
26th EuroForth Conference

September 24-26, 2010

Haus Rissen
Hamburg
Germany

3

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 26th Euro-
Forth finds us in Hamburg for the first time. The three previous EuroForths
were held in Schloss Dagstuhl, Germany (2007), in Vienna, Austria (2008)
and in Exeter, England (2009). Information on earlier conferences can be
found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track.
For the refereed track, two papers were submitted, and both were ac-

cepted (100% acceptance rate). For more meaningful statistics, I include the
numbers since 2006: 11 submissions, 7 accepts, 64% acceptance rate. Each
paper was sent to at least three program committee members for review,
and they all produced reviews. One refereed paper was co-authored by me
(the primary program committee chair); Ulrich Hoffmann served as acting
program chair for this paper, and these reviews are anonymous for me. The
other paper was co-authored by a program committee member, and the re-
views of that paper are anonymous to him as well. I thank the authors for
their papers, the reviewers for their reviews, and Ulrich Hoffmann for serving
as secondary chair.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. In addition, the printed proceedings
include slides for talks that will be presented at the conference without being
accompanied by a paper and that were submitted in time.

These online proceedings also contain late presentations that were too
late to be included in the printed proceedings. Also, some of the presenta-
tions included in the printed proceedings were updated to reflect the slides
that were actually presented. Workshops and social events complement the
program.

This year’s EuroForth is organized by Klaus Schleisiek and Ulrich Hoff-
mann.

Anton Ertl

Program committee

Sergey N. Baranov, Motorola ZAO, Russia
M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences (secondary chair)
Phil Koopman, Carnegie Mellon University
Jaanus Pöial, Estonian Information Technology College, Tallinn
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart, University of Teesside
Reuben Thomas, Adsensus Ltd.

4

Contents

Refereed papers

M. Anton Ertl, David Kühling: ABI-CODE: Increasing the Portability of As-
sembly Language Words . 5
Campbell Ritchie, Bill Stoddart: A Compiler which Creates Tagged Parse
Trees and Executes them as FORTH Programs . 15

Non-refereed papers

S. N. Arhipov, N. J. Nelson: Securing a Windows 7 Public Access System
Using Forth . 31
James Bowman: J1: A Small Forth CPU Core for FPGAs 43
Manfred Mahlow: Using Glade to Create GTK+ Applications with FORTH
. 47

Presentations

Andrew Haley: Forth Concurrency for the 21st Century 53

Late presentations

Klaus Schleisiek: uCore progress (with remarks on arithmetic overflow) . 60
Bernd Paysan: net2o: vapor → reality .64

Late papers

Gerald Wodni, M. Anton Ertl: The Forth Net . 68

5

ABI-CODE: Increasing the portability of assembly language words

M. Anton Ertl∗

TU Wien

David Kühling

Abstract

Codewords are not portable between Forth systems,
even on the same architecture; worse, in the case
of Gforth, they are not even portable between dif-
ferent engines nor between different installations.
We propose a new mechanism for interfacing to as-
sembly code: abi-code words are written to com-
ply with the calling conventions (ABI) of the tar-
get platform, which does not change between Forth
systems. In the trade-off between performance and
portability, abi-code provides a new option be-
tween code words and colon definitions. Compared
to code words, the abi-code mechanism incurs an
overhead of 16 instructions on AMD64. Compared
to colon definitions, we achieved a speedup by a fac-
tor of 1.27 on an application by rewriting one short
colon definition as an abi-code word.

1 Introduction

Code words are not portable between Forth sys-
tems, even between Forth systems running on the
same architecture1. The main reason for that is
that there are no standard registers for the stack
pointers.

For Gforth2, the situation is even worse: Be-
cause it uses GCC to build its inner interpreter,
and GCC decides the register allocation on its own,
code words are not even portable between Gforth
installations3 and engines (in particular, not be-
tween gforth and gforth-fast).

In this paper, we describe the new abi-code fa-
cility of Gforth that allows writing code in assembly

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

1We will use this notion of portability between Forth sys-
tems running on the same architecture in the rest of this
paper.

2Gforth is a fast and portable Forth implementation. It
achieves portability by for creating the machine code of the
primitives with a C compiler.

3In particular, Gforth 0.6.2 compiled with one ver-
sion of GCC is not necessarily compatible with the same
Gforth version compiled with another version of GCC;
also, Gforth 0.6.2 configured with explicit register allocation
(--enable-force-reg) is not necessarily compatible with the
same Gforth version configured without this option. These
problems should be less frequent in Gforth 0.7.0, because
there explicit register allocation is tried by default.

language that is portable between different Gforth
installations and engines. If other Forth systems
implement this facility, too, it could enable port-
ing assembly language code to other Forth systems
running on the same platform.

2 Basic Idea

2.1 abi-code

Abi-code words are called according to the calling
convention of the platform, passing and returning
the stack pointers through parameters. The calling
convention is usually described in the application
binary interface (ABI) documentation of the plat-
form, leading to the name abi-code.

The data-stack pointer is passed as first parame-
ter, and is returned as result. An address to a mem-
ory cell containing the FP-stack pointer is passed as
second parameter, and the FP-stack pointer is re-
turned by storing the changed value in this memory
cell; if the FP stack is not accessed, the second pa-
rameter can be ignored. In C terms, an abi-code

word has the following prototype:

Cell *word(Cell *sp, Float **fp_pointer)

The stack layout and the sizes of the stack items
are also relevant: In Gforth both data and FP stack
grow towards lower addresses, and the sizes of the
items on the stack are the same as in memory (i.e.,
1 cells and 1 floats).

Here is an example of using abi-code on Linux-
AMD644:

abi-code my+ (n1 n2 -- n3)

\ SP passed in rdi, returned in rax

lea rax,[rdi+8] \ new sp in result reg

mov rdx,[rdi] \ get old tos

add [rax],rdx \ add to new tos

ret \ return from my+

end-code

To make our examples easier to read, we present
them in Intel syntax (destination first) rather than
the syntax of the Gforth assembler. You can find
a version of this example in Gforth syntax (so you

4Unfortunately, Windows uses a different convention on
AMD64

6

Ertl, Kühling ABI-CODE

can try it out) in the Gforth manual (development
version5).

Most calling conventions pass the parameters in
registers, but IA-32 calling conventions usually pass
them on the architectural stack, and therefore re-
quire slightly more overhead:

abi-code my+

mov eax,4[esp] \ sp in result reg

mov ecx,[eax] \ tos

add eax,#4 \ update sp (pop)

add [eax],ecx \ sec = sec+tos

ret \ return from my+

end-code

And here is an example of an FP abi-code word
on Linux-AMD64:

abi-code my-f+

mov rdx,[rsi] \ load fp

fld qword ptr[rdx] \ r2

add rdx, 8 \ update fp

fadd qword ptr[rdx] \ r1+r2

fstp qword ptr[rdx] \ store r

mov [rsi],rdx \ store new fp

mov rax,rdi \ sp in result reg

ret \ return from my-f+

end-code

Here we have some extra overhead, because the
FP stack pointer fp is passed in and out in a mem-
ory location; also, here we do not need to update
the data stack pointer sp, so moving sp to the result
register requires a separate instruction.

Unlike ordinary code words, abi-code words
need a special routine to invoke them out of a
threaded-code inner interpreter. The definition
of abi-code in gforth-fast on Linux-AMD64 is
equivalent to the following:

: abi-code ("name" --)

create also assembler

;code (... -- ...)

\ doabicode routine

mov [r15],r14 \ 1)store TOS to memory

mov rdi,r15 \ 2)sp to 1st arg reg

movsd [r12],xmm8 \ 1)store FP TOS

lea rax,[r9+10H] \ 3)body of name

mov [rsp+6b0H],r12 \ 2)store fp in memory

lea rsi,[rsp+6b0H] \ 2)2nd arg: fp address

call rax \ 4)call name’s body

mov rdx,[rsp+6b0H] \ 2)load fp

mov r14,[rax] \ 1)load TOS

mov r15,rax \ 2)copy sp to sp reg

movsd xmm8,[rdx] \ 1)load FP TOS

mov r12,rdx \ 2)copy fp to fp reg

NEXT \ 5)threaded dispatch

end-code

my-value
header

code field
threaded

code
native
code

do;abicode

5

code field

foo
header

Figure 1: Code field layout for ;abi-code-defined
words

The doabicode routine consists of the following
components (the numbers in the comments above
refer to the component numbers):

1. Saving the tops of the stacks to memory to
comply with the memory-stack convention of
abi-code words; and loading the tops of the
stacks back into registers afterwards. This is
needed because gforth-fast keeps the tops of
both the data stack and the FP stack in regis-
ters (r14 and xmm8).

2. The FP stack pointer is stored in memory, and
argument registers are set up. And after the
call the new stack pointers are moved to the
registers of sp (r15) and fp (r12).

3. The address of the called routine is computed
(it starts at the body address, which is com-
puted by adding 2 cells (10H) to the CFA in
r9.

4. The actual call.

5. Invoke the next primitive (NEXT).

Gforth also contains a primitive abi-call that
is used for invoking abi-code words (primitive-
centric code [Ert02]6); it has the same components
except that the address of the called routine is
found as immediate argument of the primitive, not
through the CFA.

This overhead will probably be a little lower in
native-code compilers, but most of the components
will be there too.

5http://www.complang.tuwien.ac.at/forth/gforth/

cvs-public/
6In primitive-centric threaded code every non-primitive

(colon definition, constant, etc., and abi-code words) is com-
piled to a primitive followed by an immediate argument.

7

Ertl, Kühling ABI-CODE

2.2 ;abi-code

;abi-code is to ;code what abi-code is to code.
The routine after ;abi-code is passed a third pa-
rameter: the body address of the word for which
the routine provides the behaviour. In C terms, the
routine has the following prototype:

Cell *word(Cell *sp, Float **fp_pointer,

char *body)

Here is an example of using ;abi-code on Linux-
AMD64:

: my-value (w "name" --)

create ,

;abi-code (-- w)

\ sp in rdi, address of fp in rsi

\ body address in rdx, temp reg: rcx

lea rax,[rdi-0x8] \ new sp in return reg

mov rcx,[rdx] \ load value from body

mov [rax],rcx \ store value on stack

ret

end-code

5 my-value foo

Unlike for ;code routines, we cannot use the start
address of this routine as code address in the CFA
of an indirect-threaded Forth. Instead, we have
to use a solution like the one we use for does>-
defined words: The code address points to a rou-
tine do;abicode that calls ;abi-code routines. It
finds the address of the routine to call in the cell
right after the CFA (see Fig. 1). Gforth has two
cells for the xt field, the second being used for
does>-defined and ;abi-code-defined words. The
do;abicode routine and the ;abi-code-execprim-
itive contains components similar to the doabicode
routine shown above.

3 Discussion

3.1 Compared to code

The main disadvantage of abi-code words com-
pared to code words is that they have additional
calling overhead. We will look at the performance
difference resulting from this overhead in Section 4.

The advantage of the abi-code approach is that
it provides a simple and stable interface.

For programmers the advantage of that stability
is that their assembly language words are portable
between Gforth engines (gforth, gforth-fast,
gforth-itc), and portable across installations (in
particular, indepedent of the GCC version used). If
abi-codewas implemented by other Forth systems,
abi-code words could be written to be portable
across systems.

For the system implementor, the advantage of the
stable interface is that the system is not tied to us-
ing the same register assignments internally forever.
It can change, e.g., the number of stack items in
registers, or move the data stack pointer to a differ-
ent register if that results in faster code on a new
processor.

The simplicity helps programmers by not having
to learn and remember top-of-stack registers that
the system may use internally; and it helps the sys-
tem implementor by not having to teach that to
programmers. Indeed, Mitch Bradley once com-
mented that he went back from keeping the TOS
in a register to keeping all stack items in memory
in order to provide a simpler interface to the users.
Abi-code provides the same benefit at a lower cost:
we pay the additional overhead only when executing
an abi-code word, not in the whole system.

3.2 Why use the ABI?

Why did we choose to use the ABI? Couldn’t the
same benefits not be achieved with another ap-
proach?

The major reason we chose to use the ABI is that
it is easy to get GCC to generate an ABI call. There
are some other benefits, however:

• We can use this facility to call functions written
in non-assembly languages that conform to the
ABI; these functions would have to be writ-
ten to access the stacks, though. Indeed, we
will probably modify the implementation of the
libcc C interface [Ert07] to use this mechanism
rather than the less refined calling mechanism
it uses now.

• For each platform, the ABI is already given, so
the system implementor does not need to de-
cide what the interface should be. As long as
there is only one system involved, this is not
a particular advantage, but as soon as several
systems implement a common interface, they
would have to standardize on a common in-
terface for each platform they support, and as
anybody witnessing a standards process knows,
that tends to be rather time-consuming. And
that’s the best case; instead, each vendor might
go their own way on a new platform, so the
advantage of a common interface would disap-
pear.

There is also a disadvantage to using the ABI:
ABIs often require passing the stack pointers in
ways that are suboptimal. E.g., in our AMD64
example, the data stack pointer is passed in in a
different register than it is passed out, and on IA-
32 it is even passed in through memory; and the
limitations of common ABIs have led us to pass the

8

Ertl, Kühling ABI-CODE

FP stack pointer through memory in any case (see
Section 3.4).

3.3 Alternatives

An alternative would be to have conventional code
words, but supply macros that switch from the sys-
tem’s register-and-stack setup to a fixed register
setup and back, just like the NEXT macro invokes the
next word, whether the system is direct-threaded,
indirect-threaded or subroutine-threaded.

In terms of overhead for a given interface this ap-
proach would save relatively little compared to an
abi-code-like implementation: Only the computa-
tion of the call target, the call itself and the return
would be eliminated.

One reason why we did not choose this approach
is that we have no good way to get the register
allocation for Gforth’s engines out of GCC and into
these macros; in contrast, with abi-codeGCC does
the setup of the call and the restoration for us.

Similarly, we could use code words, but abstract
away from the concrete register allocation of a Forth
system and the concrete implementration of the
stack by providing macros for accessing the stacks
and/or for the logical registers (e.g., stack pointers,
temporary registers); if several systems implement
the same macros, code may be portable between
them even if their register allocation differs.

A problem with this approach is that some sys-
tems keep the top-of-stack in a register and others
in memory. On most architectures you cannot use
a memory access wherever you can use a register,
so it would be tricky to set up the macros such that
they can be implemented on all systems. More-
over, we again cannot use this approach for Gforth,
because we have no automatic way to get the ac-
tual register allocation out of GCC and into these
macros. And, to achieve true portability, Forth ven-
dors would have to agree on the macros (and these
may be architecture-specific, e.g., how many tem-
porary registers are usable by code words), whereas
someone else has already standardized the ABI.

Another approach that might be implementable
in Gforth would be to do the setup and call in C
code with asm() statements. This would allow us to
use an arbitrary interface, not limited by the ABI.

A problem of this approach is that there is no
guarantee that GCC plays along; it could run into
a situation where it cannot allocate registers and
would then fail to build Gforth. Or it could pro-
duce an abysmal register allocation that slows down
Gforth significantly (that actually happens often
enough without us playing such games).

The benefit of this approach over abi-codewords
does not appear to be big enough to merit the effort
of implementing it.

3.4 What parameters and how to

pass them

Gforth has four stacks visible to the engine: data,
return, FP, and locals stack. Moreover, there is the
instruction pointer (IP). Which of these pointers
should be passed to the called word?

We decided to pass only the data and FP stack
pointers (sp and fp), because these are the stacks
normally used for dealing with general-purpose and
floating-point data. The other stacks and IP are
typically used for implementing Forth-system inter-
nal stuff like control flow or locals. Most users of
abi-codewill probably not want to implement such
words; passing and returning them would increase
the cost of executing every abi-code word, so we
decided not to pass them.

How do we pass these two stack pointers and how
do we return them? At first we passed sp and fp as
parameters, and returned them in a struct, leading
to the following prototype:

struct ac_ret {Cell *sp; Float *fp;};

struct ac_ret word(Cell *sp, Float *fp);

However, when we looked at the generated code,
we found that this is implemented inefficiently on
most platforms: The calling convention on most
platforms returns a struct by storing it to memory
before returning and loading it from memory in the
caller (pcc calling convention). So, with two stack
pointers in the struct this costs two stores and two
loads. And, what’s more, the programmer would
have to write these stores and have to deal with the
target address for this struct.

There is at least one platform (Linux-AMD64),
where the standard calling convention passes small
structs in registers, and on such platforms this could
be the most efficient way of passing the stack point-
ers, but unfortunately GCC generates inefficient
code (redundant stores) even on that platform.

So overall, while this could be an efficient method,
in practice it isn’t. And on most platforms it is
cumbersome to use.

Therefore, we decided to switch to the currently-
used way to pass the stack pointers:

Cell *word(Cell *sp, Float **fp_pointer);

The downside here is that fp is passed and re-
turned in a cumbersome way; but at worst this leads
to as many loads and stores as returning a struct
on platforms with the pcc calling convention, and
in most cases (no FP stack access, or unchanged FP
stack depth) it will have fewer loads and/or stores.
This approach is also easier to learn and to use for
programmers, especially for words that don’t access
the FP stack.

We also considered several other approaches, but
did not implement them:

9

Ertl, Kühling ABI-CODE

• Put both pointers in memory and pass pointers
to them; as a variation, put them in a struc-
ture in memory and pass one pointer to that.
The main advantage would be that both stack
pointers would be passed in the same way, lead-
ing to a cleaner interface. The disadvantage is
that this approach is less efficient and requires
more loads (and usually stores) than our cho-
sen approach.

• Another, mostly orthogonal option would be to
have different words for different usages: E.g.,
we could have abi-code-sp, where only sp is
passed and returned (avoiding the overhead of
storing fp to memory and loading it back); and
maybe abi-code-fp, where only fp is passed
and returned (in the same way that sp is passed
now). This would increase the efficiency, but it
would also increase the complexity, implemen-
tation and documentation effort of the inter-
face, so we decided not to take this approach
for now.

• A reviewer suggested passing the word’s ar-
guments and returning the result directly as
defined in the calling convention, rather than
through the Forth stack. The called routine
could then also be called from C in the fa-
miliar way without having to set up a mem-
ory area for the stack and passing a pointer to
that. This would require generating a wrap-
per that automatically translates between the
Forth arrangement and the calling convention.
We have done such a thing for calling C func-
tions in the libcc C interface [Ert07], and this
approach could also be used here.

But we don’t think that this would be very
useful, for the following reasons: 1) In a C in-
terface we usually want to call pre-existing C
routines, whereas here the typical usage will
be to write new assembly code for this spe-
cific problem, so the exact kind of parame-
ter passing convention does not make a big
difference. 2) Most calling conventions pro-
vide no good way to pass back several re-
sults. 3) The wrapper would probably incur
extra overhead; e.g., transferring the parame-
ters from the Forth stack to the C stack on
IA-32, where it is just as hard to access. 4)
One could not implement words such as roll

with such a mechanism.

For ;abi-code, we have to pass the body address
of the child word in addition to sp and fp. We just
pass it as extra parameter.

3.5 Other Forth systems

Abi-code solves a problem of Gforth. Would there
be a benefit to implementing abi-code in other
Forth systems? Yes:

• Code using abi-code would be portable be-
tween Forth systems (on the same platform),
unlike code using code. This could also be
achieved by agreeing on a standard interface
to code words for each platform, but reach-
ing such an agreement can be a long and ardu-
ous process. For the ABI somebody else went
through that process, so if we use that, we save
ourselves that effort. As for the disadvantages,
using the ABI leads to more overhead when
executing abi-code words. What’s worse, on
some architectures there are different ABIs for
different operating systems, so abi-codewords
do not necessarily port to other operating sys-
tems, even on the same architecture and Forth
system, unlike code words on most systems.

• The infrastructure used for implementing
abi-code can also be used for calling functions
in other languages that use the ABI. However,
most systems already have a more convenient
C interface that does not require the called
function to access Forth stacks. Still, given
that these Forth systems implement the ABI
for the C interface, it should be easy to imple-
ment abi-code on them.

There are additional requirements to make code
portable across Forth systems: The stacks have to
grow in the same direction in the systems (in Gforth
all stacks grow downwards).7 And the stack items
have to have the same size and format; that’s not
a problem for cells, but different Forth systems use
different FP formats/sizes on IA-32 (64-bit vs. 80-
bit floats).

4 Performance

4.1 Benchmarks

The benchmarks are written for Gforth. We
measure both gforth-fast --no-dynamic (direct
threaded code) as well as the default gforth-fast
(with various optimizations). Other systems use
different implementation techniques, with different
effects on performance, so take these results with a
grain of salt.

We compare different ways to implement 1+. This
word is so short that its cost is relatively minor com-
pared to the overheads of the various implementa-
tion techniques, so the overheads should dominate.

7We could get around that requirement by having macros
for accessing the stack at a certain depth.

10

Ertl, Kühling ABI-CODE

Also, we can implement 1+ both as simple words,
or through defining words. We complement this
micro-benchmark with a result from an application
(Section 4.4).

We compare four different ways of defining simple
words:

primitive Primitives come with Gforth, and
Gforth knows quite a bit about them, in par-
ticular, how to use them in dynamic superin-
structions [RS96, PR98, EG03a]. And Gforth
can also perform other optimizations on them
[Ert02, EG04, EG05]. These optimizations do
not include combining a sequence of 1+ ...

1+ into n +, however.

code-def A code definition. Gforth knows very
little about such words, so these are executed
as direct-threaded code.

abi-code-def Abi-code definitions are usually ex-
ecuted through a primitive abi-call; all
Gforth optimizations can be applied to this
primitive, but the called routine is executed as-
is.

colon-def A simple colon definition. Gforth does
not perform inlining (yet). Colon definitions
are invoked through the primitive call. But
gforth-fast optimizes the body of the colon
definition with a static superinstruction [Ert02]
for the sequence lit +.

We also compare the corresponding four ways of
defining 1+ through defining words:

field-def Using the built-in field definition word
+field; children of this word are compiled to
a primitive lit+, which has all the usual opti-
mizations applied. This primitive uses a literal
constant in the threaded code, so it has a little
more overhead than the primitive 1+.

;code-def To maintain the primitive-centric code
[Ert02] in Gforth, the child of such a word can-
not be compiled directly to threaded code like
code-def. Therefore Gforth uses a primitive
lit-execute to invoke it, adding some over-
head; in particular, there is an additional in-
direct branch (from the primitive to the code
after ;code). Moreover, the other indirect
branch will always be mispredicted in some of
our benchmark setups: those where we use dy-
namic superinstructions and run on CPUs with
BTBs.

