHA'SLNVLSNOD ul pauyap st siyl -

‘uoneay1oads JaHA
$,9109)N WOJy }8S UOIIONIISUI Y} pue 3inj}oda)ydie ayj ynoge ,,abpajmouy,,
S} 9Alap Isnw 19]1dw09-sS049 YHo4 3y} Jey} sueaw Ssiy} 109N 104 .

‘s|jopow siossadsoid
Jualsisuodul yum Bupiom ‘aleinap Aew aiemyos pue alemp.ey ‘@simiaylo
‘llom se asemyos ay} Ajipow Aj}0a11p pjnoys asempJiey ayj ui sabueyy .

*JUSWIUOJIAUD PaIJIUN B U] Paje|nwWis 8q UBD 3JeM)OS ay)
pue aiempaey sy} Yloq ‘Juswiuolirud ubiSap-02 a1eM}os / alempaey e uj .

JusawuoJiAud ubisap-09)

wisjueyoaw Jajsibal ajqeam asim-}q ayj jo uonesyidwis .

MO[}I9A0 UO S}HNSaI d}sIuwid)aq -

SUOI}PUOD MO[}ISAO0 DI}BWYILIE [[B JO [NBYJAA0 SNOINJNBI -

$919A0 Z+s)iq4# ul Bunnoaxa QO/WL Pue AOW/NN 10} suononsul dals -

a24nos 9|buis auo uodn Buipjing JusawuoiAua ubisap
-09 B S| 310N ‘a104a19y) pue AHA'SLNV.LSNOI si1aidiayui Jajidwoos-ssol) «

A9jo11uo09o diyo 9jbuls,, e se 3/ 1-gdXd1 @91e] buisn uoneosijdde map -
:1edh 1sed ay) Buninp ssaiboud

*Spaau

uonesidde yojew o) paonpal Ajgjes ag ued } ‘JudaWIUOIAUD ubisap-02
S}l JO 9snedag '}19S UoI}oNIISul Yol AIaA e saulyap G9'| UOISIaA «

‘paysiuyy s x| a109n .

sileye a109n Jo djels

ap’puss @ sH
BANQWEH ‘HQWD SOIU0IY8|F 2I0YS-JO ANIS
OISIBIUOS SNepy

MO[1IOA0 J1}dWylIe
uo SsyJewsal yum

ssalbo.ud ai109n

éd

! TATPN SATP SSWT3 Y3IPTM ©3ep SATPN

(3onbn waiIn —— n pn) pow/um
-a1qndnuaiajul Ajnj s1 4 ‘240ja43y) pue
19)s1bai snjels ay) pue ‘JOL ‘SON ‘SOL ul sid)dwesed sy spjoy saAIaq do

s)yoe)s ay) dn suea|d pue }nsai ay} s}0a1109 TAIan do
g 1ad aduo payndaxa dals UOSIAIp diseq 3y} SAIQ do
sia)wesed ay) dn sjas sAIan do

:papasu e suoloNIIsul 834yl
‘Asea s| }| asnedaq ‘pour/um UOISIAIP paubisun yim pauess | 1sdiy Iy

uoisiAalg paubisun

“ll9M Sk aiay} paAowal uaaq jou sey H uaym dnooiy
e 1ab [1m 19[1dwo02-sS049 9y} ‘uonjesijdde ay) ur papasu jou S} 9snedaq
‘ap0od J@HA @Y} WOoJ4} paAOWal Uaag Sey Uol}oNJIsul Ue Uay\ :uonippe uj

ay} o} papod aq Ajjeanewolne |[im apod JaHA 3y} ul abueyd Aue Aem sy

*TIIINA pue ‘TTIHM ‘a1 Aq Ajdrendoidde pasn aq |jim uo Jaje] yoiym

*19]1dwo02-sS0.19

(—— IpPP® J) HONV¥E=0 :uId O¥dIZ do

wa)sAs 1ab.e} ayy 10} 13]1dwod 9pod
e auyep 0] Il 8sn ued am pue uwisled 11q s,uononisul ayj Buipjoy Juejsuod

e se A1euonolp yuo4 ayj ojui pajidwod ussq sey 0wz do ‘6@ MON

saouanbasuo9 uone|idwoos-sso.1d

dnozb 3sut : TAON do INVISNOD
inozb 3suT : O¥EZN do INVISNOD
inozb 3sut : O¥dZ do INVISNOD
: dnozf 3sur : NOISN do INVISNOD
: dnozf3sut : NOIS do INVISNOD
: dnozf 3sur : oWz do INVISNOD
: dnoab 3suT : SXYMTY dO LNVISNOD

dod vag--
8poa , Ajuo 1gHA,, d10w

IvEams ‘ESTA -- !

U3IPTM snq e3Ep —- bz =@ THIOIWN : Y3IPTM ®ITP INVISNOD

s9oanosex ATdriTnu SIempiey sey yodd usus T, -- !, T, =i OISOT 4L : ITNW YITM INVISNOD
£00TT =: TYENIWN : UOTSI®A INVISNOD

-peddTys ©q TTTM ,—-~--, 03 dn ,~--, USSMISQ 9POD 'ISTTAWOD-SSOIO YITOL SY3 BUTPEOT USYM \ ——m—m

SI sjue3suod @OWNOVA

7TV SuoT3oUNZ YoM asn
{TTY p9TT OIDOT AIS FAAT asn
{EEEI AYVNEIT

PUA’SIURISUOD — 00TISS ——
~—= TAHA-—

-19]1dwWo2 JgHA @y} 10} SJUSWIWOD O}ul Way}
Buiuin) —— yuMm Hiels ||e Spiom asay] “uonelaidiaiul yrio4 |011U0d Yoiym
‘spiom Jeuonippe Aq dn pajaaq ag 0} sey 321nos JaHA @Y} ‘uonippe uj

uonejaidiajul 8pod JAHA

‘WITTu =: dnoab 3sut
{40TTu =: dnoxb 3sut
‘WI0Tu =: dnoxb 3sut
{,00Tu =: dnoxb 3sut
‘WwITO0u =: dnoab 3sut
{u0T0u =: dnoab 3sut
{.T00. =: dnoxb 3sut
£,0004 =: dnoxb 3sut
‘WITO0TTO0. =: 934q
‘Z- =! YEDHINI
‘pZ =! TVININUN
‘10, =: DIDOT Als

dIN do INVLISNOD

¥ox do INVISNOD

90 do INVLISNOD

aNy do INVLSNOD
gnss™ do INVISNOD
ans~ do INVISNOD

oav do INVLSNOD

: aay do INVLSNOD
mmomvam/momoq¢||

:suononJsui pue -

3xe]ls yrew LNVISNOD

bax"bersy LNVISNOD
Y3IpTM B3ep INVISNOD
3TOW Y3ITM INVISNOD

1SaN[eA [01]U0D pue ‘Sassalppe

19)s16a1 ‘syipim snq ‘sayoums Jaidwod auyep ey} SJUBISUOD SNOLBA

pajaidiajul aq 0} 3p0od JAHA

iMoIaA0 d1lawylLIe Jnoqe paysijgnd uaaq sey yonw JoN

SISIXD ,,MOJLI9A0 PB[|0JIU0I,, YHM J3][0J}UOD [BIDISWIWOD B S80(-

*3q ued)1 se buoam se Ajpaninjul

s1 M ybBnoyije ‘0008$ 18 Nl 9AE3| Jo)1aq aMm OS “dJow Aue yiom
10U Sa0p pow/uiF 10} 9pOD |9Ad] Ybiy ay) "6 9 ‘444/¢$ suim@a iy @3ebsu 0008$
*048Z uanjal pjnoys i jeyl pepiosp | /00

!SNOIAQO OS J0U 3JB UYIIYM ‘SaSBD aWOS SIaARd| SIY] -

0008$ suinjai / 0 u-
d444/$ suinjal / 0 u+

'6'3 'susened g Buipes|siw
jJo peajsul walsAs §q 91 e ul 444/$ 10 0008$ "9'1 ‘pajuasaidai aq
ued jey} Jaqunu sabiel,, ay) 10 ,1s9jjews,, 9y} uinjal UBD dM ‘MOJJIONO0 UQ