;abi-code-def Children of a ;abi-code word are
executed through a primitive ;abi-code-exec

similar to abi-call.

’ 1+ alias primitive

\ add rbx,0x8 \ increment IP

\ add r14,0x1 \ increment TOS (gcc way)

\ next primitive or NEXT

code code-def

add rbx,0x8 \ increment IP

inc r14 \ increment TOS

jmp [rbx-0x8] \ NEXT

end-code

abi-code abi-code-def

\ ABI: SP passed in rdi, returned in rax

mov rax,rdi \ sp into return reg

inc QWORD PTR[rdi] \ increment TOS

ret

end-code

: colon-def 1 + ;

\ indirect definitions through defining a

\ defining word

1 0 +field field-def drop

\ add r14,[r9+0x10] \ >body @ +

\ add rbx,0x8 \ increment IP

\ NEXT

: my-field1 (n --)

create ,

;code (n1 -- n2)

\ sp=r15, tos=r14, ip=rbx, cfa=r9

add rbx,0x8 \ increment IP

add r14,[r9+0x10] \ >body @ +

jmp [rbx-0x8] \ NEXT

end-code

1 my-field1 ;code-def

: my-field2 (n --)

create ,

;abi-code (n1 -- n2)

\ sp in rdi, returned in rax,

\ addr of fp in rsi, body address in rdx

mov rcx,[rdx] \ fetch increment from body

mov rax,rdi \ sp into return reg

add [rdi],rcx \ add increment to TOS

ret

end-code

1 my-field2 ;abi-code-def

: my-field3 (n --)

create ,

does> (n1 -- n2)

@ + ;

1 my-field3 does>-def

Figure 2: Benchmark definitions (Intel syntax for
assembly)

11

Ertl, Kühling ABI-CODE

does>-def Children of does> words are compiled
to be invoked using the primitive does-exec

(which is similar to a sequence of lit and
call).

Figure 2 shows the definitions of these words for
the Linux-AMD64 platform.

The benchmark consists of a loop that contains a
sequence of these implementations of 1+. We mea-
sure a loop with a sequence of 23 1+s, and subtract
the time for a loop with 3 1+s. This gives the time
for executing 20 1+s without the loop overhead or
startup effects. Note that these micro-benchmarks
are unrealistic in their branching behaviour and
therefore give unrealistic branch prediction results.

4.2 Machines

The performance of these benchmarks is influenced
strongly by how well indirect branches are predicted
and by the cost of mispredictions when they hap-
pen. Therefore we measure the performance on two
different CPUs:

Athlon 64 X2 4400+ This processor has a
branch target buffer (BTB), which predicts
(to the first order) that each indirect branch
jumps where it jumped to the last time it
was performed. The misprediction penalty is
around 12 cycles.

Core 2 Duo E8400 This processor has a history-
based indirect-branch predictor that is usually
more accurate than a branch target buffer. The
misprediction penalty is around 12 cycles.

All of these CPUs implement a return stack, so
the returns at the end of abi-code words are pre-
dicted correctly.

We also vary the options used with the
gforth-fast engine:

no-dynamic This is direct-threaded code.

default All optimizations are on. In particu-
lar, dynamic superinstructions benefits ev-
erything except code-def and ;code-def;
static superinstructions benefit colon-def;
and static stack caching benefits abi-code-def
and ;abi-code-def.

4.3 Results

Figure 3 shows the results for direct-threaded code,
and Fig. 4 shows the results for optimized code.
For both machines, we show instructions, some data
about branches and branch mispredictions, and cy-
cles. The metric we actually care about on a par-
ticular platform is the cycles, but the other metrics
are also interesting, because they help explain the

cycle counts that we see, and can help understand
what performance to expect on other machines or
for other benchmark settings.

For cycles and instructions, the count per ex-
ecuted word (implementation of 1+) is shown;
branches and branch mispredictions are scaled up
by a factor of 10, for two reasons: to make their
size better visible; and to reflect the approximate
cost of branch mispredictions in cycles.

Cycles and Instructions

The instruction counts are the same between the
machines, because the same binaries are executed
on both machines.

For threaded code (Fig. 3), we see that the prim-
itive has a similar cyle and instruction counts as
code-def; actually, the instruction count and cycle
count is slightly better for the hand-written code
word compared to the gcc-generated primitive.

Executing the abi-code word is more expensive
by 13 instructions and 8–9 cycles; for the optimized
code, the difference is 11 instructions and 4–7 cy-
cles. This means that one will still use code words
where their portability disadvantage is acceptable
and the number of dynamically executed instruc-
tions in the word is relatively small on average (sev-
eral dozen instructions or less).

The colon definition performs a similar number of
instructions (and cycles) as the abi-code word for
this micro-benchmark, but that’s because 1+ is such
a tiny word. For words with more functionality, a
colon definition in a threaded-code Forth will re-
quire more instructions (and cycles) compared to a
primitive or code word by a factor of 5-10 in many
cases, whereas the abi-code word will only have
the same 11–13 instructions of overhead as for this
benchmark, not an overhead proportional to the
functionality.

The instruction counts for field-def,
;code-def, ;abi-code-def, and does>-def

are slightly higher than for the corresponding sim-
ple words (they fetch the increment from memory),
but are otherwise similar to their corresponding
simple words.

Branches and Mispredictions

Branch mispredictions have a strong influence on
the cycle count, and the mispredictions in these
micro-benchmarks are not representative of typical
applications, so we have measured the number of
branches and branch mispredictions, and present
the results here.

For the branches, the Core 2 can count indi-
rect branches (and their mispredictions), whereas
the Athlon 64 can count taken branches (and
their mispredictions). For these benchmarks, both

12

Ertl, Kühling ABI-CODE

primitive
code-def
abi-code-def
colon-def

field-def
;code-def
;abi-code-def
does>-def

core2

instructions

athlon64 core2

indirect/taken branches *10

athlon64 core2

mispredictions *10

athlon64 core2

cycles

athlon64

/word gforth-fast --no-dynamic

0

10

20

30

Figure 3: Performance results for gforth-fast --no-dynamic (direct threaded code)

primitive
code-def
abi-code-def
colon-def

field-def
;code-def
;abi-code-def
does>-def

core2

instructions

athlon64 core2

indirect/taken branches *10

athlon64 core2

mispredictions *10

athlon64 core2

cycles

athlon64

/word gforth-fast

0

10

20

30

Figure 4: Performance results for gforth-fast default (with optimizations)

measurements result in the same branch counts
in most cases, except for the abi-code-def and
;abi-code-def cases: There the ret from the
called word is counted as taken branch by the
Athlon 64, but not as indirect branch by the Core 2.
These returns are always predicted correctly by the
return stack on both CPUs, so this difference does
not affect the misprediction counts. The mispre-
dictions differ between the CPUs, because they use
different branch predictors.

Does the number of mispredictions differ system-
atically between code words and abi-code words?

One difference is that code words cannot use
the dynamic superinstruction optimization used for
Gforth primitives, typically leading to more mis-
predictions than for primitives (but only partially
in our micro-benchmark). For abi-code words,
dynamic superinstructions can be applied to the
abi-call primitive; and the indirect call inside
this primitive will be well predictable using BTBs
and more sophisticated predictors, because each in-
stance of abi-call will always call the same code.

Even for this micro-benchmark the Core 2 be-
haves mostly as expected (for the optimizing

13

Ertl, Kühling ABI-CODE

Gforth, see Fig. 4): The branch prediction accu-
racy is worse for code-def than for abi-code-def,
resulting in a similar cycle count for both of these
words.

For threaded code the situation is different:
There primitives, code, and abi-code words all
have to perform an indirect branch at the end of
the word, and that branch will often (≈ 50% with
a BTB) be mispredicted in real applications. More-
over, because there is only one replica of abi-call
in a threaded-code system, the indirect call inside
abi-call will also often be mispredicted if different
abi-code words are used in the inner loop.

You may notice that the branch prediction ac-
curacy on the Athlon 64 is better on this micro-
benchmark for threaded code than for the opti-
mized version. That is an artifact of this micro-
benchmark; real-world code behaves differently
[EG03b, EG03a].

4.4 Application performance

In a Mandelbrot set calculation program we re-
placed a short colon definition (7 words, straight-
line code), with an abi-code word containing 11
MIPS instructions8. This resulted in a speedup
by a factor of 1.27 on a 336MHz Ingenic XBurst
Jz4720 running gforth-fast --dynamic. How-
ever, as with code words, this approach is only cost-
effective if a significant part of the run-time is spent
in one or a few words.

5 Related work

The classical Forth way to define words in assembly
language is code...end-code. It has the disadvan-
tage of being system-specific, or worse, in the case
of Gforth, installation-specific.

Modern Forth systems also provide a C interface.
The main use of this interface is to call libraries
that have been developed independently, but it can
also be used to call C functions written specifically
for a Forth application; and it can be used to call
such functions written in assembly language. How-
ever, these functions usually have to be compiled
or assembled separately before loading the Forth
system9, in contrast to defining words in assembly
language at the appropriate places in a Forth source
file with abi-code and code.

New Micros’ Max-Forth for the 68hc11 has a word
called code-sub where the definitions have to end
with an rts (return from subroutine) rather than

8http://mosquito.dyndns.tv/freesvn/trunk/

nanonote/forth/mandelbr.fs
9Exception: Bernd Paysan used Gforth’s libcc interface

to generate the C code from Forth code upon loading, and
that C code is compiled and linked right away.

a jmp next [Dum]. This avoids the need to hard-
code the address of next and therefore increases the
portability of hand-assembled machine code (there
was not enough space for a Forth assembler). The
implementation uses a run-time routine like Gforth
does, but which is less elaborate than doabicode

(no adjustment to an ABI necessary).
Looking beyond Forth, the Java Native Interface

(JNI) [Lia99] shares a number of similarities with
abi-code. It allows Java to call functions through
an interface based on the calling conventions (ABI)
combined with additional conventions. The called
functions are portable across Java VM implemen-
tations, and even across platforms, if written in a
portable language like C. There are also differences:
JNI functions are compiled separately, and they are
usually not written in assembly language.

6 Conclusion

Abi-code allows programmers to write assembly
language words that work across Gforth engines
and versions. If other Forth systems implement
abi-code, too, they work even across Forth sys-
tems.

These words use the standard calling convention
(ABI) of the platform, so they are easy to imple-
ment in Forth systems that are implemented with
the help of a C compiler (like Gforth).

The price we pay for these advantages is an over-
head of 11–13 instructions on AMD64 (4–9 cycles on
current implementations) when invoking abi-code

words. However, compared to colon definitions
abi-code words can provide quite a bit of speedup
(a factor of 1.27 by replacing one colon definition
in one example application), at the cost of being
architecture-specific. So abi-code provides a new
option between colon definitions and code words in
the tradeoff between performance and portability.

Acknowledgments

We thank the anonymous reviewers for their com-
ments and suggestions, which helped improve the
paper.

References

[Dum] Randy M. Dumse. User Manual Max-
FORTH. New Micros.

[EG03a] M. Anton Ertl and David Gregg. Op-
timizing indirect branch prediction ac-
curacy in virtual machine interpreters.
In SIGPLAN Conference on Program-
ming Language Design and Implementa-
tion (PLDI’03), 2003.

14

Ertl, Kühling ABI-CODE

[EG03b] M. Anton Ertl and David Gregg. The
structure and performance of Efficient in-
terpreters. The Journal of Instruction-
Level Parallelism, 5, November 2003.
http://www.jilp.org/vol5/.

[EG04] M. Anton Ertl and David Gregg. Combin-
ing stack caching with dynamic superin-
structions. In Interpreters, Virtual Ma-
chines and Emulators (IVME ’04), pages
7–14, 2004.

[EG05] M. Anton Ertl and David Gregg. Stack
caching in Forth. In M. Anton Ertl, edi-
tor, 21st EuroForth Conference, pages 6–
15, 2005.

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[Ert07] M. Anton Ertl. Gforth’s libcc C function
call interface. In M. Anton Ertl, editor,
23rd EuroForth Conference, pages 7–11,
2007.

[Lia99] Sheng Liang. Java Native Interface:
Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[PR98] Ian Piumarta and Fabio Riccardi. Opti-
mizing direct threaded code by selective
inlining. In SIGPLAN ’98 Conference on
Programming Language Design and Im-
plementation, pages 291–300, 1998.

[RS96] Markku Rossi and Kengatharan
Sivalingam. A survey of instruction
dispatch techniques for byte-code inter-
preters. Technical Report TKO-C79,
Faculty of Information Technology,
Helsinki University of Technology, May
1996.

15

A Compiler which Creates Tagged Parse Trees and Executes

them as FORTH Programs

Campbell Ritchie and Bill Stoddart

Formal Methods and Programming Research Group, Teesside University, Middlesbrough, England

Abstract

Most compilers use separate scanning and parsing, and scan their input from left to right.

Lynas and Stoddart (2008) demonstrated an alternative technique where an input string is split

into multiple sub-expressions, divided at each operator.

We demonstrate an expression parser which extends this work. It runs in two passes. The

first pass scans code left-to-right or right-to-left depending on the associativity of the operator

sought, creating pointers to strings which together represent a parse tree. At the end of the first

pass, it uses lexical analysers to infer the type of each token, or find the type in a lookup table.

The types follow the theory of the B language, building up more complex types as if

with the powerset (�) and Cartesian product (×) operators. The “parser” operations, whose titles

all begin with “P” assemble the elements into a postfix model of the parse tree, with the

operators tagged with a _ character.

The second pass can be run together with the first, or later, allowing the intermediate

representation of the code, as a tagged parse tree, to be inspected. The output can be executed as

FORTH code; each operator tagged with a _ is matched by a corresponding operation which tests

the types supplied, and leaves the type and postfix representation on the stack; the latter is

identical to the FORTH representation of the original expression.

We discuss possible uses of such a compiler, and possible problems about its efficiency,

since it runs in quadratic time.

Keywords

FORTH, compiler, recursion, parse tree, postfix notation, type tagging.

Address for Correspondence

C Ritchie, Formal Methods and Programming Research Group, Rm P1.10, Teesside University,

Borough Rd, Middlesbrough, England TS1 3BA.

work@critchie.co.uk and bill@tees.ac.uk

16

Introduction

Many programming languages are written in infix notation (e.g. “1 + 2”), but most

computers execute the contents of a stack, which is most easily expressed in postfix notation (e.g. “1

2 +”). Both languages used for training only (e.g. “VSL” = very simple language (Bennett (1996))

and commercial production languages (e.g. Java™ (Gosling et al (2005)) are compiled by

conversion to an intermediate form in postfix notation. Since FORTH programs are written in

postfix notation, a compiler which produces its intermediate representation in a form similar to

FORTH syntax can use a FORTH virtual machine as its back-end. This allows one to write a

compiler consisting only of its front-end.

Lynas and Stoddart (2008) introduced such a compiler, originally for teaching

undergraduates. This parses an expression differently from most compilers. Instead of scanning the

code and dividing it into tokens, their compiler scans the code for operators and connectives,

splitting the expression into sub-expressions at each connective. After the code has been subdivided

at every operator, it is held in pointers to strings, which together represent a parse tree. Later, a

second pass of operations is used to rejoin the strings along with the operators. This resultant string

is identical to FORTH syntax for that expression, and can be executed as FORTH code.

Lynas and Stoddart (2008) introduced operations called by an operator followed by an

underscore character; for example, the +_ -_ *_ and /_ operations handle addition, subtraction,

multiplication, and division respectively. The first pass of compilation produces a parse tree, which

can be tagged for types; Lynas and Stoddart’s example shows “1 + 2.5” being converted to

" 1" INT " 2.5" FLOAT +_
by the first pass of compilation.

The values INT and FLOAT are constants representing integer and floating-point numbers,

and the other two values are Strings containing the operands. The second pass executes the values

on the stack as a FORTH program. The +_ operation requires four values on the stack representing a

parse tree. It compares the types, and places two values on the stack: a pointer to the output String

“ 1 S>F 2.5 F+”

which is itself executable as FORTH code, and the constant FLOAT denoting the type of the result.

This implementation technique permits one to use polymorphic operators, providing different

operations for different types of operand.

Rather than passing through the code from left to right, separating it into tokens, this parsing

technique seeks operators in the code and splits an expression into sub-expressions. It scans the

code from left to right for a right-associative operator, and vice versa.

We call programs such as +_ tagged operations. We showed plans to use tagged operations,

which can be executed as FORTH code last year (Ritchie and Stoddart, 2009). At the end of the first

stage of parsing, the operator, along with an underscore “_” is added to the intermediate

representation. This produces an output which can be executed as the second stage of parsing.

Rather than using integers to represent types, we use strings, allowing types of arbitrary complexity

to be declared. This same grammar as we used before, expanded by the addition of Boolean

expressions, is shown as an appendix to this paper.

17

The Structure of this Paper

We first look at sets, and how our typing theory uses sets. Then we describe how this

compiler has grown from earlier work, and the three operations used in the parser, the “P”

operations which splits the text around an operator, and two tagged operations, �_ and +_. Then

follows a section about creating and manipulating sets, and the results of using this parser. Finally,

we discuss its potential use, and planned future work.

18

Sets And Types

Following the type theory of the formal specification and development languages Z and B

(Abrial, 1996), we regard each value as having the type of the set to which it belongs. A whole

number is a member of the integer set expressed in FORTH as “� INT”, and a decimal fraction a

member of the set for real numbers called “� FLOAT” in FORTH. It is possible to use the

constructor for power-set to produce a set whose members are themselves sets; this can be�

expressed as “INT POW”. Similarly the Cartesian Product operator × can be used to produce a set

or ordered pairs; for example the ordered pair (1, 2) or 1 � 2 is a member of the set × , called� �

“INT INT PROD”. Using these constructors, one can create set types of arbitrary complexity, which

the set package introduced to RVM FORTH by Stoddart and Zeyda (2002) handles.

Methods

We maintain the convention of Lynas and Stoddart (2008) of appending an underscore to the

operator, to give the name of an operation which tests the appropriateness of the typing for that

operator. There is however a new problem; we are using arbitrarily complex types, and compound

types, in addition to the built-in types “INT” “FLOAT” and “STRING”. These cannot be readily

expressed as constants, but can be incorporated in Strings which denote those types in the final

FORTH code, and which can be compared and manipulated with simple String operations.

Compiling the Expression Grammar

The grammar is shown as an appendix. It consists of a series of recursive equations, starting

with the lowest-precedence operator and gradually increasing precedences. The�

lowest-precedence operator appears in this line:

E = E � E1, E1

 . . . meaning that the Strings forming E (for expression) consist of strings from E followed by the �
symbol and a string from E1, as well as any strings in E1. Note this grammar permits left recursion.

The equivalence (“iff”) symbol � takes two values, to test for equivalence. It is a binary,

infix, left-associative operator. The expression a � b can be parsed to form this parse tree:-

�

a b

 . . . and the expression a � b � c gives this tree:

 �

� c

 a b

In the case where several operators are included in an expression, one splits the expression

on the lower precedence operators first. In the case of a left-associative symbol, where there is more

than one operator with the same low precedence, the rightmost operator is used to split first (for

19

right-associative operators, one splits first on the leftmost symbol). The values in a b and c will

themselves be expressions from lower lines in the grammar, which are passed on to parsers for

expressions from the next line of the grammar.

The second lowest-precedence connective is the implication symbol , which is a binary�

infix, right-associative operator. The expression a b c� � gives this parse tree:

�

a �

b c

The final output from a parser (PE) for a string from “E” depends whether the string contains

the operator from that line or not. If it does, the right sub-expression is parsed as an E1, and the left

sub-expression as an E; otherwise the whole expression is regarded as an E0 and passed unchanged

to the E0 parser. The final output from an string e, a member of E can be expressed as

PE(e � “�”� e1) = PE(e)� PE1(e1)� “ �” or PE(e) = PE1(e)

. . . where PE and PE1 are parsing operations for strings e and e1 which are members of E and

E1. This maintains the form shown by Lynas and Stoddart (2008). This can be expressed as an

intermediate representation from the first pass of parsing; for example, PE(e � “�”� e1) gives

“" PE(e)" " T" " PE1(e1)" " U" �_”

This is the result of parsing the left string e followed by its type “T” followed by the the

result of parsing the right string e0 and its type “U” followed by the tagged operator �_. The output

is a string including the "straight" quote marks, which can be executed as FORTH code. “T” and

“U” must both be Boolean type for the operator.�

The maplet operator � creates ordered pairs and accepts operands of any type. As an

example, “f � b”, where the types of f and b are foo and bar respectively would be parsed to give

this intermediate representation: “" f" " foo" " b" " bar" �_”. This can itself be executed as FORTH

code to leave “f b �” as the postfix form of the expression, and its type, “foo bar PROD”, on the

stack.

The “lsplit” and “rsplit” Operations and the First Stage of Lexical Analysis.

The first stage parsing is to analyse the input string representing the expression into its

operator and two arguments or operands, left and right. This is done with operations called lsplit

and rsplit; lsplit explores the expression from right to left, looking for left-associative operators, and

rsplit explores from left to right, to find a right-associative operator. Each requires two values on the

stack, the text to be analysed and a sequence containing the operators sought at the present level of

precedence.

The lsplit operation is shown here. It uses the following values internally as local variables:

the cardinality of the sequence, the end of the string, a loop count index, and a value as a place-

holder for the operator string. These are in addition to the two arguments. It also uses the prefix?

function, which tests whether a string is a prefix of another, endaz which finds the end of a

0-terminated string, myazlength which determines its length, and the bracket-avoider-for-lsplit

20

function, which skips backwards over any text in brackets.

The essence of the operation is two nested loops. The outer loop counts backwards from the

end of the text (skipping any text in brackets) and the inner loop compares each value in the

sequence in turn to see whether the operator sought has been found; starting from the current value

of “end” this would appear to be a prefix to the string.

The original value of “op” is 0 (null); whenever a matching prefix is found, “op” is replaced

by that value, and both loops terminate. The left sub-expression can be terminated simply by placing

a null (\0) character in the location of the “end” pointer with the C! instruction, and the right

sub-expression by adding the length of the “op” string to the current “end” pointer.