}nsaJ paulap [|9m e Buiuin}ay

“ynsai |njbuiueaw

e A||eal Jou S| SMOpPUIA\ JO Uaaias-an|q ,,0 Aq UOISIAIP,, 3Y} ‘|l 1ouY

*0p 0} jeym mouy jou Aew Jawweiboid ay} ‘mojjuano ue

sem alay} smouy welboud ay} J| USAS pue peaytano dwiuni sppe eyl ing

MO[JI9A0 UO SS8IPPE Paxiy B O} [|ed [BUOIIPUOD B SI YdIym T3A0¢
uononJsul youelq 9joAd o|buis e 8q piN0d YoIym II LTIAC

Buisn mojjuan0 ay} uo Buipuadap youeiq ued 9\ -

‘ssajayuanau snboq si }nsai ay|

¢1eym og

‘Kem 001100
Ajjeonewaylew e ul 18sal/}as si Ja)sibal snjels ay) Jo }g MOJLIBA0 3y} MON -

¢, MOJJJ9A0 UO Op 0] JeyM ¢,

‘em

se sbnq uonesidiyjnw paianooun siy] "saInuiw G| Inoge ul sased ajqissod
IIe jo 1s@} 819]dwod e op 0} pamojje S}q g 0} Yipim eiep sy Buionpay
Aoy sem Buibbngag

! TITNW yw (€u —— zZu Tu) «

uononiisul 81942 ajbuis e se yw Bunuawsajdwi sjqejieae si
alempiey Aidijnw uaym pappe uaaq aney sarinwiid aiow om) ‘alojaiay L

*MOJJIBAO0 UE JO 39Sk Ul }insal Buipea|siw e sIanlap Yyoiym

! doap sum (gu —— zu Tu) «

se pajuswajdwi s1 Siy} uayo A1 "uonesado x ay} suleway

-0160] JO Junowe ajqesapisuod e Buippe xajdwod ajnb sI mojjian0 uoisinig

*Ajjeuad awiy uni Jnoyym Jaysibai snjels ayj Jo 1Iq MOJJIBA0
9y} 1os o} 9jqissod sem) ,,alempiey ui,, paulap Sem UOISIAIp paubis asuQ -

MOJHBAQ

9p09 ,,u011931109,, dY} SIOP TAIQs” do
uononasuj dajs , paubisun,, ayy o} [eanuapl sAIQ do
apo9 ,,04}ul,, 3Y} SAOp saIas do

sjuawnbue ay)
Jo subBis ay) Jaquiswal 0} J31sibal snjels ay} ul s}q alow om) ‘Aj@leuniyiojun
‘pue suoI1ONIISUl 1I0W OM]} SPadu isnl uoisinlp paubis ‘aloya1ayl

! doapa NFIHIL
NZHL -1 dems 4+ px dems JI I9a0 °93ebau JI
>0 d=x pou/umn <I
NAHL + dx JdI >0 dnp I< sqe i< dnp
(3onb wex —— u p) pouw/wy

AjiIsea aynb 1gHA 01Ul pajejsuesy
9q Ued pow/um UO paseq Pou/w3z JO UOIHULAP |9A3] YBiy ainasqo
ay} Jey} aw 0} paiindo)i [un -dwi} buoj e 1o} wajqoad e sem uoisiaip paubis

uoisiAlg paubis

‘l1em se Bejy e se pasn aq ued J8)s1ba4 8y} Jo 0 }q pue usIoe
alow ‘a|qepeas aiow S1 8p0od ay) ‘wsiueydssw snoiraid ay) o} pasedwo) «

-19)s1ba1 ayy
§0 Juauod 3y} yum (L=Hq-ubis) papue 1o (0=1q-ubis) paio aq ||Im Joquinu
9y} J9ylaym saujwialap Ja1s1b6al ay} ojul palols Jaquinu ay} jo ug-ubis ayj -