: lsplit (s seq -- s1 s2 op)
 (s is a string in the form "a + b" and seq is a sequence of strings e.g.)
 (["+", "-"], s1 is the string as far as the operator, s2 after it, and op)
 (is the operator. If op is null = 0, the value below it must be regarded as a)
 (nonsense value and deleted from the stack.)
 (This function skips over any text in “”, (), [] and {})
(string seq already on stack) 0 0 0 0 (6 values now on stack)
(: string seq end op count size :)
string endaz to end (One of the 0s gone)
seq CARD to size (Second 0 gone)
BEGIN
 end string >= op 0= AND
WHILE
 0 to count
 end bracket-avoider-for-lsplit to end (Skip text in brackets etc.)
 BEGIN
 size count > op 0= AND (Not reached start of string, nor found op)
 WHILE
 count 1+ to count (Go through potential operators)
 seq count APPLY end prefix?
 IF
 seq count APPLY to op
 THEN
 REPEAT
 end 1- to end (Count backwards to start of string)
REPEAT
op
IF
 end 1+ to end (Terminate string at op)
 0 end C!
 end op myazlength + to end (Move forward length of op)
THEN
string end op
;

Note that if no “op” string is found, a 0 will be left on the stack. In that case, the “left” value

will be the original text unchanged, and the “right” value must be discarded as a “nonsense” value.

The rsplit operation, which is used for right-associative operators, is very similar but slightly

simpler, because there is no need to seek the end of the string before starting the two loops.

In this example, passing “f � b” and the sequence STRING [" �" ,] to lsplit places the

following three string values on the stack:

f b �

. . . whereas passing “f * b” and the sequence STRING [" +" , " -" ,] would produce the

result

f * b ??? null

. . . i.e. the original input unchanged, an undefined or nonsense value, and null (= \0).

21

Passing “1+2-3-4” and the sequence STRING [" +" , " -" ,] however, splits the input at the second

minus, leaving this result on the stack:

1+2-3 4 -

In all cases where there are several left-associative operators which can be found at the same

precedence, the input is split at the rightmost symbol, meaning the left string is parsed recursively;

similarly the right string (second value on the stack) is parsed recursively if there are several

right-associative operators found with rsplit.

The Parser Operations

The parser operations are similar to one another; an example is shown.

: Pequiv (s -- s1)
(: text :) text equivalence lsplit
VALUE left VALUE right VALUE op
op
IF
 left RECURSE right Pimplies op bar-line AZ^ AZ^ AZ^
ELSE
 left Pimplies
THEN
;

. . . where “equivalence” is defined as STRING [" <=>" , " " ,] (allowing “<=>” as a�

synonym for “ ”) and bar� -line a string containing “_\n”1. The parser splits the “text” into three

parts, “left” “right” and “op”. Passing “f � b” as input results in “f” being parsed recursively, “b”

being passed to a Pimplies parser, and the results being catenated (using the AZ^ operation) with the

operators and “_\n”. If no operator is found, only the “left” sub-expression represents a real value,

which is passed to the next parser in the sequence. In the case of a right-associative operator, rsplit

is used, and the recursion is applied to the “right” sub-expression Eventually the recursion reaches a

stage where the expression can be subdivided no more; then the parsers return the text and its type

with the necessary quotes and spaces included. For example “f” would be parsed to “" f" " foo"” and

the type is sought in a lookup table. This has the corollary that variables must be declared in

advance, so their type can be entered into the lookup table. The parser above requires one string as

input; for “f � b”, it returns “" f" " foo" " b" " bar" _” onto the stack.�

It is possible to create versions of the parsers which call the operations directly, e.g. with the

�_ instruction, and these will call both phases of compilation together.

The Tagged Operators as Operations

The �_ operation as a Simple Example

The output from the parsing operations can be passed to a FORTH virtual machine; the

output “" f" " foo" " b" " bar" �_” puts the four values f foo b bar onto the stack and calls the �_

operation. The �_ operation has the simplest typing of any; it accepts any type except null, and is

shown below:

1 Here, \n is the line-feed character 0x10.

22

: _ (s1 s2 s3 s4 -- ss1 ss2) �
 (: l-value l-type r-value r-type :)
 " " l-type r-type check-types-not-null �
 l-value sspace AZ^ r-value AZ^ " " AZ^ l-type sspace AZ^ r-type AZ^ �
 " PROD" AZ^
;

The check-types-not-null operation simply checks that null has not been passed as a type

because � has no restriction about its types of operand. Then, �_ takes the two operand values

“l-value” and “r-value”, catenating them with spaces and �. Then is catenates the two type values

“l-type” and “r-type” with “PROD” and the appropriate spaces, leaving those two values on the

stack. The equivalence operator causes the _ operation to be invoked; this uses the� �

check-types-for-booleans operation, which tests that both operands have a Boolean type. Almost

every tagged operation is similar to �_, except those for unary operators which only take one value

and one type, and those where the output may differ with the type of input.

Every “check” operation emits an error message and then calls ABORT; this means only one

error message is displayed, even if there are several errors.

The +_ Operation as a More Complex Example

As described by Lynas and Stoddart (2008), arithmetical operations may take different input

types and produce different output. In a simpler version which accepts only integer numbers, the +_

operation is very similar to �_. In the version which accepts floating-point numbers as well, it may

be necessary to change the type of the argument with the S>F operator, and prefix the + with an F.

The complex version follows:

: +_ (s1 s2 s3 s4 -- ss1 ss2)
 (: l-value l-type r-value r-type :)
 " +" VALUE op op l-type r-type check-types-for-arithmetic
 l-type " FLOAT" string-eq r-type " FLOAT" string-eq OR
 (Either or both is float)
 IF
 " F+" to op
 l-type " INT" string-eq
 IF (Add S>F as appropriate)
 l-value " S>F" AZ^ to l-value
 ELSE
 r-type " INT" string-eq
 IF
 r-value " S>F" AZ^ to r-value
 THEN
 THEN
 " FLOAT" to l-type
 THEN
 l-value sspace AZ^ r-value AZ^ op AZ^ l-type
;

The check-types-for-arithmetic operation confirms that both types are “INT” or “FLOAT”.

On checking whether either operand is a “FLOAT”, the operator is changed to “ F+”, and whichever

of the operands is an INT has “ S>F” appended. Also the type to return is changed to “FLOAT”.

This operation will take " 1" " INT" " 1.34" " FLOAT" +_ and return “ 1 S>F 1.34 F+” and the type

“FLOAT”.

23

Sets and Types

A set expression such as {1, 2, 3} can be implemented in FORTH by executing the code

INT { 1 , 2 , 3 , }
where each token is a FORTH operation. The INT provides the type of the set, by placing a pointer

to an empty set of INTs on the stack, which is opened by the { operation. Each number is placed on

the stack in turn, and added to the current set by the comma operator, and the } operation completes

the set construction, leaving a new reference to the whole set on the stack.

Sets may contain individual values, or pairs, or sets. {{1, 2}, {3}} is an example of a set of

sets, which is represented in FORTH as

INT SET { INT { 1 , 2 , } , INT { 3 , } , }
and the following is an example of a set of pairs (called a “relation”) from Strings to integers:

{“Bill” � 2673, “Campbell” � 2680, “Dave” � 2680}
The set of its left-hand elements ({“Bill”, “Campbell”, “Dave”} is called its Domain, and the set of

its right-hand elements ({2673, 2680}) is its Range. It can be translated into FORTH as
STRING INT PAIR { " Bill" 2673 � , " Campbell" 2680 � , " Dave" 2680 � , }

It is possible to retrieve a value from the range of that relation, which we are calling “r”, in infix

notation by writing r(“Bill”) which translates to FORTH postfix notation as
r " Bill" APPLY

If that relation is inverted and the value 2680 applied, there are two possible results, “Campbell”

and “Dave”; the choice can be made non-deterministically and on a reversible FORTH

implementation the choice can be altered on backtracking.

Sequences can be represented similarly, but using square brackets [...] instead of curly braces

{...}; in terms of sets, a sequence is regarded as a relation from integers to another type, T

(INT T PROD). In the case of a sequence, its domain is equal to the set of consecutive integers up to

its cardinality c, expressed as 1 … c2. It is possible to have relations from integers to T whose

domain does not consist of consecutive numbers, and which do not represent sequences. All the set

operations can be applied to sequences. As an example where this might be useful, one can compare

two sequences of the same type, s and t; s is a prefix of t, if s is a subset of t and the union of s and t

equals t (s � t (� s 	 t = t)).

Operations to Create a Set

The operations to create a set are used in the following order:

{_ Puts “{” on the stack (twice) and 0 (= null) because the type is not yet known.

1 Puts the value 1 on the stack, and the string “INT” being its type.

,_ Catenates the type { 1 and , to leave “ INT { 1 , ”, and changes the type on the stack

to “INT”.

2 Puts the value 2 and its type “INT” onto the stack.

,_ Checks the “INT” is the correct type and catenates the previous value with 2 and , to

produce “ { 1 , 2 , ”.

3 Puts the value 3 and its type “ INT” onto the stack.

}_ Checks the remaining “{“ matches “}”, and that the type “INT” is the same as

before, and catenates 3 comma and } to leave “ INT { 1 , 2 , 3 , }” and the type “INT

SET” on the stack. This resultant code can be executed as a FORTH instruction.

Since the type of variable is checked, we restrict sets to homogeneous sets, i.e. those which

only contain one kind of element.

2 We are using 1, not 0, for the number of the first element in the sequence.

24

Other Set Operations and Typing

In the case of set union and intersection and difference, the types must be checked that the

two operands are the same sort of set, i.e. each shows its type as “T POW”. Relational overriding,

using the operator replaces values in a relation on the left by values in the same domain in the

right operand; overriding of s by t is written as s
 t and can be implemented in FORTH as

“s t OVERRIDE”. So each operand must be a relation of the same type, e.g. “S T PROD”.

The typing for other operations can be more difficult. For example the domain restriction

operation, using the � operator requires the left operand be a set of type “T” and the right operand

be a relation from “T” to a type “U”. So R � S returns a relation from S of all those elements whose

domain is included in the set R, and if the type of R is “T POW”, the type of S must be

“T U PROD POW”.

25

Results

We demonstrate a compiler for expressions which can be simply constructed with a recursive

architecture. Each component is relatively simple, the most complicated one being a version of rl-lex

which can distinguish “-” as a binary or infix operator, for subtraction, from “-” as a unary prefix

operator, which occupies 41 lines when comments are excluded. The operation of the compiler can

easily be seen by running a FORTH virtual machine. The expression can be fed onto the stack,

followed by the name of the operation to compile it, and the output (highlighted in pale grey) can be

seen with the .AZ command; feeding this output back to FORTH e.g. with “copy-and-paste”

initiates the second pass of compilation, which produces the type “INT” and the postfix expression

1 2 3 * + 4 /, which evaluates to 2.

" 1 + 2 * 3 / 4" Pexpression .AZ " 1" " INT" " 2" " INT" " 3" " INT" *_
" 4" " INT" /_
+_
ok
" 1" " INT" " 2" " INT" " 3" " INT" *_ ok....
+_ ok..
" 4" " INT" /_ ok..
.AZ INTok.
.AZ 1 2 3 * + 4 /ok
1 2 3 * + 4 / . 2 ok

More complicated expressions can also be analysed. This set expression produces the

intermediate result highlighted in grey, and the second output “INT POW” and “INT { 1 , 2 , 3 , }”:

" {1, 2, 3}" Pexpression .AZ {_
" 1" " INT" ,_
" 2" " INT" ,_
" 3" " INT" }_
{_ ok...
" 1" " INT" ,_ ok...
" 2" " INT" ,_ ok...
" 3" " INT" }_ ok..
.AZ INT POWok.
.AZ INT { 1 , 2 , 3 , }ok
INT { 1 , 2 , 3 , } .SET {1,2,3}ok

Similarly, nested and bracketed expressions can be compiled, for example:

" (1 + 2) * 3 / 4" Pexpression .AZ " 1" " INT" " 2" " INT" +_
" 3" " INT" *_
" 4" " INT" /_
ok
" 1" " INT" " 2" " INT" +_ ok..
" 3" " INT" *_ ok..
" 4" " INT" /_ ok..
.AZ INTok.
.AZ 1 2 + 3 * 4 /ok
1 2 + 3 * 4 / . 2 ok

This expression also evaluates to 2.

26

Discussion

“The primary criterion for a parsing algorithm is that it must be efficient.” (Bennett 1996,

page 80).

Unfortunately, for each stage, it is necessary to traverse the String representing the

expression at each of these stages. As described humorously by Spolsky (2001), traversing a

null-terminated (or ASCIIZ) String takes a time proportional to the length of the String. Also, the

number of traversals is roughly proportional to the number of operators, which again depends on the

String’s length. Our compiler must therefore run in quadratic time (O(n2) complexity). So its utility

for compiling long programs must be limited, but performance will be better if a large program can

be divided into small functions or operations. It may be possible to enhance the FORTH RVM by

adding persistent memory, allowing the output from the first pass of compilation to be retained for

use by the second pass.

We have, however, demonstrated a compiler for expressions which the writer and reader can

simply understand, and which can easily be expanded to complicated expressions. This compiler has

the unusual feature that it recursively seeks operators or connectives, rather than going through the

text from left to right. It is quite easy to examine and interpret the code, which makes this technique

a potential teaching and research tool. Compilers created with automated tools, e.g. yacc (Johnson,

1975) and lex (Lesk 1975) create much code which is difficult to understand at first reading, and

does not lend itself to didactic use.

This compiler is suitable for expansion. For example, it would be easy to add Boolean

expressions, including conjunction disjunction and implications. It would also be possible to add

more operators of different precedences to the grammar, and intersperse parsers to accommodate

those operators.

The grammar, as we have written it, easily permits arbitrary recursion both to left and right.

This can be seen in the parse trees, and can be seen where the keyword RECURSE appears in the

parsers.

Further Work

We plan to add control structures, to implement assignments, loops and selection

(if-then-else blocks). These will necessitate Boolean values to control their flow. For assignment, it

will be necessary to declare variables before use, so a technique to add variables and their types to a

lookup table is needed. Since Böhm and Jacopini (1966) demonstrated that programs of arbitrary

complexity can be assembled from elements of sequence, selection and iteration, these control

structures are sufficient to build a language capable of any operations. As well as these, additional

control structures, including choice and guards, can take advantage of the reversible virtual machine

described by Stoddart Lynas and Zeyda (2010).

We shall need a parsing method for Strings, using the opportunity for nesting “smart” quotes

provided by Unicode support. It will be necessary for such quotes to be nested in pairs; this

following example, which quotes Milne (1926) shows such nesting:

“ “In Which Pooh Goes Visiting and gets Stuck in a Tight Place” by A A Milne

includes the following:

“Pooh . . . said that he must be going on. “Must you?” said Rabbit politely.

“Well,” said Pooh, “I could stay a little longer if . . . ” ” ”

It is easy to count from end to end of such a String, until both opening and closing quotes

27

have been identified.

We hope to implement higher order functions, including � expressions; these may require

both a definition of the function and insertion of its input and output types into a lookup table.

Some functions may be implementable as sets of ordered pairs from input to output.

It may also be possible, after a full language is written, to bootstrap the compiler by

rewriting it in the new language.

Conclusion

We have demonstrated a two-pass compiler for a rich expression language; one can execute

the two passes separately or together. It supports strongly-typed sets and sequences, following the

conventions of B. This compiler is made up of small, mostly simple modules which are assembled

to form a parse tree, and uses operations called after the operators, tagged with a _ character, to

complete the compilation.

Since parse trees have a structure very similar to the postfix notation used in FORTH, it is

simple to convert a parse tree to FORTH code which can be executed directly.

28

References

Abrial J-R 1996. the B Book Cambridge: Cambridge University Press.

Bennett J P 1996. Introduction to Compiling Techniques. A First course using ANSI C, lex and yacc

2/e (the McGraw-Hill International Series in Software Engineering) Maidenhead: McGraw-Hill

Hehner Eric C R 1981. Bunch Theory: a Simple Set Theory for Computer Science. Information

Processing Letters 12(1): 26-30

Böhm C, Jacopini G. Flow diagrams, Turing machines and languages with only two formation

rules, Communications of the Association for Computing Machinery 9(5): 366-371

Gosling J, Joy B, Steele G and Bracha G 2005, The Java Language Specification 3/e (Java Series)

Upper Saddle River NJ: Prentice-Hall, also available at

http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html Accessed 15th September 2010

Hehner Eric C R 1993. A Practical Theory of Programming. Texts and Monographs in Computer

Science. Berlin: Springer-Verlag. A more recent edition is available at

http://www.cs.toronto.edu/~hehner/aPToP/ accessed 17th June 2010.

Johnson S C 1975. Yacc—Yet Another Compiler-Compiler. Comp. Sci. Tech. Rep. No 32, Murray

Hill NJ: AT&T Bell Laboratories, July 1975.

Lesk M E 1975. Lex—A Lexical Analyzer Generator. Comp. Sci. Tech. Rep. No 39, Murray Hill NJ:

AT&T Bell Laboratories, October 1975.

Levine J R, Mason T, Brown D 1992. lex & yacc 2/e. Sebastopol CA: O’Reilly & Associates, Inc.

Lynas A R, Stoddart W J 2008. Using Forth in a Concept-Oriented Computer Language Course, in

ed. A Ertl, Proceedings of the 25th EuroForth Conference, Wien, pages 7-19. Available at

http://www.complang.tuwien.ac.at/anton/euroforth/ef08/papers/proceedings.pdf, accessed

15th June 2010.

Milne A A, 1926. Winnie the Pooh London: Methuen & Co Ltd., and other publishers.

Ritchie C, Stoddart W J 2009. Formulating Type Tagged Parse Trees as Forth Programs. in ed. A

Ertl, Proceedings of the 25th EuroForth Conference, Exeter, pages 11-22. Available at

http://www.complang.tuwien.ac.at/anton/euroforth/ef09/papers/proceedings.pdf, accessed

16th June 2010.

Spolsky J 2001, Back to Basics http://www.joelonsoftware.com/articles/fog0000000319.html

accessed 15th June 2010, also available as Back to Basics, in Spolsky J 2004, Joel on Software.

Berkeley CA: Apress, pages 5-15

Stoddart W J, Lynas A R, Zeyda F 2010. A Virtual Machine for Supporting Reversible Probabilistic

Guarded Command Languages. Electronic Notes in Theoretical Computer Science 253(6): 33–56,

also available at http://www.www.elsevier.com/locate/entcs accessed 17th June 2010

W. J. Stoddart and F. Zeyda. Implementing Sets for Reversible Computation. In ed. A Ertl, 18th

EuroForth Conference Proceedings, 2002. On-line proceedings, available at

http://www.complang.tuwien.ac.at/anton/euroforth2002/papers/ accessed 21st June 2010.

29

Appendix

The expression grammar is given here, in bunch notation (Hehner, 1981 and Hehner, 1993).

The comma is an operator representing bunch union, including all members of both bunches which

are its operands. As an example, if “A” means the bunch of all strings representing arithmetic

expressions and “A1” means the bunch of all strings representing terms in arithmetic, and “+” means

joining or catenating two strings around a + sign (with or without spaces), etc., we can regard the

top line in an arithmetic grammar as

A = A “+” A1, A “–“ A1, A1

. . . i.e. the bunch of strings constituting arithmetic expressions followed by + followed by an

arithmetic term, AND arithmetic expressions followed by – followed by a term, AND arithmetic

terms. There may be white-space between the sub-expressions and the operator. Another definition

of “arithmetic term” or A1 is an arithmetical expression which does not contain + or – as its

lowest-precedence operator.

The following abbreviations are used:

� L A comma separated list of expressions. In this case, the underlined comma , is used

to represent a literal comma rather than bunch union. L = L, E, L

� E An expression

� B A boolean expression

� P An expression representing a pair

� S An expression representing a set

� W An expression representing a string or a set

� A An arithmetic expression (expression representing a number)

� N Numeric literal

� $ String literal

� I An identifier

Details of the grammar of some non-terminals, e.g. string and numeric literals, are omitted below.

E = B “ ” B� 1 , E1

E1 = B2 “ ” B� 1 , E2

E2 = B2 “ ” B� 3 , B2 “ ” B
 3 , E3

E3 = “¬” B3 , E4

E4 = E “ ”� S , E “ ”� S , E4 “=” E5 , E4 “≠” E5

E5 = A “<” A , A “≤” A , A “>” A , A “≥” A , E6

E6 = S “ ” S , � S “�” S , S “ ” S ,� S “ ” S� , E7

E7 = E7 “�” E8 , E8

E8 = E8 “\” E9 , E8 “ ”	 E9 , E8 “ ”� E9 , E8 “
” E9 , E9

E9 = S3 “ ”� S2 , S3 “ -”� S2 , E10

E10 = S2 “ ” E ,� W “ � ” W1 , S2 “�” S3 , S2 “-�” S3 , S2 “�” A ,

S2 “ ” A ,� E11

E11 = A “+” A1 , A “-” A1 , E12

E12 = A1 “*” A2 , A1 “/” A2 , E13

E13 = “-” A3 , E14

E14 = N , $, I , F , “{” L “}” ,

“[” L “]” , “(” E “)” , �

30

B = B “ ” B� 1 , B1

B1 = B2 “ ” B� 1 , B2

B2 = B2 “ ” B� 3 , B2 “ ” B
 3 , B3

B3 = “¬” B3 , B4

B4 = E “ ”� S , E “ ”� S , E4 “=” E4 , E4 “≠” E4

B5 = A “<” A , A “>” A , A “≥” A , A “≤” A, B6

B6 = S “�” S , S “�” S , S “�” S , S “�” S , B7

B7 = “true” , “false” , I , I “(” L “)” , “(” B “)”

S = S “\” S1 , S “	” S1 , S “�” S1 , S “
” S1 , S1

S1 = S2 “�” S1 , S2 “�-” S1 , S2

S2 = S2 “ ” E ,� S2 “ � ” S3 , S2 “�” S3 , S2 “ -� ” S3 , S1 “ ” A ,�

S2 “ ” A ,� S3

S3 = I , F , “{” L “}” , “[” L “]” , “(” S “)” , �

W = S1 “ ” E ,� W “ � ”m W1 , S2 “ ” S� 3 , S2 “ -” S� 3 , S1 “ ” A ,�

S2 “ ” A ,� W1

W1 = I , F , “{” L “}” , “[” L “]” , “(” W “)” , �

A = A “+” A1 , A “-” A1 , A1

A1 = A1 “*” A2 , A1 “/” A2 , A2

A2 = “-” A2 , A3

A3 = I , F , N , “(” A “)”

� = � 3 I • E

3 Here the underlined � is used to represent a literal � in the text, rather than a � expression.

31

EuroForth 2010

Securing a Windows 7 Public Access System Using Forth

S.N. Arhipov Mg.Sc.Eng. apx@micross.co.uk

N.J. Nelson B.Sc C.Eng. M.I.E.E. njn@micross.co.uk

Micross Automation Systems, Units 4-5, Great Western Court, Ross-on-Way,

Herefordshire HR9 7XP, Tel. +44 1989 768080, Fax. +44 1989 768163.

Abstract

Very often in industrial conditions the real time program system is used by one or more

operators, who have computer qualification and experience only in using this program.

Therefore, it is very important, that this special group of users is allowed to use only this

program and not allowed to use all other programs in the computer. At the same time it is

necessary to keep multi user environment and allow the administrator to use all system

opportunities. Herewith, only the administrator can switch between desktops, it should be

quick and should continue executing the programs. In this article the Forth programmatical

technique of disabling some functional features of Windows 7 is described.

Introduction

TRACKNET is a universal software package for tracking and control of work in commercial

laundries. The software consists of two parts. The first is an operator interface program which

runs on a network of Personal Computers (PCs) under the Windows operating system. It is a

Windows application and therefore it can be run simultaneously with all business software.

The TRACKNET operator interface program works with authorised users, who, accordingly,

can have two roles: as an operator and as MICROSS administrator. These roles are specified

and registered in the TRACKNET program and while using this program an operator has some

functional limitations and also has no opportunity to switch to another program application or

to press Ctrl+Alt+Del keys, because this action is intercepted and forbidden by the

TRACKNET program.

Nevertheless, in the Windows Vista and Windows 7 operating systems it is impossible to

intercept Ctrl+Alt+Del. Experiments with keyboard hooking, using

SetWindowsHookEx() function, and the WM_HOTKEY message trapping code injection

into the main windows procedure did not give a positive result because of the hook procedure

LRESULT KeyboardProc(...)

{

 if (Key == VK_CTRLALTDEL) return 1;

 return CallNextHookEx(...);

}

and hot key catching in Windows main procedure

LRESULT CALLBACK NewWindowProc

 (HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM

32

lParam)

{

 if (uMsg == WM_HOTK

 if (lparam == MA

 return 1;

 return CallWindowPr

}

is activated later than Ctrl+A

on Windows log off screen.

Therefore, it was decided to u

run the TRACKNET program

Alt+Esc, Alt+Tab, Ctrl

Other processes continue runn

the "Screen-saver" deskt

process runs on a new desktop

"Default" desktop.

Figure 1. Win

However, the logoff process ru

Windows 7 and Windows Vis

creating a new desktop, it is n

the "Winlogoff" desktop,

"Winlogoff" desktop to init

desktop. The initial state of the

Startup program overvie

Program TrStarter.exe

executable process TRACKNE

“Log off”, “Lock thi

Task Manager”, “Switch

access” buttons (Figure 1.

TKEY)

MAKELONG(MOD_CONTROL | MOD_ALT,

Proc(OldWindowProc, hWnd, wPara

Alt+Del typing event happens, an operating

o use a desktop switching technique, creating a

m on it in order not to lock into program su

l+Shift+Esc etc., but to isolate one proc

unning on the "Default" desktop and the sc

sktop. All these desktops must be locked unt

top and does not finish, or an authorised user sw

inlogoff desktop before and after commands di

 runs on the "Winlogoff" desktop, which alw

ista when the user presses Ctrl+Alt+Del.

is necessary to change the background and disa

p, except for pressing the “Cancel” button,

initial state, when an authorised user switches o

the logoff screen and its transformation are illus

view

 manages two processes: creating, if it does

ET.EXE in a new desktop, and disable all d

his computer”, “Change a passwo

h User” as well as disable “Shut down

1.) on the "Winlogoff" desktop. On sta

, VK_DELETE))

am, lParam);

ting system sets focus

g a new desktop and

such system keys as

rocess from another.

 screen saver runs on

until the TRACKNET

r switches back to the

 disabling.

always switches on in

. In this case, when

disable all commands

on, and resetting the

s on the "Default"

llustrated in Figure 1.

oes not exist, a new

l desktop commands:

ord...”, “Start

n” and “Ease of

starting the program

33

TrStarter.exe a new

backgroundDefault.jpg

Currentdirectory\DESK

with TRACNET program.

All another programs contin

corresponding privileges, usin

desktop back without closing t

to return the focus to a new de

not and correspondingly not cr

the “File\Exit” command,

(Figure 2.).

Figure 2. Starter TrS

TRACNET is a program whic

which already has been su

TrStarter starter progra

March 2010) [3] in order to ex

or Windows 7 [2] .It uses W

directories management.

 desktop is switched on with a new b

pg from a specially crea

SKTOPRES. Now any user has an opportun

tinue running on the "Default" desktop.

using “File\Switch desktop” comman

g the TRACNET program. Next time when a st

 desktop, it can recognize if the TRACNET pro

t create a new process. In the TRACNET progra

nd, the start up desktop takes the focus and TR

Starter.exe and Tracknet.exe proces

hich is implemented using ProForth for Win

successfully commercially used more tha

ram is implemented using VFX Forth for W

 execute the TRACKNET program in the opera

WinApi 32 functions for processes, windows

 background image

reated directory

unity to work solely

p. Only a user with

and, can switch the

 starter program tries

rogram is running or

ram, with the help of

RACKNET is closed

cesses activity diagram.

indows V2.100 and

than ten years [1].

 Windows (4.41. 29

erating systems Vista

ws registry, files and

34

C structures mapping in Forth

To create a new process it is necessary to use two structures. The first of them is

STARTUPINFO, which specifies a window station, desktop, standard handles, and the

appearance of the main window for a process at the time of creation. The table below

specifies this structure in Forth and C notations, and fields, which are used in a process

creation, are represented as comments in the third column of the table below.

Forth notation C definition Used fields

STRUCT STARTUPINFO

 DWORD field SI.CB

 DWORD field lpReserved

 DWORD field SI.LPDESKTOP

 DWORD field lpTitle

 DWORD field dwX

 DWORD field dwY

 DWORD field dwXSize

 DWORD field dwYSize

 DWORD field dwXCountChars

 DWORD field dwYCountChars

 DWORD field dwFillAttribute

 DWORD field dwFlags

 WORD field wShowWindow

 WORD field cbReserved2

 DWORD field lpReserved2

 DWORD field hStdInput

 DWORD field hStdOutput

 DWORD field hStdError

END-STRUCT

typedef

struct _STARTUPINFO {

 DWORD cb;

 LPTSTR lpReserved;

 LPTSTR lpDesktop;

 LPTSTR lpTitle;

 DWORD dwX;

 DWORD dwY;

 DWORD dwXSize;

 DWORD dwYSize;

 DWORD dwXCountChars;

 DWORD dwYCountChars;

 DWORD dwFillAttribute;

 DWORD dwFlags;

 WORD wShowWindow;

 WORD cbReserved2;

 LPBYTE lpReserved2;

 HANDLE hStdInput;

 HANDLE hStdOutput;

 HANDLE hStdError;

}

STARTUPINFO,

*LPSTARTUPINFO;

 \ Size of structure

 \ Name of desktop

The second structure that needed to create a new process is PROCESSINFORMATION. It

contains information about the newly created process and its primary thread. In the table

below this structure is specified in Forth and C notations. This structure is used as an output

parameter of the CreateProcess() function in order to use process handle closing time.

Forth notation C language definition

STRUCT PROCESSINFORMATION

 DWORD field hProcess

 DWORD field hThread

 DWORD field dwProcessId

 DWORD field dwThreadId

END-STRUCT

typedef struct _PROCESS_INFORMATION {

 HANDLE hProcess;

 HANDLE hThread;

 DWORD dwProcessId;

 DWORD dwThreadId;

}

PROCESS_INFORMATION,

*LPPROCESS_INFORMATION;

Entry function of starter program is
: RUN (---) { | si[STARTUPINFO] pi[PROCESSINFORMATION]

res }

;

, where local variables si[and pi[are defined. Structure si[is initialised in a Forth

program by setting values into two fields:

STARTUPINFO si[SI.CB ! \ Set size of structure

35

DESKTOPNAME si[SI.LP

The function RUN creates a n

using parameter values in Fort

Forth notation

 \

DESKTOPNAME \

NULL \

NULL \

0 \

DESKTOP_SWITCHDESKTOP \

NULL \

CreateDesktop \

After a new desktop and startu

on a new desktop.

Process creation and mon

Using Win32-based Spy++

processes, threads, windows,

desktop, or the name of both t

program was executed in two

the results can be seen on Figu

right window), but Spy++ is

process and its threads, but

Anywhere Spy++ gives usefu

It is important information, th

desktop.

Figure 3. Starter T

"Default" desktop (le

LPDESKTOP ! \ Set name of desktop

a new desktop with the help of function Cre

orth notation:

C notation

HDESK CreateDesktop(

in LPCTSTR lpszDesktop,\ The name of t

 LPCTSTR lpszDevice, \ Reserved; mu

 DEVMODE * pDevmode, \ Reserved; mu

in DWORD dwFlags, \ The access to

in ACCESS_MASK dwDesiredAccess, \ The

in LPSECURITY_ATTRIBUTES lpsa \ A p

)

artup information has been created TRACKNET

onitoring

 (SPYXX.EXE) utility, it is possible to v

s, and window messages, but impossible to v

h the desktop and window station for those pro

o different ways – on a default and a new sepa

igure 3. When the starter program is running o

is running on a default desktop, it is possib

ut the actual desktop and windows of proc

ful information about system's object names an

, that can be used during testing of the proces

TrStarter processes, threads and windows

 (left window) and when running on new deskto

eateDesktop(),

f the desktop to be created.

must be NULL.

must be NULL.

 to the desktop

he access to the desktop

 pointer to a structure

T process is created

 view the system’s

 view the name of a

processes. The starter

eparated desktop, and

g on a new desktop (

sible to view only a

rocess are invisible.

 and its identification.

cess of creating new

ws when running on

ktop (right window).

36

The first step of the starter prog

running or not. Forth function
: CHECKISTRACKNETRUNN

 { | res processhan

;

examines all processes that ar

with the name TRACKNET.EX

function returns the value fal

Figure 4. Acti

There are three local variables

res is a temporary value stor

the values, which are the ha

modulehandle sets a value,

many modules in one process

first module in each process

processes.

The fist used WinApi function
BOOL WINAPI EnumProce

 (out DWORD *p

*pBytesReturned);

and it retrieves the process id

function is necessary in three o

• an array size constant, c
 4096 CONSTANT SIZEOF

• a pointer to an array of
pProcessIds

 CREATE ARROFPROCIDS

• the number of bytes re

output parameter pBytesRet
 VARIABLE NUMBEROFBYT

In this case calling of EnumPr
ARROFPROCIDS SIZEOF

DROP

rogram TrStarter is to identify if the TRAC

NNING

andle modulehandle -- f }

 are running (Figure 6.) and compares the nam

EXE. If there are no such names in the module

lse, and for the rest, value true.

ctivity diagram of function CHECKISTRACKN

les in CHECKISTRACKNETRUNNING functio

torage. In the loop, variable processhandl

 handles of the all processes running in the

ue, which is a handle of the module of each pro

ess, but function CHECKISTRACKNETRUNNI

ess and therefore there is only one loop for

on has the signature
cesses

pProcessIds,in DWORD cb,

 identifier for each process object in the syste

e objects:

t, correspondent to input parameter cb
OFARR

 of process identifiers, correspondent to the outp

 SIZEOFARR ALLOT

 returned in the array of process identifiers, co

turned
YTESRETURNED

rocesses() function in Forth notation is:
FARR NUMBEROFBYTESRETURNED

CKNET process is

ames of the modules

ule name list then the

NETRUNNING

ction. Result variable

le sequentially sets

the system. Variable

rocess. There may be

ING examines only

for looking over all

,out DWORD

stem. The use of this

utput parameter

 correspondent to the

EnumProcesses

37

When all system processes are enumerated it is possible to examine every process cyclically

using the function
HANDLE OpenProcess (in DWORD dwDesiredAccess,

 in BOOL bInheritHandle,

 in DWORD dwProcessId);

that opens an existing local process object and returnes the handle to the process according to

its identifier. Function
BOOL EnumProcessModules(in HANDLE hProcess,out HMODULE

*lphModule, in DWORD cb, out LPDWORD lpcbNeeded);

retrieves a handle for each module in the specified process.

In every loop before process opening, into the variable, that is defined as
VARIABLE PROCESSID

the identifier of current process is loaded

ARROFPROCIDS I CELLS+ @ PROCESSID ! \ Set the current process ID

Using the current process identifier, which is the PROCESSID variable, calling the

OpenProcess() function returns an open handle to the specified process.

PROCESS_QUERY_INFORMATION PROCESS_VM_READ OR \ The access to the process

FALSE \ Processes do not inherit this handle

PROCESSID @ \ Current process ID

OpenProcess -> processhandle

Continuing a loop, the function EnumProcessModules() retrieves a list of handles of

process modules

processhandle \ A handle to the process from OpenProcess()

ADDR modulehandle \ An array that receives the list of module handles

SIZEOFDWORD \ The size of the array, in bytes\

NUMBEROFBYTESNEEDED \ The number of bytes required to store handles in the array

EnumProcessModules -> res \ If the function succeeds, the return value is nonzero.

There are two specifics calling this function in the Forth program. The first of them is the use

of the second parameter modulehandle, witch must be specified by type HMODULE *.

Basically, it is an address of variable modulehandle and in Forth program the ADDR word

is used. The second specific aspect is the using of the third parameter. In the function

signature it is defined as DWORD type number, but it is not a count of elements in an array, but

textually it is the size of the module handle address – simply constant
 4 CONSTANT SIZEOFDWORD

Last WinApi function in the loop is
DWORD GetModuleBaseName(in HANDLE hProcess,in HMODULE

hModule,out LPTSTR lpBaseName,in DWORD nSize);

that retrieves the base name of the specified module. The handle of module is loaded in a

local variable modulehandle and the handle of process is loaded in local variable
processhandle

Therefore, calling this function

processhandle \ A handle to the process that contains the module.

38

modulehandle \ A h

MODULEBASENAME \ A p

MODULEBASENAMESIZE \
GetModuleBaseName DRO

retrieves the base name

MODULEBASENAME. Its corre

In the Forth program this param

 1024 CONSTANT MODULE

 CREATE MODULEBASENAM

Likewise, the received value o

string and if they are equal the

true.

Windows registry editing

When a new desktop has bee

except “Cancel”. This com

editing. The data structure of

hierarchical structure of keys a

every key value is a structure w

is stored into the key value.

Fig

In order to disable a c

HKEY_CURRENT_USER root

Software \Microsoft\

to create a value with a corresp

A handle to the module.

A pointer to the buffer that receives the base na

\ The size of the buffer, in characters
ROP

e of the specified module into the

rresponding parameter in the function signature

rameter is defined as a buffer with length 1024

LEBASENAMESIZE

AME MODULEBASENAMESIZE ALLOT

e of the current module name is compared with

 then function CHECKISTRACKNETRUNNING

ing

een created, it is necessary to disable all com

mmand disabling technique is based on Win

of Windows registry structure is represented i

s and their sub keys. Every key can have many

e with three attributes – name of value, type of

Figure 5. Structure of Windows registry

 command on the logoff window, it

oot for

\Windows\CurrentVersion\Policie

esponding name type and data as seen in table b

 name of the module

 output parameter

re has LPTSTR type.

4:

ith the “TRACKNET”

G returnes the value

ommands (Figure 1.)

indows registry key

d in Figure 5. It is a

ny or no values at all;

of value and data that

it is necessary in

es\Explorer key

e below.

39

Name of key value T

NoLogoff

NoClose

D

D

But for the
 Software\Microsoft\W

key it is necessary to create a v

Name of key value T

DisableLockWorkstation

DisableChangePassword

DisableTaskMgr

HideFastUserSwitching

D

D

D

D

In order to enable any comma

to zero. It is possible to do it

WinApi functions for key man

of which it is possible to mana

Figure 6.

The starter program uses such

• RegOpenKeyEx() - open

• RegCloseKey() - close

• RegSetValueEx() - set

• RegDeleteKeyValue(

and sub key.

In the disable command the s

activity sequence of the Forth w
: REGKEYSETVALUE (pr

 { predefinedkey key

;

, which set the value into the re

• predefinedkey, that m

• keyname, that has one of

• valuename - is one of t

• value – must be 1 to dis

Type of key value Data of key value

DWORD

DWORD

1

1

Windows\CurrentVersion\Policies

 a value according to the table below.

Type of key value Data of key value

DWORD

DWORD

DWORD

DWORD

1

1

1

1

mand, the corresponding data of key value mus

 it manually using the regedit.exe editor.

anagement (Figure 6.) and two WinApi funct

nage values for the given key.

Functionality of Windows registry keys and

ch registry functions as:

pens the specified registry key,

oses a handle to the specified registry key,

sets the data and type of a specified value under

() - removes the specified value from the spe

e sequence of calling functions is shown on Fi

th word
predefinedkey keyname valuename

eyname valuename value | res }

e registry key. It receives input values into local

t must be a predefined constant HKEY_CURRE

of two string values “...\Explore” or “...

f the strings from the first column from the tabl

disable a command.

Disable action

“Logg off”

“Shut Down”

s\System

Disable action

“Lock this computer”

“Change a password...”

“Start Task Manager”

“Switch User”

ust be deleted or set

or. But there are four

nctions, with the help

and values

der a registry key,

specified registry key

Figure 7. This is the

e value ---)

cal variables

ENT_USER,

.\System”,

ables above,

40

Figure 7.

The fourth function REGK

RegOpenKeyEx() with inp

below). If the function fails, th

Forth notation

 \

predefinedkey\

keyname \

0 \

KEY_SET_VALUE\

PHKEYRESULT \

RegOpenKeyEx \

 -> res

LONG WINAP

in HKEY

in LPCTSTR

DWORD

in REGSAM

out PHKEY

);

Key value setting is executed

can be seen in table below.

Forth notation C la

PHKEYRESULT @ \

valuename \

0 \

REG_DWORD \

ADDR value \

4 \

RegSetValueEx \

LONG

in

in

in

in c

in

);

The use of RegSetValueEx

parameter dwType is pred

REG_DWORD, REG_QWORD e

stored. In the case of the com

predefined value REG_DWORD

types which it is possible to st

specified as const BYTE

storage data. In Forth notation

value, that is received as an

parameter value of RegSetVa

Function RegCloseKey()

the parameter.

Activity diagram of function, that disable co

KEYSETVALUE tries to open the key

nput parameter values predefinedkey and

, the return value is a nonzero error code.

C language signature

PI RegOpenKeyEx(

 hKey, \ handle to registry key = HKEY_CU

R lpSubKey, \ The name of the registry subkey to

 ulOptions, \ must be zero

 samDesired,\ A mask that required to create, dele

 phkResult \ A pointer to a variable that receives

ted calling function RegSetValueEx() in F

language signature

NG WINAPI RegSetValueEx(

 HKEY hKey, \ A handle to

 LPCTSTR lpValueName, \ The name o

 DWORD Reserved, \ must be zer

 DWORD dwType, \ int type of d

 const BYTE * lpData, \ The data to

 DWORD cbData \ The size of

Ex() function has some particular features. T

redefined and has a value from the set

etc. depending on the type (Figure 5.) of th

ommand’s disability it uses only value 1, tha

RD. The second particular feature is that there

 store in the registry key value. Therefore in th

 *lpData – pointer to first byte of mem

tion the ADDR word is used, which is the ad

an input parameter of the REGKEYSETVALU

ValueEx() function is simply 4 – the size of

 (table below) closes the opened registry key,

 command

key using function

nd keyname (table

_CURRENT_USER

 to be opened.. f

elete, or set a registry value

ves a handle to the opened key

n Forth notation, that

 to an open registry key

e of the value to be set

zero

of data

 to be stored

 of the data to be stored

. The function fourth

t – REG_BINARY,

 the value data to be

that has type int or

ere are many of data

 the general case it is

emory segment with

address of a variable

LUE word. The last

 of int type.

ey, using its handle as

41

Forth notation C language signature

PHKEYRESULT @

RegCloseKey

LONG WINAPI RegCloseKey(

in HKEY hKey \ A handle to an open registry key

);

Switching the "Default" desktop, program TRACKNET back on enables all logoff

commands. It deletes key values NoLogoff, NoClose DisableLockWorkstation,

DisableChangePassword, DisableTaskMgr, HideFastUserSwitching

from the registry using function RegDeleteKeyValue (table below).

Forth notation C language signature

predefinedkey

keyname

valuename

RegDeleteKeyValue

LONG WINAPI RegDeleteKeyValue(

in HKEY hKey, \ A handle to an open registry key.

in LPCTSTR lpSubKey, \ The name of the registry subkey

in LPCTSTR lpValueName \ The registry value to be removed from the key

);

Desktop background changing

Using function CopyFile() a new background image, placed in a reserved folder and has

the same name as original desktop image backgroundDefault.jpg, is copied into the

folder C:\Windows\System32\oobe\Info\backgrounds and replaces the original

background with the new one. Switching "Default" desktop back on, the original

background image is restored from the reserved folder, replacing the image in its own folder.

Function CopyFile() signature and its usage is represented in table below.

Forth notation

LOGINIMAGENAME \ The name of an existing login image file from reserved folder.�

LOGONINFOIMAGE \ The name of the new login image file in C:\Windows\System32\oobe\Info\backgrounds�

FALSE \ Overwrite if file already exist�

CopyFile�

C language signature

BOOL CopyFile(�

in LPCTSTR lpExistingFileName,�

in LPCTSTR lpNewFileName,�

in BOOL bFailIfExists);�

In order to make the copying process successful, it is necessary to set corresponding

permissions for the MICROSS administrator role. It is passible to do manually, using the

Application Data Property editor for changing file ownership and security settings. But these

steps can be executed programmatically.

Setting administrator permissions

To enable administrators to take ownership of shares is possible, using the command-line

utility TakeOwn, but to manage security settings of files and folders is possible, using

command-line tool Icacls. In order to use them, the Win32 function ShellExecute() is

42

used in a program. This function signature and its usage are represented in the tables below.