*S11q Jay10 ay) Bunodaye inoyum g pue g siiq sjasal

i boa-Tx3D 37°AUT ¢
-191s16a1 ay} Jo sHq Jayjo ay) bunoayse Jnoyyum
19)s1694 J01u02 paddew Alowsw 3y} Jo g pue o siq S18s

i box-Tx3D ¢

‘punoy uaaq
sey ,.s191s1601 8|qelIM 8SIM-}HQ,, 82ZI|BaJ O} WSIUBYIAW JUBIOS dI0W Y «

sHq Jalsibal Bbunles

63 64

uesAed puiag uesAed puiag

(0°T 19uUIR1U] AjjeIDadsS?)
SH3JOMISU JSY10 Ylim J9y19301 yJom 01 9|qe 3q Isn|y Adusiedsued|
‘pPus-031-pus ‘sainies} GOl JoYlo pue yipimpueq
pa1edo||e-a4d ‘sailjiqeded swil-|eas sainbai siy| s|qeded eips|p

Jsmoig e
Aydea3o1dAi) e
[041U0D) MO|H e

‘uowwod a4k (233 ‘siedue|eq peoj) siedesxsled s1-opol. @
Jejlwis pue sjlemali{ ‘Aoeaud pue AlwAuoue J4n1G Sunjiopp e
0S|e 1Nq ‘UOI1BZIIOYINE PUE UOI1BDIIUSYINE JUBM SIS} A11UNd9G s2.n1onu1G eleq e
SYUll NV snieig uoneusws|dw| @
desyd yum aaimadly pue g5 oyl ,sassnq,, aoe|dss 03

JspesH 19oed :dedsy e
Sl B9pI SU("109UUOD 01 SAJIASP deayd pue ||ews mojje ASojodo] :deday o
1SNW ‘140JJ9 JO WNWIUIW B Y1IM 3IoM 1sn|p 1uswa|dwi 01 Ase] .

"S9DUB]SIP JB) 01 1IOYS JSAO J9Y1980] Pa1dauuod
sisoy Auew pue maj ‘swaisks pajdnod Aj3ysi pue o3ue|jeyd |eaJ ou osje Inq ‘|edlieqqes oN e
9S00| ‘syipiMpueq Y31y pue mo| Ylim [[om 34om 1sn|z A11jigejedg uonneainol @

syuswadinbay :dedsy e

siuswalinbay :deosy aulInQ

sjuswadinbay :dedsy
o3ue|jey> |eas ou os|e inq ‘|edljeqqes o

uoljeAloN|
ogzisu uesned puisg

uesned puiag

¥oeJ1 Y3 ay1 uo w | 18yl
51e21pul JuswdojoAsSp JPuJSluUl D1851RJI1S INOQE SUOISSNISIP 4| J| ©
op 03 SanquieH ‘0T0g ymo4o4ng
s8uly1 Jo 3sl| e aJow yonw pue podau snieis Ajued si el siy] e

1oedwod asow pue J3|dwis 3q 01 sey
11 puey J9Ylo 9yl UO 1NQ ‘SWI] 2JOW S)e] ||IM 1l SUBSW SIYy| o

uesAed puisg

uaddey 1 ussop |ediieqqes psuue|d ayj os—sn Suuly Jo peslsul
weal Aw yum sw ||9s o1 padeuew Auedwod snoinaud Ay e
Jawisu| sy, jo uonejusws|dwiai ales uespd e si je Ajess <— Joden :ogisu
8unjoo| w | a8ue||eyd syl ‘Yyuo4oing uo Jesk 1se| pajussaid sy e

o8ue|leyd e Joy 3

sjuswalinbay :dedsy
s3ue|jey> |eaJ ou osje inq

uoljeAloN|

64

uesAed puiag

B1Eep 240w Joj 91AQ 1xau e %o0o| ‘Xiyaid Js8ie| T=gS|\
Anus Bunnos 10211q 0=9SIA

91Ag :Auenuesd xiyoid e
soxiyaad 493UO| YlIM PIAjOSaI SUOISSI|[0D yseH e

x1jo.d

s|enba anjen yseH :sassappy-d| ,Sulyolms, oy ysey e asn e

BUIYIUMS

44n3S Supjiopy

d
ssinjonilg e1eq snieig uonejuswa|dwi

ogzisu uesned puisg

419194d431u1/401BI9USS PUBWIWIOD puB JAISS 19¥ded :Sued om| e

(3)1q1ss0d s1eyoed
pa1uswSel) ou) 3Jom aiow saiinbas gad| ‘Ajuo yAd| ‘14els o4

(]

peayJano xiun Azeud oYM suoldaUU0D AuBW Sa|puey
1BY1 J9AJSS B|3UIS B I0J 9DBLIDIUI 9|qEUOEDI B SIBJ0 AN