Forth notation C language signature

\

0 \
Z" open"

 \

Z" cmd.exe" \

Z" /c takeown /f C:\im.jpg"\

Z" "

0 \

ShellExecute \

HINSTANCE ShellExecute(

in HWND hwnd, \A handle to the owner window �

in LPCTSTR lpOperation,\A verb, that specifies the action

 \ to be performed: „edit”, „open”, „print” etc.�

in LPCTSTR lpFile, \The object on which to execute

 \ the verb.�

in LPCTSTR lpParameters,\ The parameters to be passed

 \ to the application �

in LPCTSTR lpDirectory, \ Pointer to working directory�

in INT nShowCmd \The flag how to display

 \ application�
);

Forth notation

\ Applaing stored DACLs to files in specified directories for Administrators
 0

 Z" open"

 Z" cmd.exe" \ open cmd.exe and execute Icacls utility�

 Z" /c Icacls C:\im.jpg /grant BUILTIN\Administrators:(F) "

 Z" "

 0

 ShellExecute�

Conclusions

In result, the program TrStart allows to start any program in separated desktop and to

restrict some users from all others program's execution, including task manager and all logoff

commands. It is possible to tune the TrStart program in order to configure concrete user

permissions. For users with the appropriate privilege it is enable to switch on default desktop

by the new “Switch desktop” menu entry. The program TrStart allow return to the

new desktop without restarting the base program, if it is already running.

Information sources
[1] N.J. Nelson, “Experiments in real time control in Windows using Forth”, 20

th

euroForth Conference, Dagstuhl Castle, November 19
th

-22
th

 2004.

[2] Yochay Kiriaty, Laurence Moroney, Sasha Goldshtein, Alon Fliess “Introducing Win-

dows® 7 for Developers”, Microsoft Press, 2010.

[3] Microprocessor Engineering Limited, VFX Forth for Windows Native Code ANS

Forth Implementation, User manual 4.41 29 March 2010

43

J1: a small Forth CPU Core for FPGAs

James Bowman

Willow Garage

Menlo Park, CA

jamesb@willowgarage.com

Abstract—This paper describes a 16-bit Forth CPU core,
intended for FPGAs. The instruction set closely matches the
Forth programming language, simplifying cross-compilation.
Because it has higher throughput than comparable CPU cores,
it can stream uncompressed video over Ethernet using a simple
software loop. The entire system (source Verilog, cross compiler,
and TCP/IP networking code) is published under the BSD
license. The core is less than 200 lines of Verilog, and operates
reliably at 80 MHz in a Xilinx Spartan R©-3E FPGA, delivering
approximately 100 ANS Forth MIPS.

I. INTRODUCTION

The J1 is a small CPU core for use in FPGAs. It is a 16-

bit von Neumann architecture with three basic instruction

formats. The instruction set of the J1 maps very closely to

ANS Forth. The J1 does not have:

• condition registers or a carry flag

• pipelined instruction execution

• 8-bit memory operations

• interrupts or exceptions

• relative branches

• multiply or divide support.

Despite these limitations it has good performance and code

density, and reliably runs a complex program.

II. RELATED WORK

While there have been many CPUs for Forth, three current

designs stand out as options for embedded FPGA cores:
MicroCore [1] is a popular configurable processor core

targeted at FPGAs. It is a dual-stack Harvard architecture,

encodes instructions in 8 bits, and executes one instruction

in two system clock cycles. A call requires two of these

instructions: a push literal followed by a branch to Top-

of-Stack (TOS). A 32-bit implementation with all options

enabled runs at 25 MHz - 12.5 MIPS - in a Xilinx Spartan-

2S FPGA.
b16-small [2], [3] is a 16-bit RISC processor. In addition

to dual stacks, it has an address register A, and a carry flag C.

Instructions are 5 bits each, and are packed 1-3 in each word.

Byte memory access is supported. Instructions execute at a

rate of one per cycle, except memory accesses and literals

which take one extra cycle. The b16 assembly language re-

sembles Chuck Moore’s ColorForth. FPGA implementations

of b16 run at 30 MHz.
eP32 [4] is a 32-bit RISC processor with deep return and

data stacks. It has an address register (X) and status register

(T). Instructions are encoded in six bits, hence each 32-

bit word contains five instructions. Implemented in TSMC’s

0.18µm CMOS standard library the CPU runs at 100 MHz,

providing 100 MIPS if all instructions are short. However a

jump or call instruction causes a stall as the target instruction

is fetched, so these instructions operate at 20 MIPS.

III. THE J1 CPU

A. Architecture

This description follows the convention that the top of

stack is T , the second item on the stack is N , and the top

of the return stack is R.

J1’s internal state consists of:

• a 33 deep × 16-bit data stack

• a 32 deep × 16-bit return stack

• a 13-bit program counter

There is no other internal state: the CPU has no condition

flags, modes or extra registers.

Memory is 16-bits wide and addressed in bytes. Only

aligned 16-bit memory accesses are supported: byte memory

access is implemented in software. Addresses 0-16383 are

RAM, used for code and data. Locations 16384-32767 are

used for memory-mapped I/O.

The 16-bit instruction format (table I) uses an unencoded

hardwired layout, as seen in the Novix NC4016 [5]. Like

many other stack machines, there are five categories of

instructions: literal, jump, conditional jump, call, and ALU.

Literals are 15-bit, zero-extended to 16-bit, and hence use

a single instruction when the number is in the range 0-32767.

To handle numbers in the range 32768-65535, the compiler

follows the immediate instruction with invert. Hence the

majority of immediate loads take one instruction.

All target addresses - for call, jump and conditional branch

- are 13-bit. This limits code size to 8K words, or 16K bytes.

The advantages are twofold. Firstly, instruction decode is

simpler because all three kinds of instructions have the same

format. Secondly, because there are no relative branches,

the cross compiler avoids the problem of range overflow in

resolve.

Conditional branches are often a source of complexity in

CPUs and their associated compiler. J1 has a single instruc-

tion that tests and pops T , and if T = 0 replaces the current

PC with the 13-bit target value. This instruction is the same

as 0branch word found in many Forth implementations,

and is of course sufficient to implement the full set of control

structures.

ALU instruction have multiple fields:

44

field width action

T ′ 4 ALU op, replaces T , see table II

T → N 1 copy T to N

R → PC 1 copy R to the PC

T → R 1 copy T to R

dstack ± 2 signed increment data stack

rstack ± 2 signed increment return stack

N → [T] 1 RAM write

Table III shows how these fields may be used together

to implement several Forth primitive words. Hence each of

these words map to a single cycle instruction. In fact J1

executes all of the frequent Forth words - as measured by

[6] and [7] - in a single clock cycle.

As in the Novix and SC32 [8] architectures, consecutive

ALU instructions that use different functional units can be

merged into a single instruction. In the J1 this is done by the

assembler. Most importantly, the ; instruction can be merged

with a preceding ALU operation. This trivial optimization,

together with the rewriting of the last call in a word as a

jump, means that the ; (or exit) instruction is free in almost

all cases, and reduces our measured code size by about 7%,

which is in line with the static instruction frequency analysis

in [7].

The CPU’s architecture encourages highly-factored code:

• the call instruction is always single-cycle

• ; and exit are usually free

• the return stack is 32 elements deep

B. Hardware Implementation

Execution speed is a primary goal of the J1, so particular

attention needs to be paid to the critical timing path. This

is the path from RAM read, via instruction fetch to the

computation of the new value of T . Because the ALU

operations (table II) do not depend on any fields in the

instruction, the computation of these values can be done in

parallel with instruction fetch and decode, figure 1.

The data stack D and return stack R are implemented

as small register files; they are not resident in RAM. This

conserves RAM bandwidth, allowing @ and ! to operate in

a single cycle. However, this complicates implementation of

pick and roll.

Our FPGA vendor’s embedded SRAM is dual-ported. The

core issues an instruction read every cycle (port a) and a

memory read from T almost every cycle (port b), using the

latter only in the event of an @ instruction. In case of a

memory write, however, port b does the memory write in the

following cycle. Because of this, @ and ! are single cycle

operations1.

In its current application - an embedded Ethernet camera -

the core interfaces with an Aptina imager and an open source

Ethernet MAC using memory mapped I/O registers. These

registers appear as memory locations in the $4000-$7FFF

range so that their addresses can be loaded in a single literal

instruction.

1the assembler inserts a drop after ! to remove the second stack
parameter

0123456789101112131415

1 value

)

literal

0123456789101112131415

0 0 0 target

)

jump

0123456789101112131415

0 0 1 target

)

conditional jump

0123456789101112131415

0 1 0 target

)

call

0123456789101112131415

0 1 1

R
→

P
C

T ′

T
→

N

T
→

R

N
→

[T
]

rs
ta
ck

±

d
st
ac
k
±

)

ALU

TABLE I: Instruction encoding

code operation
0 T

1 N

2 T + N

3 TandN

4 TorN

5 TxorN

6 ∼ T

7 N = T

8 N < T

9 NrshiftT

10 T − 1
11 R

12 [T]
13 NlshiftT

14 depth

15 Nu<T

TABLE II: ALU operation codes

word T
′

T
→

N

R
→

P
C

T
→

R

d
st
ac
k
±

rs
ta
ck

±

N
→

[T
]

dup T • +1 0
over N • +1 0

invert ∼ T 0 0
+ T + N -1 0

swap N • 0 0
nip T -1 0
drop N -1 0
; T • 0 -1
>r N • -1 +1
r> R • • +1 -1
r@ R • • +1 0
@ [T] 0 0
! N -1 0 •

TABLE III: Encoding of some Forth words.

45

Fig. 1: The flow of a single instruction execution. ALU operation
proceeds in parallel with instruction fetch and decode. Bus widths
are in bits.

C. System Software

Because the target machine matches Forth so closely. the

cross assembler and compiler are relatively simple. These

tools run under gforth [9]. The compiler generates native

code, sometimes described as subroutine-threaded with inline

code expansion [8].

Almost all of the core words are written in pure Forth, the

exceptions are pick and roll, which must use assembly

code because the stack is not accessible in regular memory.

Much of the core is based on eforth [10].

D. Application Software

The J1 is part of a system which reads video from an

Aptina image sensor and sends it as UDP packets over

Ethernet. The PR2 robot running ROS [11] uses six of these

cameras, two in stereo pairs in the head and one in each arm.

The main program implements a network stack (MAC

interface, Ethernet, IP, ARP, UDP, TCP, DHCP, DNS, HTTP,

NTP, TFTP and our own UDP-based camera control proto-

col), handles I2C, SPI, and RS-232 interfaces, and streams

video data from the image sensor.

The heart of the system is this inner loop, which moves

32 bits of data from the imager to the MAC:

begin

begin MAC_tx_ready @ until

pixel_data @ MAC_tx_0 !

pixel_data @ MAC_tx_1 !

1- dup 0=

until

IV. RESULTS

The J1 performs well in its intended application. This sec-

tion attempts to quantify the improvements in code density

and system performance.

Static analysis of our application gives the following

instruction breakdown:

instruction usage

conditional jump 4%

jump 8%

literal 22%

call 29%

ALU 35%

An earlier version of the system used a popular RISC

soft-core [12] based on the Xilinx MicroBlaze R©architecture,

and was written in C. Hence it is possible to compare code

sizes for some representative components. Also included are

some tentative results from building the same Forth source

on MicroCore.

component MicroBlaze J1 MicroCore

code size (bytes)

I2C 948 132 113

SPI 180 104 105

flash 948 316 370

ARP responder 500 122 –

entire program 16380 6349 –

The J1 code takes about 62% less space than the equivalent

MicroBlaze code. Since the code store allocated to the CPU

is limited to 16 Kbytes, the extra space freed up by switching

to the J1 has allowed us to add features to the camera

program. As can be seen, J1’s code density is similar to

that of the MicroCore, which uses 8-bit instructions.

While J1 is not a general purpose CPU, and its only

performance-critical code section is the video copy loop

shown above, it performs quite well, delivering about 3X the

system performance of the previous C-based system running

on a MicroBlaze-compatible CPU.

V. CONCLUSION

By using a simple Forth CPU we have made a more

capable, better performing and more robust product.

Some directions for our future work: increasing the clock

rate of the J1; using J1 in other robot peripherals; imple-

menting the ROS messaging system on the network stack.

Our source code and documentation are available

at: http://www.ros.org/wiki/wge100_camera_

firmware

VI. ACKNOWLEDGMENTS

I would like to thank Blaise Glassend for the original

implementation of the camera hardware.

REFERENCES

[1] K. Schleisiek, “MicroCore,” in EuroForth, 2001.
[2] B. Paysan. http://www.jwdt.com/˜paysan/b16.html.
[3] B. Paysan, “b16-small – Less is More,” in EuroForth, 2004.

46

[4] E. Hjrtland and L. Chen, “EP32 - a 32-bit Forth Microprocessor,”
in Canadian Conference on Electrical and Computer Engineering,
pp. 518–521, 2007.

[5] E. Jennings, “The Novix NC4000 Project,” Computer Language,
vol. 2, no. 10, pp. 37–46, 1985.

[6] D. Gregg, M. A. Ertl, and J. Waldron, “The Common Case in Forth
Programs,” in EuroForth, 2001.

[7] P. J. Koopman, Jr., Stack computers: the new wave. New York, NY,
USA: Halsted Press, 1989.

[8] J. Hayes, “SC32: A 32-Bit Forth Engine,” Forth Dimensions, vol. 11,
no. 6, p. 10.

[9] A. Ertl, B. Paysan, J. Wilke, and N. Crook. http://www.jwdt.
com/˜paysan/gforth.html.

[10] B. Muench. http://www.baymoon.com/˜bimu/forth/.
[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics

and Automation (ICRA) Workshop on Open Source Robotics, (Kobe,
Japan), May 2009.

[12] S. Tan. http://www.aeste.my/aemb.

47

Using Glade to create GTK+ Applications with FORTH.

euroFORTH 2010 - manfred.mahlow@forth-ev.de

September 8, 2010

Abstract

When talking about GUI development with
FORTH, one of the most expressed desires is to
have an IDE or a graphical editor. Some years
ago, when I wrote an object-oriented GTK+
interface for cspForth, an IDE or graphical ed-
itor was not my concern. But, when I recently
decided to port the GTK+ interface to MIN-
FORTH, I remembered that often expressed de-
sire and had a look at Glade and found that
Glade and FORTH can be quite good compan-
ions.

What is Glade ?

Glade is a graphical user interface builder for
GTK+. It's neither an IDE nor a code edi-
tor. It allows to design graphical user interfaces
saved as XML �les. The XML �les describe the
layout of the GUI, the properties of the widgets
and the signal handling. Since version 3.5.0 two
�le formats are supported, an older one to be
used with Libglade and a newer one for Libgtk.

Using a GUI created with Glade is not a tough
task. The usual steps to write the required pro-
gram code are

1. Decision what library to use, Libglade or
Libgtk.

2. Initializing GTK+.

3. Creating a GladeXML or a GtkBuilder ob-
ject per widget hierarchy.

4. Loading the widget hierarchies from the
XMF �le into this objects.

5. Reading widget identi�ers from the
GladeXML or GtkBuilder objects.

6. Writing signal handlers.

7. Assigning signal handlers to widgets.

8. Displaying the GUI.

9. Starting the GTK+ main loop.

A GUI created with Glade can be used with
any program language, as long as the language
gives access to the required Libgtk or Libglade
functions.

Glade and FORTH

FORTH and Glade can be great companions.
Let's have a quick look at a small example, writ-
ten for MINFORTH 1.5(p).1

An Example ...

The Graphical User Interface

Our starting point is a GUI created with Glade.
The newer GtkBuilder format is used. The GUI
consists of two widget hierarchies, the main ap-
plication window (window1 in Fig. 1) and a
modal dialog (dialog1 in Fig. 2).

Fig. 1 and Fig. 2 show the same Glade instance.
The only di�erence is the selected widget. In
Fig. 1 it's window1, in Fig. 2 it's dialog1.

The main window is a GtkWindow with only
one child, which is a GtkLabel (label1). The
dialog is a GtkDialog widget and has some
more children, packed into container widgets.
A GtkImage (image1) and a GtkLabel (la-
bel2) are packed into a GtkHBox (hbox2) which
is packed into the dialogs internal GtkVBox
(dialog-vbox1) and two GtkButton widgets
(button1, button2) are packed into the dialogs
internal GtkHBox (dialog-action_area1).

All packing has been done and all widget prop-
erties have been set with Glade. The only thing
that can not be done when using FORTH, is to
assign signal handlers with Glade. This is only
possible when using the program language C.

The GUI speci�cation is stored in XML format
(Fig. 3) to be used with the GtkBuilder object
de�ned in Libgtk.

1MINFORTH 1.5(p) is MINFORTH 1.5 (for LINUX)
with some additional hooks and minor extensions for
the object-oriented GTK+ interface.

1

48

Figure 1: Glade GUI editor, window1 selected

The GTK+ Interface

To transform the GUI into a GUI application,
some program code is required. We'll use an
object-oriented GTK+ interface here.

The GTK+ classes are mapped to classes of
the same name in FORTH. Classes are loaded
on demand as required.

A widget is an instance of its widget class. The
methods to create and initialize a widget and
to modify its properties are de�ned in its class.

Widget properties are implemented as instance
variables. Property and method names are
choosen to be close to the corresponding GTK+
names.

The FORTH Code

Now lets have a look at the program code in
Fig. 4.

The required classes are loaded in line 8 to 11.

A String object is needed for the name of the
XML �le, a GtkBuilder object to load the GUI
speci�cation from the �le and a GtkDialog and
a GtkWindow object to get access to the GUIs
main window and to the dialog. The objects
are created in line 15 to 18.

In line 18 and 19 two signal slots are created to
be used to connect signals and signal handlers
to the main window(window1).

A �rst signal handler is de�ned in line 23. It
is called when a 'destroy' signal is received by
the main window (window1). It's very simple
here. Its only task is to terminate the GTK+
event processing by leaving the GTK+ main
loop. It's called with two parameters. Both are
not used here.

The second signal handler is de�ned in line
25 to 27. It is called, when the main win-
dow(window1) receives a 'delete-event' signal
from the window manager. Its task is to open
the dialog1, wait for a button press, destroy the
dialog when a button is pressed and return a
button-speci�c value. A 'destroy' signal will be
send to the main window (window1) if FALSE
is returned. This is the case if the 'QUIT' but-
ton (button2) was pressed. Otherwise no 'de-
stroy' signal will be emitted and the 'delete-
event' signal will have no further e�ect.

In line 26 the GtkBuilder object (builder) is ini-
tialized from the XML �le with the GUI speci-
�cation for the dialog (dialog1). All widgets of
the dialogs widget hierarchy are created here.
Then, in line 27, the GtkDialog object for dia-
log1 is initialized by reading its widget identi�er
from the builder object and the dialog is shown

2

49

Figure 2: Glade GUI editor, dialog1 selected

to the user (dialog1 run), waiting for the user
to press one of the dialog buttons.

In line 29 to 34 the word to start the application
is de�ned.

In line 30 the GtkBuilder object (builder) is ini-
tialized from the XML �le with the GUI spec-
i�cation for the main window (window1). All
widgets of the main windows widget hierarchy
are created here.

In line 31 the GtkWindow object for the main
window (window1) is initialized by reading its
widget identi�er from the builder object.

Line 32 connects the on.destroy signal handler
from line 23 to the 'destroy' signal at window1,
using the signal slot cb.destroy and line 33 con-
nects the on.delete-event signal handler from
line 25 to the 'delete-event' signal at window1,
using the signal slot cb.delete.

The code in line 34 makes the main window
(window1) visible on the computer display and,
�nally, the application is started in line 36.

Two modes of event processing are supported
here. If MINFORTH runs in a terminal win-
dow, the GTK+ events are processed in the
background while waiting for terminal input,
to preserve FORTHs interactivity. Otherwise a
GTK+ main loop is entered for event process-
ing.

Figure 5: The running GUI example.

Up and Running

Fig. 5 shows the running application with the
dialog waiting for user response after the close
button of the main window was clicked.

The Bene�t of using Glade

The advantage of creating a GUI with Glade
instead of creating it from source code is, that
no code needs to be written to create the wid-
gets, to set the widget properties and to pack
the widgets into container widgets to get the

3

50

Figure 3: First twenty lines of Glades XML output.

Figure 4: The FORTH code for the GUI created with Glade.

4

51

desired layout. Widgets that do not need to be
manipulated by the program require no code at
all.

Another advantage is that the GUI can be
changed aesthetically and widget properties
can be changed, without the need to change
the code. The only restriction is not to change
the widget names.

To see the bene�t of using Glade take a look at
Fig. 6 and 7. It's the listing of the code that is
required to create the same small GUI example
as in Fig. 4 but without using Glade.

Obviously the di�erence is signi�cant and can
be expected to be much more signi�cant when
writing real applications instead of small exam-
ples.

And - the same is true when using Libglade
instead of Libgtk. The advantage of Libgtk is,
that Libglade is not required at runtime.

References

[1] Andrew Krause. Foundations of GTK+ De-
velopment. Apress, 2007.

[2] Matthias Warkus. Das GTK+/GNOME
Entwicklerhandbuch. dpunkt.verlag, 2008.

[3] http://www.gtk.org/documentation.html

5

52

Figure 6: FORTH code to create the GUI without using Glade, page 1.

Figure 7: FORTH code to create the GUI without using Glade, page 2.

6

53

F
o

rt
h

 c
o

n
c

u
rr

e
n

c
y

 f
o

r
th

e
 2

1
s

t
c
e

n
tu

ry

A
n

d
re

w
 H

a
le

y

W
h

e
re

 a
re

 w
e

?

M
o

o
re

's
 l
a
w

 h
a
s
 n

o
t
b

e
e
n

 c
a
n
c
e
lle

d
:

e
v
e

ry
 1

8
 m

o
n

th
s
,
th

e
 n

u
m

b
e
r

o
f

tr
a

n
s
is

to
rs

 p
e
r

u
n
it
 a

re
a
 d

o
u

b
le

s

H
o

w
e

v
e
r,

 c
lo

c
k
 s

p
e
e

d
s
 h

a
v
e
 n

o
t
b

e
e

n
 i
n
c
re

a
s
in

g
 f
o
r

s
e

v
e

ra
l

y
e

a
rs

,
a
n

d
 i
f
a

n
y
th

in
g

 h
a
v
e

 g
o
t
s
lig

h
tl
y
 s

lo
w

e
r

P
e

rf
o

rm
a

n
c
e

 c
a

n
 s

ti
ll

b
e

 i
n
c
re

a
s
e

d
 w

it
h
 n

e
w

 p
ip

e
lin

e
 a

n
d
 c

a
c
h
e

d
e

s
ig

n
s
,
b
u

t
n

o
t
b

y
 m

u
c
h
.

T
h

e
re

 s
e

e
m

s
 t
o

 b
e

 a
 4

 G
H

z
 b

a
rr

ie
r

W
h

e
re

 a
re

 w
e

 g
o

in
g

?