(]

4oke| 110dsuen
se 4@n 8uisn ogisu jusws|dwi 1saiy | ‘ulod Juipels sy

L

Jul0d 3uinelg

J3n1s Sunjiopn

snielg uonejusws|dw
$24n1onJ31g eleq €3S uonel 1w

uesAed puiag

T e R 5oy |

uspuadsp 17 | D03
¥z/216/821/2€ | €req
8/0 yunp

8/c ssa4ppy
8/c yied
4 s3e|

2zI§

JapesH 19yoed :dedsy

JopesH 1¥ded :deday
A3ojodo) :dedsy

ogisu uesned puiag

P[ol} SSOJPPE 01Ul 924N0S PISIAI-}] HdsU|
u Aq ssaappe 19841 YIYg ©
UOI1BUIISIP 109]9S puB SSaIppe 1984e1 JO S1iq U 1SMly .| e

a1noy [esisAyd

(dnsjoo| uoijeunisap) uoijejnojeds Suinou
pue (uoilnjosa. sweu) SN 4O UolleuIquwiod e SI 3uinoy e

$491n04 y3nouyl 10U ‘yiomisu
3uyoums e y3noiyl uni pjnoys sisyoed ‘SN 01 Jejlwig e

SUOI103UUO0Y) FUIINOY ‘S1e¥ded JUIYDUMS

JapesH 1¥oed :deday
A3ojodo) :dedsy

65

uesAed puiag

9}eJ elep |enjde ainsesw

01 ‘9|qissod se 1sej se 1no siayded Ma) 1Silj pusS | 11JelS 1se e
dn Buiiy s19ynq 1usAaid 01 SaIY ‘|0JIUOD MO|} paseq-]1d :esp| e
(s3e| Alquuoy Suisnes) 4i/dd 1L
Aq Ajo39|dwod dn paj|i} ‘aiaymAians sis)jnqg ale Ajljeal—siajing
Ou sawnsse ‘uayoiq A|qluuoy si [041U0d Mo} d|/dDL e
92IAI9s Jo Ajljenb ou sisjjo 4N e

JU0D) MO

J9smoug Isi7-opo].
AydeaSordAin
|o43uo) moj4

ogzisu uesned puisg

Ypues ISAISST (O +[[92 FNQpwod
9POO-pUd IO ATWS ‘IBYD .
adfy ‘¢ .1se3 ® ST SIYL .S 9PoOd-0g3du
JISAISST 3URLSUOD
yadT-qx9sutr dpn-ogasu ,,3SOYTROOT S
JUSTTO-3TUT

1ndino 3ui88ngeQ

dooT-I9AI0S
I9AIOS-1TUT

doo| 4anJag

9582159 | SUIYJOAN

44ms Bupjiop

snielg uonejusws|dw
$24n1onJ31g eleq €3S uonel 1w

uesAed puiag

i9P0Od 8-4] () Se S|e4a1l| 01 S19SJJO :UOISSNISI] ©
9pod

{2404 UIYLIM SPUBLILIOD SSI|WESS SMO||B J9|qUSSSE PUBWIWOY) ©
94N12NJ1S pUBWIWOD

a1 olul pappaqua s3ulils pue (sassauppe "39) s|esal1l| 914q g o

syunyd 914q g o1ul 19¥oed spuewwo) e
$91Aq 2J0W 9¥e} SpuBWWOD Jaxa|dwod ‘914q

3U0 ‘4/-0 94 spuewwod 3|dWIS SPUBLULIOD PSPOIUS -4 () ©

SPUBWWO)

J4n31g Sunjiopn

d
ssanjonilg e1eq snieig uonejuswa|dwi

66

ogisu uesned puiag

mp@v_uma paAladal 10) ananb Jusnl e

(ps1usws|dwiun [113s 18431 JO 10| B) UOIIBWIOJUI SN1BIS U310 pue
UOITBWIOJUI UOIIBDITURYINe

sAkey o1ydes8o1dAio

Ss|puey 3y

SassaJppe |eal

e o0 o0 o o

u1euod (]IM) I1X33U0D UOIDUUOY) e

1X91U0d UOoI1d3UU0D O} SSaIPppE Woly Qm_\/_ ()

Aows | paJeys

J3n3s Sunjiopn

d
ssinjonilg e1eq snielg uonejuswa|dwi

uesAed puiag

TwAy Q" g-2oursqut /uesked _/woo qpml-mmm//:daay
0°C 12u4a1Uf
ueshed puieg [

| Suipesy Jayun4 Jo4

Suipeay Jayuing Jo4 xipuaddy

ogzisu uesned puisg

S92URI94U0D pa1e[aJ-3iomlau Ja84e| 18 suolrerussaid ‘suoissnasip
413] D4y :uoneiusws|dwi oua4a)e4 Jo uoila|dwod 1Yy e

mMC_C®>® 12]UIm MJep wco_ 10} ¥4OM 3i0W 10| Y ©

9p03 JO 119 39111 € \A—umw__m Slalvsy] e

Aewwng

Aewwng

uesAed puiag

eyl
104 y3nous s|dwis aq 01 spasu) Junduds paindss >_LM_a9;n_ °
jsuignid
ou ssea|d 1ng—ospIA pue ‘olpne ‘safewl Jo Sulppaqw] e
suiBus SunesadA| e

19smoug /uoirejusssid

Jasmoug 1s17-opo
Aydea8ordAin
|o43uo) moj4

ogisu uesned puiag

jAl1e1nsu
ydomisu Joy juepodwi Aiaa st uoindAious snonyinbiqn e
saysey pue Aydei301dAid dSuISWWAS Se [9SSHISINAN ©

(219 4ad 428u041s 10| B ‘YSY UeY]L J91Se) Yonw)
ued oulswwAsse ay3 Joj apod Aydes3o1dAiy saund) oindAj 3 e

Aydes3o1dAin

Jasmoug Isi-opo].
Aydes3o3dAiD
|043u0) Mo|4

67

The Forth Net

Gerald Wodni*

M. Anton Ertl f

September 24, 2010

Abstract

CPAN and PECL are impressive ways of sharing
custom libraries. Projects are discussed, hosted and
downloaded. Their dependencies are clear (no need
to search across the web) and also downloaded at
once. There is no such web portal for Forth — until
LOW.

1 Introduction

When working on the SWIG - Gforth Extension, we
designed a platform independent file format for C
interfaces called FSI[1]. Creating such files requires
SWIGI2] to be installed and some understanding of
the C interface as well as the library. Thats when
we thought about having a central place to put FSI
files, which are just downloaded and compiled us-
ing a normal C compiler (much likelier to meet at
the end users system than SWIG). When hosting
such libraries on a website, users also want to share
code examples, host projects built on top of these
libraries, as well as discussing about libraries and
projects.

So instead of creating a FSI host and exchange
website, we created a Forth portal capable of more
than that. We want developers to be able to share
their projects, get some feedback, explain the us-
age of their work and define dependencies to other
projects. Users on the other hand should be allowed
to browse through all projects, find related projects
and download the source code.

2 Related Work

Sourceforge[3] provides easy creation of projects,
but the relation between them is not always obvi-
ous. Downloading requires human interaction and
could be cumbersome if you have to look up de-
pendencies by yourself. Access is granted by using
OpenlD[4], so if one already precesses an OpenlD,
no registration is required.
The Comprehensive
Network(CPAN)[5] supplies

Perl
developers

Archive
with

*TU Wien; gerald.wodni@gee.at
TTU Wien; anton@mips.complang.tuwien.ac.at

their own web space. Read access is publicly
available, write access is only allowed to the
author. The registration process is human driven,
one is approved as contributer after filling out
a registration form and wait for up to 3 weeks.
Using modules is easy as the download process will
inform you about all dependencies, and allow you
to download them at once.