S
h

a
re

d
-m

e
m

o
ry

 m
u

lt
ip

ro
c
e
s
s
o
rs

 a
re

 t
h
e
 d

o
m

in
a
n

t
te

c
h

n
o

lo
g

y
 f
o

r

s
e

rv
e

rs
 a

n
d

 d
e

s
k
to

p
s

T
o

d
a

y
 w

e
 h

a
v
e

 f
o

u
r

c
o
re

s
 p

e
r

d
ie

A
c
c
o

rd
in

g
 t

o
 M

o
o
re

's
 l
a
w

,
in

 t
e
n

 y
e
a
rs

 w
e
'll

 h
a
v
e
 1

0
0
 c

o
re

s
 p

e
r

d
ie

B
u

t
th

e
y
 m

a
y
 n

o
t
b

e
 v

e
ry

 m
u

c
h

 f
a
s
te

r
th

a
n
 t

h
e
 c

o
re

s
 w

e
 h

a
v
e

to
d
a
y

W
e

 n
e
e
d

 l
a

n
g
u

a
g

e
 s

u
p
p

o
rt

 s
o

 t
h
a

t
n

o
rm

a
l
h

u
m

a
n

 b
e
in

g
s
 c

a
n

p
ro

g
ra

m
 t

h
e

s
e
 b

e
a

s
ts

W
h

e
re

 w
e

re
 w

e
?

C
h

u
c
k
 M

o
o
re

's
 F

o
rt

h
 m

u
lt
i-

ta
s
k
in

g
 d

e
s
ig

n
,
fr

o
m

 e
a
rl

y
 1

9
7
0

s
:

R
o

u
n

d
-r

o
b
in

 s
c
h
e

d
u
le

r

N
o

n
-p

re
e

m
p

ti
v
e

B
e

c
a

u
s
e

 o
f

th
e

 l
a

c
k
 o

f
p

re
e

m
p

ti
o
n

,
th

is
 d

e
s
ig

n
 i
s
 v

e
ry

 e
a
s
y
 t
o

 u
s
e
,

b
e

c
a

u
s
e

Y
o

u
 d

o
n
't

h
a

v
e

 t
o
 l
o
c
k
 d

a
ta

 s
tr

u
c
tu

re
s
 u

n
le

s
s
 t

h
e
re

 i
s
 a

 P
A

U
S

E
 o

r

I/
O

54

H
o

w
e
v

e
r

T
h

is
 d

e
s
ig

n
 d

o
e
s
n
't

w
o
rk

 f
o

r
s
h

a
re

d
-m

e
m

o
ry

 m
u

lt
ip

ro
c
e
s
s
o
rs

,

w
h

e
re

 t
h

e
re

 a
re

 s
e

v
e

ra
l
c
o
re

s
 w

o
rk

in
g
 o

n
 t
h

e
 s

a
m

e
 m

e
m

o
ry

 a
t

th
e

s
a

m
e

 t
im

e

W
h

e
re

 a
re

 w
e

 n
o

w
?

A
lm

o
s
t
n
o

 c
o
n
c
u
rr

e
n
c
y
 s

u
p
p

o
rt

 i
n
 t

h
e

 F
o

rt
h

 l
a
n

g
u

a
g
e

 s
ta

n
d

a
rd

S
o

m
e

 F
o
rt

h
s
 u

s
e
 l
a
n
g

u
a

g
e
 s

u
p

p
o
rt

 f
ro

m
 O

S
:

P
O

S
IX

 t
h
re

a
d

s

G
E

T
 a

n
d

 R
E

L
E

A
S

E
 p

ri
m

it
iv

e
s
 u

s
in

g
 m

u
te

x
e
s
 f
o
r

s
h

a
re

d
 d

a
ta

s
tr

u
c
tu

re
s

D
if
fi
c
u
lt
 a

n
d

 u
n

re
lia

b
le

 t
o
 p

ro
g

ra
m

,
a

n
d
 d

o
e

s
n
't

s
c
a
le

 w
e
ll:

d
e

a
d

lo
c
k
s
,

ra
c
e
s
,
e
tc

.

T
h

e
 h

e
a

rt
 o

f
th

e
 p

ro
b

le
m

 i
s
 t

h
a

t
n
o

-o
n

e
 k

n
o

w
s
 h

o
w

 t
o

 o
rg

a
n
iz

e

a
n

d
 m

a
in

ta
in

 l
a

rg
e

 s
y
s
te

m
s
 t
h

a
t
re

ly
 o

n
 l
o
c
k
in

g

L
o

c
k
s
 a

re
 n

o
t

c
o
m

p
o
s
a

b
le

W
h

e
re

 a
re

 w
e

?

A
lt
e
rn

a
ti
v
e
ly

,
lo

c
k
-f

re
e
 d

a
ta

 s
tr

u
c
tu

re
s
 u

s
in

g
 C

o
m

p
a
re

A
n

d
S

e
t

B
u

t
a

lm
o

s
t
n

o
-o

n
e

 i
n
 t

h
e

 w
o
rl

d
 k

n
o

w
s
 h

o
w

 t
o

 p
ro

g
ra

m
 t

h
e

m
,
a

n
d

e
v
e
n

 t
h
o

s
e

 f
e
w

 p
e
o
p

le
 m

a
k
e
 m

is
ta

k
e

s

T
h

e
 p

ri
n

c
ip

a
l
d

if
fi
c
u
lt
y
 i
s
 t
h

a
t

s
y
n

c
h

ro
n

iz
a

ti
o
n

 p
ri
m

it
iv

e
s
 s

u
c
h

 a
s

C
o

m
p

a
re

A
n
d

S
e

t
w

o
rk

 o
n

 o
n
ly

 a
 s

in
g
le

 w
o

rd
,

a
n

d
 t
h

is
 o

ft
e
n
 f

o
rc

e
s

a
 c

o
m

p
le

x
 a

n
d
 u

n
n
a
tu

ra
l
s
tr

u
c
tu

re
 o

n
 a

lg
o

ri
th

m
s

E
v
e
n

 a
 l
o
c
k
-f

re
e
 q

u
e

u
e
 i
s
 a

n
 o

rd
e

r
o

f
m

a
g
n

it
u
d

e
 m

o
re

 c
o

m
p
le

x

L
o

c
k
-f

re
e
 s

tr
u
c
tu

re
s
 a

re
 n

o
t
c
o

m
p

o
s
a

b
le

 e
it
h
e

r

In
 s

u
m

m
a

ry

L
o

c
k
s
 a

re
 h

a
rd

 t
o

 m
a

n
a

g
e
 e

ff
e

c
ti
v
e
ly

C
o

m
p

a
re

A
n
d

S
e

t
o

p
e
ra

te
s
 o

n
 o

n
ly

 o
n
e

 w
o

rd
 a

t
a

 t
im

e
,

re
s
u
lt
in

g
 i
n

c
o

m
p

le
x
 a

lg
o
ri

th
m

s

It
 i
s
 d

if
fi
c
u

lt
 t
o

 c
o

m
p
o

s
e

 m
u
lt
ip

le
 c

a
lls

 t
o

 m
u

lt
ip

le
 o

b
je

c
ts

 i
n

to

a
to

m
ic

 u
n
it
s

55

T
ra

n
s
a

c
ti

o
n

s
 a

n
d

 A
to

m
ic

it
y

W
o

u
ld

n
't

it
 b

e
 n

ic
e

 i
f

w
e
 c

o
u
ld

 s
a
y

b
e
g
i
n
-
a
t
o
m
i
c

x

@

i
f

x

f
o
o

t
h
e
n

t
r
u
e

y

!

e
n
d
-
a
t
o
m
i
c

E
v
e
ry

th
in

g
 b

e
tw

e
e

n
 b
e
g
i
n
-
a
t
o
m
i
c

 a
n

d
 e
n
d
-
a
t
o
m
i
c

 i
s
 i
n

 a
n

u
n

in
te

rr
u

p
ta

b
le

 t
ra

n
s
a
c
ti
o
n

 –
 a

s
 l
o
n
g

 a
s
 w

e
 d

o
n
't

d
o

 a
n
y
 I
/O

T
h

e
 c

o
d

e
 i
n

 f
o
o

 a
ls

o
 e

x
e
c
u
te

s
 a

s
 p

a
rt

 o
f
th

is
 t
ra

n
s
a

c
ti
o
n

P
ro

g
ra

m
m

in
g
 t
h

is
 m

o
d

e
l
w

o
u

ld
 b

e
 j
u
s
t

lik
e
 t
h

e
 “

o
ld

”
F

o
rt

h
 r

o
u

n
d

-

ro
b
in

 m
u
lt
it
a

s
k
e
r

T
ra

n
s
a

c
ti

o
n

s
 a

n
d

 A
to

m
ic

it
y

In
 a

 s
im

p
le

 s
in

g
le

-c
o
re

 s
y
s
te

m
,
b
e
g
i
n
-
a
t
o
m
i
c

 a
n
d

e
n
d
-
a
t
o
m
i
c

 d
o
n
't

h
a

v
e
 t

o
 d

o
 a

n
y
th

in
g
 e

x
c
e
p
t

e
n

s
u

re
 t

h
a
t

n
o

ta
s
k
 s

w
it
c
h

 o
c
c
u
rs

In
 t
h
e

 c
a

s
e

 o
f

a
 r

o
u
n
d

-r
o
b
in

 s
c
h
e

d
u

le
r,

 t
h
e

y
 d

o
n
't

h
a

v
e
 t

o
 d

o

a
n

y
th

in
g

 a
t
a
ll

T
ra

n
s
a

c
ti

o
n

a
l

m
e
m

o
ry

F
o

r
e

v
e
ry

 a
to

m
ic

 b
lo

c
k
,

th
e

re
 a

re
 t

w
o

 p
o

s
s
ib

ili
ti
e
s

T
h

e
 t

ra
n
s
a

c
ti
o
n

 c
o

m
m

it
s
,
s
o

 i
ts

 r
e

s
u
lt
s
 b

e
c
o
m

e
 v

is
ib

le
 o

u
ts

id
e

th
e
 a

to
m

ic
 b

lo
c
k

T
h

e
 t

ra
n
s
a

c
ti
o
n

 a
b
o
rt

s
,

a
n
d

 i
t
le

a
v
e
s
 t
h

e
 p

ro
g
ra

m
's

 s
ta

te

u
n

c
h

a
n
g

e
d

If
 t

h
e

 T
ra

n
s
a
c
ti
o
n

a
l
M

e
m

o
ry

 (
T

M
)

s
y
s
te

m
 d

e
te

c
ts

 a
 c

o
lli

s
io

n

b
e

tw
e

e
n

 t
ra

n
s
a

c
ti
o
n
s
,
it
 a

b
o

rt
s
 o

n
e
 o

r
m

o
re

 o
f

th
e

m
 a

n
d
 r

e
-

e
x
e
c
u
te

s
 t
h

o
s
e

 t
h

a
t
h

a
v
e
 f

a
ile

d

T
h

is
 p

ro
c
e
s
s
 o

f
re

-e
x
e
c
u
ti
o

n
 i
s
 n

o
t
v
is

ib
le

 t
o
 t

h
e

 p
ro

g
ra

m

T
y
p

e
s

 o
f

T
ra

n
s
a

c
ti

o
n

a
l

M
e
m

o
ry

 s
y

s
te

m

C
o

n
s
is

te
n
t

a
n
d

 I
n

c
o
n

s
is

te
n

t

In
c
o
n

s
is

te
n

t
T

M
s
 c

a
n

 l
e

a
d
 t

o
 e

.g
.

s
e

g
fa

u
lt
s
 a

n
d
 e

x
c
e
p
ti
o
n
s

F
in

e
-g

ra
in

e
d
 a

n
d

 c
o
a

rs
e

-g
ra

in
e
d

F
in

e
-g

ra
in

e
d
 T

M
s
 w

o
rk

 o
n
 c

e
lls

.
 E

a
c
h
 t
im

e
 a

 c
e
ll

in
 m

e
m

o
ry

is
 a

c
c
e
s
s
e
d

,
th

e
 T

M
 m

a
k
e

s
 s

u
re

 n
o
 o

th
e

r
tr

a
n
s
a
c
ti
o
n

 h
a

s

a
lt
e
re

d
 t
h

e
 c

e
ll

s
in

c
e

 t
h
is

 t
ra

n
s
a
c
ti
o
n

 b
e

g
a

n

C
o

a
rs

e
-g

ra
in

e
d

 T
M

s
 w

o
rk

 o
n

 e
n

ti
re

 o
b

je
c
ts

 i
n
 m

e
m

o
ry

,
b
u

t

F
o

rt
h
 h

a
s
 n

o
 i
d

e
a
 w

h
a

t
a

n
 o

b
je

c
t
is

T
M

 f
o

r
F

o
rt

h
 m

u
s
t

b
e
 c

o
n

s
is

te
n

t
a
n

d
 f

in
e
-g

ra
in

e
d

56

T
y
p

e
s

 o
f

T
ra

n
s
a

c
ti

o
n

a
l

M
e
m

o
ry

 s
y

s
te

m

D
e

fe
rr

e
d
 o

r
d
ir
e

c
t

u
p
d

a
te

In
 a

 d
ir
e
c
t-

u
p
d
a

te
 T

M
,
w

ri
te

s
 a

re
 d

o
n
e

 i
m

m
e
d

ia
te

ly
 t
o

m
e

m
o

ry
.
 T

h
e

 s
y
s
te

m
 m

u
s
t
re

c
o
rd

 t
h

e
 o

ri
g

in
a

l
v
a

lu
e

 o
f

a
n

o
b

je
c
t

s
o

 t
h

a
t
if
 a

 t
ra

n
s
a

c
ti
o

n
 h

a
s
 t
o
 b

e
 a

b
o

rt
e

d
 i
t

c
a

n
 b

e

re
s
to

re
d

In
 a

 d
e
fe

rr
e

d
-u

p
d
a

te
 T

M
,
th

e
 s

y
s
te

m
 u

p
d

a
te

s
 a

n
 o

b
je

c
t
in

 a

lo
c
a
ti
o
n
 p

ri
v
a
te

 t
o

 t
h
e

 t
ra

n
s
a
c
ti
o
n

,
a
n

d
 o

n
ly

 w
ri

te
s
 t
h

e
 r

e
a
l

o
b

je
c
t

w
h

e
n
 t

h
e

 t
ra

n
s
a
c
ti
o
n

 s
u
c
c
e

e
d

s

T
L

2

D
ic

e
,
S

h
a
le

v
,
a

n
d

 S
h

a
v
it
,
T

ra
n

s
a
c
ti
o

n
a
l
L
o

c
k
in

g
 I

I,
 D

IS
C

 2
0

0
6

T
h

e
 f

ro
n
t-

ru
n
n
in

g
 S

o
ft

w
a

re
 T

ra
n

s
a

c
ti
o

n
a
l
M

e
m

o
ry

 s
y
s
te

m
 –

 I
M

O

h
tt

p
:/

/c
it
e
s
e

e
rx

.i
s
t.
p
s
u
.e

d
u

/v
ie

w
d

o
c
/d

o
w

n
lo

a
d
?

d
o

i=
1

0
.1

.1
.9

0
.8

1
1

&
re

p
=

re
p

1
&

ty
p
e

=
p

d
f

T
L

2

U
s
e
s
 c

o
m

m
it
-t

im
e
 l
o
c
k
in

g
 a

n
d
 a

 g
lo

b
a

l
v
e
rs

io
n

 c
lo

c
k

F
in

e
-g

ra
in

e
d
,
c
o
n

s
is

te
n

t,
 d

e
fe

rr
e
d

-u
p

d
a

te

T
L

2

U
s
e
s
 c

o
m

m
it
-t

im
e
 l
o
c
k
in

g
 a

n
d
 a

 g
lo

b
a

l
v
e
rs

io
n

 c
lo

c
k

F
in

e
-g

ra
in

e
d
,
c
o
n

s
is

te
n

t,
 d

e
fe

rr
e
d

-u
p

d
a

te

A
 g

lo
b
a
l
v
e

rs
io

n
-c

lo
c
k
 i
s
 i
n

c
re

m
e

n
te

d
 o

n
c
e

 b
y
 e

a
c
h

 t
ra

n
s
a

c
ti
o
n

th
a
t
w

ri
te

s
 t

o
 m

e
m

o
ry

,
a
n

d
 i
s
 r

e
a
d
 b

y
 a

ll
tr

a
n

s
a
c
ti
o

n
s
.

E
v
e
ry

 c
e

ll
in

 m
e

m
o
ry

 h
a

s
 a

 c
o
rr

e
s
p
o
n

d
in

g
 l
o
c
k
 t
h

a
t
c
o
n

ta
in

s
 a

v
e

rs
io

n
 n

u
m

b
e

r

T
ra

n
s
a
c
ti
o
n

s
 s

ta
rt

 b
y
 r

e
a
d
in

g
 t

h
e

 g
lo

b
a
l
v
e

rs
io

n
-c

lo
c
k
 a

n
d

v
a

lid
a
ti
n

g
 e

v
e

ry
 l
o
c
a

ti
o

n
 r

e
a
d

 a
g
a

in
s
t
th

is
 c

lo
c
k

T
h

is
 g

u
a

ra
n

te
e

s
 t

h
a
t

o
n

ly
 c

o
n

s
is

te
n

t
m

e
m

o
ry

 v
ie

w
s
 a

re
 e

v
e

r

re
a
d

57

T
L

2

W
ri

ti
n
g
 t

ra
n

s
a
c
ti
o

n
s
 m

a
in

ta
in

 a
 w

ri
te

 s
e
t.

 T
h

is
 i
s
 t

h
e
 s

e
t

o
f

(a
d
d

re
s
s
,v

a
lu

e
)

p
a
ir
s
 t
o

 b
e

 c
o

m
m

it
te

d
 a

t
th

e
 e

n
d
 o

f
th

e

tr
a

n
s
a
c
ti
o
n

W
ri

ti
n
g
 t

ra
n

s
a
c
ti
o

n
s
 a

ls
o
 m

a
in

ta
in

 a
 r

e
a

d
 s

e
t.

 T
h

is
 i
s
 t
h

e
 s

e
t

o
f

a
d

d
re

s
s
e

s
 t
h
a

t
h

a
v
e

 b
e

e
n
 r

e
a

d
 d

u
ri

n
g
 t

h
e

 t
ra

n
s
a

c
ti
o

n

W
ri

ti
n
g
 t

ra
n

s
a
c
ti
o

n
s
 n

e
e
d
 a

 r
e

a
d
 s

e
t
b
u

t
re

a
d
-o

n
ly

 o
n
e

s
 d

o
 n

o
t

T
L

2

W
ri

ti
n
g
 T

ra
n

s
a
c
ti
o

n
s

S
a

m
p

le
 t

h
e
 g

lo
b

a
l
v
e

rs
io

n
-c

lo
c
k

R
u

n
 t

h
ro

u
g

h
 a

 s
p
e

c
u
la

ti
v
e
 e

x
e
c
u

ti
o
n

L
o

c
k
 t
h
e

 w
ri
te

-s
e

t

In
c
re

m
e
n

t
g

lo
b

a
l
v
e
rs

io
n
-c

lo
c
k

V
a

lid
a
te

 t
h
e

 r
e

a
d

-s
e
t

C
o

m
m

it
 a

n
d
 r

e
le

a
s
e
 t
h

e
 l
o
c
k
s

T
L

2

L
o

w
-C

o
s
t
R

e
a
d

-O
n

ly
 T

ra
n

s
a

c
ti
o

n
s

S
a

m
p

le
 t

h
e
 g

lo
b

a
l
v
e

rs
io

n
-c

lo
c
k

R
u

n
 t

h
ro

u
g

h
 a

 s
p
e

c
u
la

ti
v
e
 e

x
e
c
u

ti
o
n

T
h

is
 i
s
 v

e
ry

 f
a
s
t

T
L

2

L
o

w
 C

o
n

te
n

ti
o
n

 G
lo

b
a

l
v
e
rs

io
n

-c
lo

c
k
 I
m

p
le

m
e
n
ta

ti
o
n

T
ri

c
k
y
,
b

u
t

w
o
rk

s
.

 R
e

a
d

 t
h
e

 p
a

p
e

r

58

S
T

M
 i
n

 F
o

rt
h

S
a

v
e

 t
h
e

 t
o

p
 N

 e
le

m
e
n

ts
 o

f
th

e
 d

a
ta

 s
ta

c
k
 (

o
n
 t

h
e

 r
e
tu

rn
 s

ta
c
k
)

E
x
e
c
u
te

 t
h
e

 t
ra

n
s
a
c
ti
o
n

If
 t

h
e

 t
ra

n
s
a

c
ti
o
n

 c
o
m

m
it
te

d
,
th

ro
w

 a
w

a
y
 t

h
e

 s
a
v
e

d
 s

ta
c
k
 i
te

m
s

If
 t

h
e

 t
ra

n
s
a

c
ti
o
n

 a
b
o

rt
e

d
,
re

s
to

re
 t
h
e

 t
o

p
 N

 e
le

m
e

n
ts

 o
f

th
e

 d
a

ta

s
ta

c
k
 (

fr
o

m
 t
h
e

 r
e
tu

rn
 s

ta
c
k
)

a
n
d
 r

e
tr

y
 t
h
e

 t
ra

n
s
a
c
ti
o
n

If
 t

h
e

 t
ra

n
s
a

c
ti
o
n

 t
h
re

w
 a

n
 e

x
c
e
p
ti
o
n

,
th

ro
w

 a
w

a
y
 t

h
e
 s

a
v
e
d

s
ta

c
k
 i
te

m
s
 a

n
d
 r

e
-t

h
ro

w
 t
h
e

 e
x
c
e

p
ti
o

n

S
T

M
 i
n

 F
o

rt
h

'
t
r
a
n
s
a
c
t
i
o
n

@

i
f

e
x
e
c
u
t
e

/
/

W
e
'
r
e

a
l
r
e
a
d
y

i
n

a

t
r
a
n
s
a
c
t
i
o
n

e
l
s
e

'
t
r
a
n
s
a
c
t
i
o
n

!

1
0

d
e
p
t
h

m
i
n

n
>
r

/
/

S
a
v
e

1
0

c
e
l
l
s

b
e
g
i
n

n
r
@

d
r
o
p

[
'
]

d
o
-
t
r
a
n
s
a
c
t
i
o
n

c
a
t
c
h

d
u
p

r
e
t
r
y
t
x

=

w
h
i
l
e

d
r
o
p

r
e
p
e
a
t

t
h
r
o
w

n
r
d
r
o
p

0

'
t
r
a
n
s
a
c
t
i
o
n

!

t
h
e
n

S
T

M
 i
n

 F
o

rt
h

W
e

 o
n
ly

 n
e

e
d
 t

w
o

 n
e

w
 p

ri
m

it
iv

e
s
,
b
e
g
i
n
-
a
t
o
m
i
c

 a
n

d

e
n
d
-
a
t
o
m
i
c

B
u

t
fo

r
g

o
o
d

 r
e

a
d

-o
n
ly

 t
ra

n
s
a
c
ti
o
n

 p
e
rf

o
rm

a
n
c
e

,
w

e
 a

ls
o

 w
a
n

t
b
e
g
i
n
-
r
e
a
d
o
n
l
y
-
a
t
o
m
i
c

B
e
g
i
n
-
a
t
o
m
i
c

s
e

le
c
ts

 a
 w

o
rd

lis
t

th
a
t
c
o
n
ta

in
s
 t

ra
n

s
a
c
ti
o

n
a
l

v
e

rs
io

n
s
 o

f
 :

;

@

!

P
a

rt
ia

l-
w

o
rd

 w
ri

te
s
 s

u
c
h
 a

s
 c
!

 a
re

 h
a

rd
 b

u
t

c
a
n

 b
e

 d
e

fi
n

e
d

 b
y

u
s
in

g
 t
ra

n
s
a
c
ti
o
n

a
l
@

a
n
d

!

D
o

n
't

u
s
e
 w

o
rd

s
 s

u
c
h

 a
s
 c
m
o
v
e

 i
n
 a

 t
ra

n
s
a
c
ti
o

n

D
o

n
't

d
o
 a

n
y
 I
/O

 i
n

 a
 t

ra
n
s
a

c
ti
o
n

S
T

M
 i
n

 F
o

rt
h

S
T

M
 i
s
 g

o
in

g
 t
o

 b
e

 t
h
e

 o
n
ly

 g
a

m
e
 i
n
 t

o
w

n

A
lt
h
o

u
g
h

 a
to

m
ic

 t
ra

n
s
a
c
ti
o
n

s
 h

a
v
e
 b

e
e
n

 u
s
e
d
 i
n

 d
a
ta

b
a
s
e

s

fo
re

v
e
r,

 S
o
ft

w
a

re
 T

ra
n

s
a

c
ti
o

n
a

l
M

e
m

o
ry

 i
s
 v

e
ry

 n
e

w
.
 T

h
e
 k

e
y

p
a

p
e

rs
 o

n
ly

 d
a

te
 f
ro

m
 a

 f
e
w

 y
e

a
rs

 a
g

o

F
u

tu
re

 p
ro

c
e
s
s
o
rs

 w
ill

 h
a
v
e

 h
a

rd
w

a
re

 s
u

p
p

o
rt

 f
o
r

T
M

G
C

C
 w

ill
 s

o
o

n
 h

a
v
e
 S

T
M

,
b
u

t
it
's

 g
o
in

g
 t
o

 b
e

 a
 w

h
ile

 b
e
fo

re
 i
t's

in
 S

ta
n
d

a
rd

 C

S
T

M
 i
s
 n

o
t
e

v
e
n

 o
n
 J

a
v
a

's
 r

a
d
a

r

T
h

e
 a
t
o
m
i
c

 F
o

rt
h
 p

ri
m

it
iv

e
s
 s

c
a

le
 b

e
a
u
ti
fu

lly
 f
ro

m
 t
h
e

 s
m

a
lle

s
t

e
m

b
e

d
d
e

d
 s

y
s
te

m
 t
o
 t

h
e

 l
a
rg

e
s
t
m

u
lt
i-
C

P
U

 s
e
rv

e
r

F
o

rt
h

 c
o

u
ld

 b
e

 o
n

e
 o

f
th

e
 f
ir

s
t

la
n

g
u

a
g
e

s
 w

it
h
 S

T
M

 s
u

p
p

o
rt

.

59

S
T

M
 i
n

 F
o

rt
h

T
h
e

re
 i
s
 n

o
 l
a

w
 t
h

a
t

s
a
y
s
 F

o
rt

h
 m

u
s
t
b

e

tr
a

ili
n

g
-e

d
g
e

!

Q
u
e

s
ti
o

n
s
?

60

u
C

o
re

 p
ro

g
re

s
s

w
it

h
 r

e
m

a
rk

s
 o

n
a
ri

th
m

e
ti

c
 o

v
e
rf

lo
w

K
la

u
s
 S

c
h

le
is

ie
k

S
E

N
D

 O
ff

-S
h

o
re

 E
le

c
tr

o
n

ic
s
 G

m
b

H
,

H
a

m
b

u
rg

k
s
 @

 s
e

n
d

.d
e

S
ta

te
 o

f
u

C
o

re
 a

ff
a
ir

s

•
u

C
o

re
 1

.x
 i

s
 f

in
is

h
e
d

.

•
V

e
rs

io
n

 1
.6

5
 d

e
fi

n
e
s
 a

 v
e

ry
 r

ic
h

 i
n

s
tr

u
c
ti

o
n

 s
e
t.

 B
e
c
a
u

s
e
 o

f
it

s
c
o

-d
e
s
ig

n
 e

n
v
ir

o
n

m
e
n

t,
 i
t

c
a
n

 b
e
 s

a
fe

ly
 r

e
d

u
c
e

d
 t

o
 m

a
tc

h
 a

p
p

li
c
a

ti
o

n
n

e
e
d

s
.

P
ro

g
re

s
s
 d

u
ri

n
g

 t
h

e
 p

a
s
t

y
e
a
r:

•
N

e
w

 a
p

p
li
c
a
ti

o
n

 u
s

in
g

 L
a

tt
ic

e
 L

F
X

P
2

-1
7
E

 a
s
 a

 "
s
in

g
le

 c
h

ip
 c

o
n

tr
o

ll
e
r"

•
C

ro
s
s
-c

o
m

p
il
e
r

in
te

rp
re

ts
 C

O
N

S
T

A
N

T
S

.V
H

D
 a

n
d

 t
h

e
re

fo
re

,
u

C
o

re
 i

s
 a

 c
o

-
d

e
s
ig

n
 e

n
v
ir

o
n

m
e
n

t
b

u
il
d

in
g

 u
p

o
n

 o
n

e
 s

in
g

le
 s

o
u

rc
e

•
S

te
p

 i
n

s
tr

u
c

ti
o

n
s
 f

o
r

U
M

/M
O

D
 a

n
d

 F
M

/M
O

D
 e

x
e
c

u
ti

n
g

 i
n

 #
b

it
s
+

2
 c

y
c

le
s

•
M

e
ti

c
u

lo
u

s
 o

v
e
rh

a
u

l
o

f
a
ll
 a

ri
th

m
e
ti

c
 o

v
e
rf

lo
w

 c
o

n
d

it
io

n
s

•
D

e
te

rm
in

is
ti

c
 r

e
s
u

lt
s
 o

n
 o

v
e

rf
lo

w

•
S

im
p

li
fi

c
a
ti

o
n

 o
f

th
e
 b

it
-w

is
e
 w

ri
ta

b
le

 r
e
g

is
te

r
m

e
c

h
a
n

is
m

C
o

-d
e
s
ig

n
 e

n
v
ir

o
n

m
e
n

t

•
In

 a
 h

a
rd

w
a

re
 /

 s
o

ft
w

a
re

 c
o

-d
e
s
ig

n
 e

n
v
ir

o
n

m
e
n

t,
 b

o
th

 t
h

e
 h

a
rd

w
a

re
 a

n
d

th
e
 s

o
ft

w
a

re
 c

a
n

 b
e
 s

im
u

la
te

d
 i
n

 a
 u

n
if

ie
d

 e
n

v
ir

o
n

m
e

n
t.

•
C

h
a
n

g
e
s
 i

n
 t

h
e
 h

a
rd

w
a

re
 s

h
o

u
ld

 d
ir

e
c

tl
y
 m

o
d

if
y
 t

h
e
 s

o
ft

w
a

re
 a

s
 w

e
ll
.

O
th

e
rw

is
e
,
h

a
rd

w
a
re

 a
n

d
 s

o
ft

w
a

re
 m

a
y
 d

e
v
ia

te
,
w

o
rk

in
g

 w
it

h
 i
n

c
o

n
s
is

te
n

t
p

ro
c
e
s
s

o
rs

 m
o

d
e

ls
.

•
F

o
r

u
C

o
re

 t
h

is
 m

e
a
n

s
 t

h
a
t

th
e
 F

o
rt

h
 c

ro
s

s
-c

o
m

p
il
e
r

m
u

s
t

d
e
ri

v
e

 i
ts

"k
n

o
w

le
d

g
e
"

a
b

o
u

t
th

e
 a

rc
h

it
e
c
tu

re
 a

n
d

 t
h

e
 i
n

s
tr

u
c

ti
o

n
 s

e
t

fr
o

m
 u

C
o

re
's

V
H

D
L

 s
p

e
c
if

ic
a
ti

o
n

.

•
T

h
is

 i
s
 d

e
fi

n
e
d

 i
n

 C
O

N
S

T
A

N
T

S
.V

H
D

V
H

D
L

 c
o

d
e

 i
n

te
rp

re
ta

ti
o

n

T
h

e
re

fo
re

,
C

O
N

S
T

A
N

T
S

.V
H

D
 h

a
s

 t
o

 b
e

 l
o

a
d

e
d

 i
n

to
 F

o
rt

h
 b

e
fo

re
 l

o
a

d
in

g
 t

h
e

c
ro

s
s

-c
o

m
p

il
e

r
it

s
e

lf

i
n
c
l
u
d
e

v
h
d
l
.
f
s

i
n
c
l
u
d
e

.
.
/
u
C
o
r
e
/
c
o
n
s
t
a
n
t
s
.
v
h
d

i
n
c
l
u
d
e

m
i
c
r
o
c
o
r
e
.
f
s

i
n
c
l
u
d
e

d
i
s
a
s
m
.
f
s

i
n
c
l
u
d
e

c
o
n
s
t
a
n
t
s
.
f
s

61

61

V
H

D
L

 c
o

d
e

 t
o

 b
e

 i
n

te
rp

re
te

d

V
a
ri

o
u

s
 c

o
n

s
ta

n
ts

 t
h

a
t

d
e
fi

n
e
 c

o
m

p
il
e
r

s
w

it
c
h

e
s
,

b
u

s
 w

id
th

s
,

re
g

is
te

r
a
d

d
re

s
s

e
s
,

a
n

d
 c

o
n

tr
o

l
v
a

lu
e
s
:

C
O
N
S
T
A
N
T

w
i
t
h
_
m
u
l
t

:

S
T
D
_
L
O
G
I
C

:
=

'
0
'
;

C
O
N
S
T
A
N
T

d
a
t
a
_
w
i
d
t
h

:

N
A
T
U
R
A
L

:
=

2
4
;

C
O
N
S
T
A
N
T

f
l
a
g
_
r
e
g

:

I
N
T
E
G
E
R

:
=

-
2
;

C
O
N
S
T
A
N
T

m
a
r
k
_
s
t
a
r
t

:

b
y
t
e

:
=

"
0
0
1
1
0
0
1
1
"
;

..
.
a
n

d
 i

n
s
tr

u
c
ti

o
n

s
:

-
-
A
L
U

P
O
P

\

a
n
d

P
U
S
H

C
O
N
S
T
A
N
T

o
p
_
A
D
D

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
0
0
"
;

C
O
N
S
T
A
N
T

o
p
_
A
D
C

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
0
1
"
;

C
O
N
S
T
A
N
T

o
p
_
S
U
B

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
1
0
"
;

C
O
N
S
T
A
N
T

o
p
_
S
S
U
B

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
1
1
"
;

C
O
N
S
T
A
N
T

o
p
_
A
N
D

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
0
0
"
;

C
O
N
S
T
A
N
T

o
p
_
O
R

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
0
1
"
;

C
O
N
S
T
A
N
T

o
p
_
X
O
R

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
1
0
"
;

C
O
N
S
T
A
N
T

o
p
_
N
I
P

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
1
1
"
;

V
H

D
L

 c
o

d
e

 i
n

te
rp

re
ta

ti
o

n

In
 a

d
d

it
io

n
,
th

e
 V

H
D

L
 s

o
u

rc
e
 h

a
s
 t

o
 b

e
 b

e
e

fe
d

 u
p

 b
y
 a

d
d

it
io

n
a
l
w

o
rd

s
,

w
h

ic
h

 c
o

n
tr

o
l
F

o
rt

h
 i

n
te

rp
re

ta
ti

o
n

.
T

h
e
s
e
 w

o
rd

s
 a

ll
 s

ta
rt

 w
it

h
 -
-

 t
u

rn
in

g
th

e
m

 i
n

to
 c

o
m

m
e
n

ts
 f

o
r

th
e
 V

H
D

L
 c

o
m

p
il
e
r.

-
-
V
H
D
L

-
-
~

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

S
S
T
1
0
0

-

c
o
n
s
t
a
n
t
s
.
v
h
d

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
I
B
R
A
R
Y

I
E
E
E
;

U
S
E

I
E
E
E
.
S
T
D
_
L
O
G
I
C
_
1
1
6
4
.
A
L
L
;

U
S
E

w
o
r
k
.
f
u
n
c
t
i
o
n
s
.
A
L
L
;

P
A
C
K
A
G
E

c
o
n
s
t
a
n
t
s

I
S

-
-
~
-
-

\

w
h
e
n

l
o
a
d
i
n
g

t
h
e

F
o
r
t
h

c
r
o
s
s
-
c
o
m
p
i
l
e
r
,

c
o
d
e

b
e
t
w
e
e
n

"
-
-
~
"

u
p

t
o

"
-
-
~
-
-
"

w
i
l
l

b
e

s
k
i
p
p
e
d
.

C
O
N
S
T
A
N
T

v
e
r
s
i
o
n

:

N
A
T
U
R
A
L

:
=

1
1
0
0
;

C
O
N
S
T
A
N
T

w
i
t
h
_
m
u
l
t

:

S
T
D
_
L
O
G
I
C

:
=

'
1
'
;

-
-

'
1
'

w
h
e
n

F
P
G
A

h
a
s

h
a
r
d
w
a
r
e

m
u
l
t
i
p
l
y

r
e
s
o
u
r
c
e
s

C
O
N
S
T
A
N
T

d
a
t
a
_
w
i
d
t
h

:

N
A
T
U
R
A
L

:
=

2
4
;

-
-

d
a
t
a

b
u
s

w
i
d
t
h

-
-
~

..
.
m

o
re

 "
V

H
D

L
 o

n
ly

"
c

o
d

e
-
-
~
-
-

-
-
B
R
A

P
O
P

C
O
N
S
T
A
N
T

o
p
_
A
L
W
A
Y
S

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
0
0
"
;

-
-

E
L
S
E
,

R
E
P
E
A
T

C
O
N
S
T
A
N
T

o
p
_
Q
Z
E
R
O

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
0
1
"
;

-
-

?
d
u
p

I
F

C
O
N
S
T
A
N
T

o
p
_
S
I
G
N

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
1
0
"
;

-
-

0
<

0
=

I
F

C
O
N
S
T
A
N
T

o
p
_
N
S
I
G
N

:

i
n
s
t
_
g
r
o
u
p

:
=

"
0
1
1
"
;

-
-

0
<

I
F

C
O
N
S
T
A
N
T

o
p
_
Z
E
R
O

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
0
0
"
;

-
-

I
F

C
O
N
S
T
A
N
T

o
p
_
N
Z
E
R
O

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
0
1
"
;

-
-

0
=

I
F

C
O
N
S
T
A
N
T

o
p
_
N
O
V
L

:

i
n
s
t
_
g
r
o
u
p

:
=

"
1
1
0
"
;

-
-

o
v
f
l
?

I
F

c
ro

s
s
-c

o
m

p
il
a
ti

o
n

 c
o

n
s
e
q

u
e
n

c
e
s

•
N

o
w

 e
.g

.
o
p
_
Z
E
R
O

h
a
s
 b

e
e
n

 c
o

m
p

il
e

d
 i

n
to

 t
h

e
 F

o
rt

h
 d

ic
ti

o
n

a
ry

 a
s
 a

c
o

n
s

ta
n

t
h

o
ld

in
g

 t
h

e
 i
n

s
tr

u
c
ti

o
n

's
 b

it
 p

a
tt

e
rn

 a
n

d
 w

e
 c

a
n

 u
s
e
 i
t

to
 d

e
fi

n
e

a
c

o
d

e
 c

o
m

p
il

e
r

fo
r

th
e

 t
a

rg
e

t
s

y
s

te
m

o
p
_
Z
E
R
O

B
r
n
:

0
=
B
R
A
N
C
H

(

f

a
d
d
r

-
-

)

w
h

ic
h

 l
a
te

r
o

n
 w

il
l

b
e
 u

s
e
d

 a
p

p
ro

p
ri

a
te

ly
 b

y

I
F
,

W
H
I
L
E
,

 a
n

d

U
N
T
I
L
.

•
T

h
is

 w
a

y
 a

n
y
 c

h
a
n

g
e
 i
n

 t
h

e
 V

H
D

L
 c

o
d

e
 w

il
l
a
u

to
m

a
ti

c
a
ll

y
 b

e
 p

o
rt

e
d

 t
o

 t
h

e
c

ro
s

s
-c

o
m

p
il

e
r.

•
In

 a
d

d
it

io
n

:
W

h
e
n

 a
n

 i
n

s
tr

u
c

ti
o

n
 h

a
s
 b

e
e

n
 r

e
m

o
v
e

d
 f

ro
m

 t
h

e
 V

H
D

L
 c

o
d

e
,

b
e
c
a
u

s
e

 i
t

is
 n

o
t

n
e
e

d
e

d
 i

n
 t

h
e
 a

p
p

li
c

a
ti

o
n

,
th

e
 c

ro
s
s
-c

o
m

p
il
e
r

w
il
l

g
e
t

a
h

ic
c
u

p
 w

h
e
n

 i
t

h
a
s
 n

o
t

b
e
e
n

 r
e
m

o
v
e

d
 t

h
e
re

 a
s

 w
e

ll
.

u
n

s
ig

n
e
d

 D
iv

is
io

n

A
t

fi
rs

t
I
s
ta

rt
e
d

 w
it

h
 u

n
s
ig

n
e

d
 d

iv
is

io
n

u
m
/
m
o
d

,
b

e
c

a
u

s
e

 i
t

is
 e

a
s

y
.

T
h

re
e
 i

n
s
tr

u
c
ti

o
n

s
 a

re
 n

e
e

d
e
d

:

o
p
_
U
D
I
V
S

s
e
ts

 u
p

 t
h

e
 p

a
ra

m
e
te

rs

o
p
_
D
I
V
S

th
e
 b

a
s
ic

 d
iv

is
o

n
 s

te
p

 e
x
e
c
u

te
d

 o
n

c
e
 p

e
r

b
it

o
p
_
U
D
I
V
L

c
o

rr
e
c
ts

 t
h

e
 r

e
s
u

lt
 a

n
d

 c
le

a
n

s
 u

p
 t

h
e
 s

ta
c
k
s

o
p
_
D
I
V
S

 h
o

ld
s

 i
ts

 p
a
ra

m
e
te

rs
 i

n

T
O
S
,

N
O
S
,

T
O
R
,

 a
n

d
 t

h
e
 s

ta
tu

s
 r

e
g

is
te

r

a
n

d
 t

h
e

re
fo

re
,

it
 i

s
 f

u
ll

y
 i

n
te

rr
u

p
ti

b
le

.

:

u
m
/
m
o
d

(

u
d

u

-
-

u
r
e
m

u
q
u
o
t

)

u
d
i
v
s

d
a
t
a
_
w
i
d
t
h

t
i
m
e
s

d
i
v
s

u
d
i
v
l

;

62

62

s
ig

n
e
d

 D
iv

is
io

n

S
ig

n
e
d

 d
iv

is
io

n
 w

a
s
 a

 p
ro

b
le

m
 f

o
r

a
 l

o
n

g
 t

im
e
.
U

n
ti

l
it

 o
c

u
rr

e
d

 t
o

 m
e
 t

h
a
t

th
e

o
b

s
c

u
re

 h
ig

h
 l
e
v
e

l
d

e
fi

n
it

io
n

 o
f
f
m
/
m
o
d

b
a
s
e

d
 o

n

u
m
/
m
o
d

c
a
n

 b
e

tr
a
n

s
la

te
d

 i
n

to
 V

H
D

L
 q

u
it

e
 e

a
s
il
y
.

:

f
m
/
m
o
d

(

d

n

-
-

r
e
m

q
u
o
t

)

d
u
p

>
r

a
b
s

>
r

d
u
p

0
<

I
F

r
@

+

T
H
E
N

r
>

u
m
/
m
o
d

r
@

0
<

I
F

n
e
g
a
t
e

o
v
e
r

I
F

s
w
a
p

r
@

+

s
w
a
p

1
-

T
H
E
N

T
H
E
N

r
d
r
o
p

;

T
h

e
re

fo
re

,
s
ig

n
e

d
 d

iv
is

io
n

 j
u

s
t

n
e
e

d
s
 t

w
o

 m
o

re
 i
n

s
tr

u
c

ti
o

n
s
 a

n
d

,
u

n
fo

rt
u

n
a
te

ly
,
tw

o
 m

o
re

 b
it

s
 i
n

 t
h

e
 s

ta
tu

s
 r

e
g

is
te

r
to

 r
e

m
e
m

b
e
r

th
e
 s

ig
n

s
 o

f
th

e
 a

rg
u

m
e
n

ts

o
p
_
S
D
I
V
S

d
o

e
s
 t

h
e
 "

in
tr

o
"

c
o

d
e

o
p
_
D
I
V
S

id
e
n

ti
c
a
l

to
 t

h
e
 "

u
n

s
ig

n
e
d

"
s
te

p
 i

n
s
tr

u
c
ti

o
n

o
p
_
S
D
I
V
L

d
o

e
s
 t

h
e
 "

c
o

rr
e
c
ti

o
n

"
c
o

d
e

O
v
e
rf

lo
w

•
O

n
c
e
 s

ig
n

e
d

 d
iv

is
io

n
 w

a
s
 d

e
fi

n
e
d

 "
in

 h
a

rd
w

a
re

"
it

 w
a
s
 p

o
s
s
ib

le
 t

o
 s

e
t

th
e

o
v
e
rf

lo
w

 b
it

 o
f

th
e
 s

ta
tu

s
 r

e
g

is
te

r
w

it
h

o
u

t
ru

n
 t

im
e

 p
e

n
a
lt

y
.

•
D

iv
is

io
n

 o
v
e
rf

lo
w

 i
s
 q

u
it

e
 c

o
m

p
le

x
 a

d
d

in
g

 a
 c

o
n

s
id

e
ra

b
le

 a
m

o
u

n
t

o
f

lo
g

ic
.