The PHP Extension Community
Library(PECL)[6] is similar to CPAN but reg-
istration works via normal email confirmation
form.

Forth also has a website for sharing libraries
called Forth Library Action Group (FLAG)[7]. It
is operated by a steering committee which manages
the accounts. Every library’s “champion” is respon-
sible for keeping his stable release up to date and
available through FLAG.

3 Features

In order to attract users, and fit into the social web,
we used some Web2.0 techniques, and tried to sim-
plify processes on the website. We also considered
related websites and picked up some of their ideas.

Login No registration is required, login is done
with OpenID[4], so becoming a user of the
Forth net is a matter of seconds. If one owns
no OpenlD, he is free to choose from many
existing providers, or even become provider
himself[8].

Projects Every user who is logged in can create
a new project. To point out this feature and
make people contribute, the “Create” menu is
visible at all times. Project names are only
allowed to contain alphanumerical letters and
minus -’ that way they can directly be used as
part of a URI or as definition names in Forth.

Tags As a hierarchical system of categorization can
never quite serve the description of a project
and sometimes make it even harder to find be-
cause one thought of it to be in another cate-
gory, we only use tags. The author can assign
Tags that fit his project, if a tag is not within
the database, it will be created as soon as re-
quested. To avoid a big amount of tags, they

are only allowed to contain letters and num-
bers and are case insensitive. Popular tags
like Forth Systems are marked as popular by
the administrators and get better rankings, so
users are encouraged to use them.

Personalization When dealing with lots of users
within a comment section, its hard to remem-
ber who is who. Small avatars allow quick as-
sociation of replies, to use the social web again,
we included Gravatar[9]. Tt allows users to host
multiple avatars at a central place and make
use of their fast content distribution network.
Once a user has logged on to the Forth net and
enters his email address, the MD5 checksum of
it used to reference his image on Gravatar. If
none is set, Gravatar supplies a random geo-
metric pattern using the email address as seed.

URIs Instead of using old fashioned
URIs with lots or parameters, e.g.:
/index.php?display=cont&user=42&si=. ..
pretty URIs are used:
/projects/the-Forth-net. This way
users and visitors quickly realize how the URI
works and could easily link to them.

Every user has his own profile site where
projects managed by him are displayed and
other users can send him private messages.

4 Conclusion

The Forth net aims to be the de facto standard
for sharing forth libraries some day. By using es-
tablished Web2.0 technologies such as OpenID and
Gravatar, the threshold of becoming a project main-
tainer is much lower than in other networks where
contact to the hoster needs to be made first. Using
pretty-URISs, search engines and users can easily see
the link between the URI and the content and refer
to the homepage.

5 Further Work

5.1 fget

Instead of letting the user struggle with keeping his
local library copies up to date and resolve any de-
pendencies to others, a download manager — work-
ing titled “fget” — could do this for him. The
web server will have special access features with no
markup for this sole purpose.

5.2 Crawler

To minimize the effort for developers, a crawler
could collect the most up to date version of a project
from a given URI. As several security issues become

relevant this feature will only be allowed to users
who have been approved by the administrators.

References

[1] Gerald Wodni. SWIG - Gforth Extension (Bach-
elor Thesis), 2010.

[2] David M. Beazley et al. Simplified Wrapper
and Interface Generator (SWIG). URL http:
//www.swig.org.

[3] SourcForge. URL http://sourceforge.net.
[4] OpenID. URL http://openid.net.

[5] Comprehensive Perl Archive Network. URL

http://www.cpan.org/.

[6] The PHP Extension Community Library. URL
http://pecl.php.net/.

[7] Forth Library Action Group. URL http://
soton.mpeforth.com/flag/.
[8] OpenID Explained. URL http://

openidexplained.com/.

[9] Gravatar. URL http://gravatar. com.