•
R

e
m

a
in

s
 t

h
e

*

o
p

e
ra

ti
o

n
.
V

e
ry

 o
ft

e
n

 t
h

is
 i

s
 i
m

p
le

m
e
n

te
d

 a
s

:

*

(

n
1

n
2

-
-

n
3

)

u
m
*

d
r
o
p

;

w
h

ic
h

 d
e
li

v
e

rs
 a

 m
is

le
a

d
in

g
 r

e
s
u

lt
 i

n
 c

a
s
e
 o

f
a
n

 o
v
e

rf
lo

w
.

•
T

h
e
re

fo
re

,
tw

o
 m

o
re

 p
ri

m
it

iv
e

s
 h

a
v
e

 b
e
e

n
 a

d
d

e
d

 w
h

e
n

 m
u

lt
ip

ly
 h

a
rd

w
a

re
is

 a
v
a
il
a
b

le
 i
m

p
le

m
e
n

ti
n

g

m
*

a
s

 a
 s

in
g

le
 c

y
c

le
 i

n
s
tr

u
c

ti
o

n

:

*

(

n
1

n
2

-
-

n
3

)

m
*

m
u
l
t
l

;

•
D

e
b

u
g

g
in

g
 w

a
s
 t

ri
c
k

y
.

R
e
d

u
c

in
g

 t
h

e
 d

a
ta

 w
id

th
 t

o
 8

 b
it

s
 a

ll
o

w
e

d
 t

o
 d

o
 a

 c
o

m
p

le
te

 t
e
s
t

o
f

a
ll

p
o

s
s
ib

le
 c

a
s

e
s
 i
n

 a
b

o
u

t
1
5
 m

in
u

te
s
.
T

h
is

 u
n

c
o

v
e

re
d

 m
u

lt
ip

li
c
a

ti
o

n
 b

u
g

s
 a

s
w

e
ll

.

?
 w

h
a

t
to

 d
o

 o
n

 o
v

e
rf

lo
w

 ?

•
N

o
w

 t
h

e
 o

v
e
rf

lo
w

 b
it

 o
f

th
e
 s

ta
tu

s
 r

e
g

is
te

r
is

 s
e
t/

re
s
e
t

in
 a

 m
a
th

e
m

a
ti

c
a
ll

y
c
o

rr
e
c
t

w
a

y
.

S
o

 w
h

a
t?

T
h

e
 r

e
s

u
lt

 i
s
 b

o
g

u
s
 n

e
v
e

rt
h

e
le

s
s
.

•
W

e
 c

a
n

 b
ra

n
c
h

 d
e

p
e

n
d

in
g

 o
n

 t
h

e
 o

v
e
rf

lo
w

 u
s
in

g

o
v
f
l
?

I
F

w
h

ic
h

 c
o

u
ld

 b
e
 a

 s
in

g
le

 c
y
c
le

 b
ra

n
c
h

 i
n

s
tr

u
c
ti

o
n

?
o
v
f
l

w
h

ic
h

 i
s
 a

 c
o

n
d

it
io

n
a
l

c
a
ll

 t
o

 a
 f

ix
e
d

 a
d

d
re

s
s
 o

n
 o

v
e
rf

lo
w

b
u

t
th

a
t

a
d

d
s
 r

u
n

ti
m

e
 o

v
e

rh
e
a

d
 a

n
d

 e
v
e

n
 i
f

th
e
 p

ro
g

ra
m

 k
n

o
w

s
 t

h
e
re

 w
a

s
a
n

 o
v
e
rf

lo
w

,
th

e
 p

ro
g

ra
m

m
e
r

m
a

y
 n

o
t

k
n

o
w

 w
h

a
t

to
 d

o
.

A
ft

e
r

a
ll

,
th

e
 "

d
iv

is
io

n
 b

y
 0

"
b

lu
e

-s
c

re
e

n
 o

f
W

in
d

o
w

s
 i

s
 n

o
t

re
a

ll
y
 a

m
e
a
n

in
g

fu
l

re
s
u

lt
.

R
e
tu

rn
in

g
 a

 w
e
ll
 d

e
fi

n
e
d

 r
e
s
u

lt

•
O

n
 o

v
e
rf

lo
w

,
w

e
 c

a
n

 r
e
tu

rn
 t

h
e
 "

s
m

a
ll
e
s
t"

 o
r

th
e
 "

la
rg

e
s
t"

 n
u

m
b

e
r

th
a
t

c
a

n
b

e
 r

e
p

re
s
e

n
te

d
,

i.
e
.

$
8
0
0
0
 o

r
$
7
F

F
F

 i
n

 a
 1

6
 b

it
 s

y
s

te
m

 i
n

s
te

a
d

 o
f

m
is

le
a

d
in

g
 b

it
 p

a
tt

e
rn

s
.

E
.g

.:

+
n

0

/

re
tu

rn
s
 $

7
F

F
F

-
n

0

/

re
tu

rn
s
 $

8
0
0
0

•
T

h
is

 l
e
a

v
e

s
 s

o
m

e
 c

a
s
e
s
,
w

h
ic

h
 a

re
 n

o
t

s
o

 o
b

v
io

u
s
:

0

0

/

I
d

e
c
id

e
d

 t
h

a
t

it
 s

h
o

u
ld

 r
e
tu

rn
 z

e
ro

.

$
8
0
0
0

n
e
g
a
t
e

If
 i

t
re

tu
rn

s
 $

7
F

F
F

,
e
.g

.
th

e
 h

ig
h

 l
e
v
e
l

c
o

d
e
 f

o
r
f
m
/
m
o
d

d
o

e
s
 n

o
t

w
o

rk
 a

n
y
 m

o
re

.
S

o
 w

e
 b

e
tt

e
r

le
a
v
e
 i

t
a
t

$
8
0
0
0
,

a
lt

h
o

u
g

h
 i

t
is

in
tu

it
iv

e
ly

 a
s

 w
ro

n
g

 a
s

 i
t

c
a

n
 b

e
.

•
D

o
e
s
 a

 c
o

m
m

e
rc

ia
l

c
o

n
tr

o
ll
e
r

w
it

h
 "

c
o

n
tr

o
ll
e

d
 o

v
e

rf
lo

w
"

e
x
is

t?

N
o

t
m

u
c
h

 h
a
s
 b

e
e
n

 p
u

b
li
s
h

e
d

 a
b

o
u

t
a
ri

th
m

e
ti

c
 o

v
e
rf

lo
w

!

63

63

S
e

tt
in

g
 r

e
g

is
te

r
b

it
s

•
A

 m
o

re
 e

ff
ic

ie
n

t
m

e
c

h
a

n
is

m
 t

o
 r

e
a
li
z
e
 "

b
it

-w
is

e
 w

ri
ta

b
le

 r
e
g

is
te

rs
"

h
a
s

b
e
e
n

 f
o

u
n

d
.

5

C
t
r
l
-
r
e
g

!

s
e
ts

 b
it

s
 0

 a
n

d
 2

 o
f

th
e
 m

e
m

o
ry

 m
a
p

p
e
d

 c
o

n
tr

o
l

re
g

is
te

r
w

it
h

o
u

t
a
ff

e
c
ti

n
g

 t
h

e
 o

th
e
r

b
it

s
 o

f
th

e
 r

e
g

is
te

r.

5

i
n
v
e
r
t

C
t
r
l
-
r
e
g

!

re
s
e
ts

 b
it

s
 0

 a
n

d
 2

 w
it

h
o

u
t

a
ff

e
c
ti

n
g

 t
h

e
 o

th
e
r

b
it

s
.

•
T

h
e
 s

ig
n

-b
it

 o
f

th
e
 n

u
m

b
e
r

s
to

re
d

 i
n

to
 t

h
e
 r

e
g

is
te

r
d

e
te

rm
in

e
s
 w

h
e
th

e
r

th
e

n
u

m
b

e
r

w
il
l
b

e
 o

re
d

 (
s
ig

n
-b

it
=

0
)

o
r

a
n

d
e

d
 (

s
ig

n
-b

it
=

1
)

w
it

h
 t

h
e

c
o

n
te

n
t

o
f

th
e
 r

e
g

is
te

r.

•
C

o
m

p
a
re

d
 t

o
 t

h
e
 p

re
v
io

u
s
 m

e
c
h

a
n

is
m

,
th

e
 c

o
d

e
 i

s
 m

o
re

 r
e

a
d

a
b

le
,

m
o

re
e
ff

ic
ie

n
t,

 a
n

d
 b

it
_

0
 o

f
th

e
 r

e
g

is
te

r
c
a
n

 b
e
 u

s
e
d

 a
s

 a
 f

la
g

 a
s
 w

e
ll
.

;

64

64

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

ne
t2

o:
va

p
or

→
re

al
it
y

B
er

n
d

P
ay

sa
n

E
u
ro

F
or

th
20

10
,
H

am
b
u
rg

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

O
ut

lin
e

1
M

ot
iv

at
io

n
N

o
sa

b
b
at

ic
al

,
b
u
t

al
so

n
o

re
al

ch
al

la
n
ge

R
ec

ap
:

R
eq

u
ir
em

en
ts

2
R
ec

ap
:

T
op

ol
og

y
R
ec

ap
:

P
ac

ke
t

H
ea

d
er

3
Im

p
le

m
en

ta
ti
on

S
ta

tu
s

D
at

a
S
tr

u
ct

u
re

s
W

or
ki

n
g

S
tu

ff

4
T
o
d
o-

L
is
t

F
lo

w
C
on

tr
ol

C
ry

p
to

gr
ap

h
y

B
ro

w
se

r

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

N
o

sa
b
b
a
ti
c
a
l,

b
u
t

a
ls
o

n
o

re
a
l
c
h
a
ll
a
n
g
e

R
e
c
a
p
:

R
e
q
u
ir
e
m

e
n
ts

L
o
ok

in
g

fo
r

a
ch

al
la

ng
e

A
s

pr
es

en
te

d
la

st
ye

ar
on

E
u
ro

F
or

th
,
th

e
ch

al
la

n
ge

I’
m

lo
ok

in
g

at
is

a
cl

ea
n

sl
at

e
re

im
p
le

m
en

ta
ti
on

of
“t

h
e

In
te

rn
et

”

M
y

pr
ev

io
u
s

co
m

p
an

y
m

an
ag

ed
to

se
ll

m
e

w
it
h

m
y

te
am

in
st

ea
d

of
fi
ri
n
g

u
s—

so
th

e
p
la

n
n
ed

sa
b
b
at

ic
al

d
o
es

n
’t

h
ap

p
en

T
h
is

m
ea

n
s

it
w

ill
ta

ke
m

or
e

ti
m

e,
b
u
t

on
th

e
ot

h
er

h
an

d
it

h
as

to
b
e

si
m

p
le

r
an

d
m

or
e

co
m

p
ac

t

T
h
is

ta
lk

is
p
ar

tl
y

st
at

u
s

re
p
or

t
an

d
m

u
ch

m
or

e
a

lis
t

of
th

in
gs

to
d
o

IE
T

F
d
is
cu

ss
io

n
s

ab
ou

t
st

ra
te

gi
c

in
te

rn
et

d
ev

el
op

m
en

t
in

d
ic

at
e

th
at

I’
m

on
th

e
ri
gh

t
tr

ac
k

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

N
o

sa
b
b
a
ti
c
a
l,

b
u
t

a
ls
o

n
o

re
a
l
c
h
a
ll
a
n
g
e

R
e
c
a
p
:

R
e
q
u
ir
e
m

e
n
ts

R
ec

ap
:

R
eq

ui
re

m
en

ts

S
ca

la
b
ili

ty
M

u
st

w
or

k
w
el

l
w

it
h

lo
w

an
d

h
ig

h
b
an

d
w

id
th

s,
lo

os
e

an
d

ti
gh

tl
y

co
u
p
le

d
sy

st
em

s,
fe

w
an

d
m

an
y

h
os

ts
co

n
n
ec

te
d

to
ge

th
er

ov
er

sh
or

t
to

fa
r

d
is
ta

n
ce

s.

E
as

y
to

im
p
le

m
en

t
M

u
st

w
or

k
w

it
h

a
m

in
im

u
m

of
eff

or
t,

m
u
st

al
lo

w
sm

al
l
an

d
ch

ea
p

d
ev

ic
es

to
co

n
n
ec

t.
O

n
e

id
ea

is
to

re
p
la

ce
“b

u
ss

es
”

lik
e

U
S
B

an
d

fi
re

w
ir
e

w
it
h

ch
ea

p
L
A
N

lin
ks

.

S
ec

u
ri
ty

U
se

rs
w
an

t
au

th
en

ti
ca

ti
on

an
d

au
th

or
iz

at
io

n
,
b
u
t

al
so

an
on

ym
it
y

an
d

pr
iv

ac
y.

F
ir
ew

al
ls

an
d

si
m

ila
r

ga
te

ke
ep

er
s

(l
oa

d
b
al

an
ce

rs
,
et

c.
)

ar
e

co
m

m
on

.

M
ed

ia
ca

p
ab

le
T

h
is

re
q
u
ir
es

re
al

-t
im

e
ca

p
ab

ili
ti
es

,
pr

e-
al

lo
ca

te
d

b
an

d
w

id
th

an
d

ot
h
er

Q
oS

fe
at

u
re

s,
en

d
-t

o-
en

d
.

T
ra

n
sp

ar
en

cy
M

u
st

b
e

ab
le

to
w
or

k
to

ge
th

er
w

it
h

ot
h
er

n
et

w
or

ks
(e

sp
ec

ia
lly

In
te

rn
et

1.
0)

.

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

65

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

R
e
c
a
p
:

P
a
c
k
e
t

H
e
a
d
e
r

S
w

it
ch

in
g

P
ac

ke
ts

,
R
ou

ti
ng

C
on

ne
ct

io
ns

S
im

ila
r

to
M

P
L
S
,
p
ac

ke
ts

sh
ou

ld
ru

n
th

ro
u
gh

a
sw

it
ch

in
g

n
et

w
or

k,
n
ot

th
ro

u
gh

ro
u
te

rs

R
ou

ti
n
g

is
a

co
m

b
in

at
io

n
of

D
N

S
(n

am
e

re
so

lu
ti
on

)
an

d
ro

u
ti
n
g

ca
lc

u
la

ti
on

(d
es

ti
n
at

io
n

lo
ok

u
p
)

P
h
ys

ic
al

R
ou

te

T
ak

e
fi
rs

t
n

b
it
s

of
ta

rg
et

ad
d
re

ss
an

d
se

le
ct

d
es

ti
n
at

io
n

S
h
if
t

ta
rg

et
ad

d
re

ss
by

n

In
se

rt
b
it
-r

ev
er

se
d

so
u
rc

e
in

to
ad

d
re

ss
fi
el

d

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

R
e
c
a
p
:

P
a
c
k
e
t

H
e
a
d
e
r

R
ec

ap
:

P
ac

ke
t

H
ea

de
r

S
iz

e

F
la

gs
2

P
at

h
2/

8

A
d
d
re

ss
2/

8

Ju
n
k

0/
8

D
at

a
32

/1
28

/5
12

/2
k

E
C
C

L
1

d
ep

en
d
en

t

a
d

d
re

s
s

d
a

ta
E

C
C

fl
a

g
p

a
th

ju
n

k

p
a

th
fl
a

g
a

d
d

r
d

a
ta

E
C

C

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

D
a
ta

S
tr

u
c
tu

re
s

W
o
rk

in
g

S
tu

ff

S
ta

rt
in

g
P
oi

nt

A
s

st
ar

ti
n
g

p
oi

n
t,

I
fi
rs

t
im

p
le

m
en

t
n
et

2o
u
si
n
g

U
D

P
as

tr
an

sp
or

t
la

ye
r

U
D

P
off

er
s

a
re

ao
n
ab

le
in

te
rf
ac

e
fo

r
a

si
n
gl

e
se

rv
er

th
at

h
an

d
le

s
m

an
y

co
n
n
ec

ti
on

s
w

it
h
ou

t
cr

az
y

U
n
ix

ov
er

h
ea

d

F
or

st
ar

t,
IP

v4
on

ly
;
IP

v6
re

q
u
ir
es

m
or

e
w
or

k
(n

o
fr
ag

m
en

te
d

p
ac

ke
ts

p
os

si
b
le

)

T
w
o

p
ar

ts
:

P
ac

ke
t

se
rv

er
an

d
co

m
m

an
d

ge
n
er

at
or

/i
n
te

rp
re

te
r

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

D
a
ta

S
tr

u
c
tu

re
s

W
o
rk

in
g

S
tu

ff

S
w

it
ch

in
g

U
se

a
h
as

h
fo

r
“s

w
it
ch

in
g”

IP
-A

d
d
re

ss
es

:
H

as
h

va
lu

e
eq

u
al

s
pr

efi
x

H
as

h
co

lli
ss

io
n
s

re
so

lv
ed

w
it
h

lo
n
ge

r
pr

efi
xe

s

P
re

fi
x

gr
an

u
la

ri
ty

:
B
yt

e

M
S
B
=

0
D

ir
ec

t
ro

u
ti
n
g

en
tr

y
M

S
B
=

1
la

rg
er

pr
efi

x,
lo

ok
at

n
ex

t
by

te
fo

r
m

or
e

d
at

a

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

66

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

D
a
ta

S
tr

u
c
tu

re
s

W
o
rk

in
g

S
tu

ff

S
ha

re
d

M
em

or
y

M
ap

fr
om

ad
d
re

ss
to

co
n
n
ec

ti
on

co
n
te

xt

C
on

n
ec

ti
on

co
n
te

xt
(w

ill
)

co
n
ta

in

re
al

ad
d
re

ss
es

fi
le

h
an

d
le

s
cr

yp
to

g
ra

p
h
ic

ke
ys

au
th

en
ti
ca

ti
o
n

in
fo

rm
at

io
n

an
d

o
th

er
st

at
u
s

in
fo

rm
at

io
n

(a
lo

t
of

th
at

st
ill

u
n
im

p
le

m
en

te
d
)

E
ve

n
t

q
u
eu

e
fo

r
re

ce
iv

ed
p
ac

ke
ts

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

D
a
ta

S
tr

u
c
tu

re
s

W
o
rk

in
g

S
tu

ff

C
om

m
an

ds

U
T

F
-8

en
co

d
ed

co
m

m
an

d
s:

S
im

p
le

co
m

m
an

d
s

ar
e

0-
7F

,
on

e
by

te
,
co

m
p
le

xe
r

co
m

m
an

d
s

ta
ke

m
or

e
by

te
s

C
om

m
an

d
s

p
ac

ke
t

in
to

8
by

te
ch

u
n
ks

8
by

te
lit

er
al

s
(e

.g
.

ad
d
re

ss
es

)
an

d
st

ri
n
gs

em
b
ed

d
ed

in
to

th
e

co
m

m
an

d
st

ru
ct

u
re

C
om

m
an

d
as

se
m

b
le

r
al

lo
w

s
se

am
le

ss
co

m
m

an
d
s

w
it
h
in

F
or

th
co

d
e

D
is
cu

ss
io

n
:

off
se

ts
to

lit
er

al
s

as
U

T
F
-8

co
d
e?

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

D
a
ta

S
tr

u
c
tu

re
s

W
o
rk

in
g

S
tu

ff

W
or

ki
ng

T
es

tc
as

e

S
er

ve
r

lo
op

i
n
i
t
-
s
e
r
v
e
r

s
e
r
v
e
r
-
l
o
o
p

D
eb

u
gg

in
g

ou
tp

u
t

i
n
i
t
-
c
l
i
e
n
t

s
”

l
o
c
a
l
h
o
s
t
”
n
e
t
2
o
-
u
d
p
i
n
s
e
r
t
-
i
p
v
4

c
o
n
s
t
a
n
t
l
s
e
r
v
e
r

n
e
t
2
o
-
c
o
d
e
s
”

T
h
i
s

i
s

a
t
e
s
t
”
$
,

t
y
p
e

’
!
’

c
h
a
r
,
e
m
i
t

c
r

e
n
d
-
c
o
d
e

c
m
d
b
u
f
c
e
l
l
+
0

l
s
e
r
v
e
r
s
e
n
d
A

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

F
lo

w
C
o
n
tr

o
l

C
ry

p
to

g
ra

p
h
y

B
ro

w
se

r

F
lo

w
C
on

tr
ol

U
D

P
off

er
s

n
o

q
u
al

it
y

of
se

rv
ic

e

T
C
P
/I

P
fl
ow

co
n
tr

ol
is

h
or

ri
b
ly

br
ok

en
,
as

su
m

es
n
o

b
u
ff
er

s—
re

al
it
y

ar
e

b
u
ff
er

s
ev

er
yw

h
er

e,
fi
lle

d
u
p

co
m

p
le

te
ly

by
T

C
P
/I

P
(c

au
si
n
g

h
or

ri
b
ly

la
gs

)

Id
ea

:
P
L
L
-b

as
ed

fl
ow

co
n
tr

ol
,
tr

ie
s

to
pr

ev
en

t
b
u
ff
er

s
fi
lli

n
g

u
p

“F
as

t
st

ar
t:
”

S
en

d
fi
rs

t
fe

w
p
ac

ke
ts

ou
t

as
fa

st
as

p
os

si
b
le

,
to

m
ea

su
re

ac
tu

al
d
at

a
ra

te

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

67

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

F
lo

w
C
o
n
tr

o
l

C
ry

p
to

g
ra

p
h
y

B
ro

w
se

r

C
ry

pt
og

ra
ph

y

E
lly

p
ti
c

C
u
rv

e
C
ry

p
to

gr
ap

h
y

co
d
e

fo
r

th
e

as
sy

m
m

et
ri
c

p
ar

t
(m

u
ch

fa
st

er
th

an
R
S
A
,
a

lo
t

st
ro

n
ge

r
p
er

b
it
)

W
u
rs

tk
es

se
l
as

sy
m

m
et

ri
c

cr
yp

to
gr

ap
h
y

an
d

h
as

h
es

U
b
iq

u
it
u
ou

s
en

cr
yp

ti
on

is
ve

ry
im

p
or

ta
n
t

fo
r

n
et

w
or

k
n
eu

tr
al

it
y!

B
e
rn

d
P
a
y
sa

n
n
e
t2

o
M

o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

F
lo

w
C
o
n
tr

o
l

C
ry

p
to

g
ra

p
h
y

B
ro

w
se

r

P
re

se
nt

at
io

n/
B

ro
w

se
r

T
yp

es
et

ti
n
g

en
gi

n
e

E
m

b
ed

d
in

g
of

im
ag

es
,
au

d
io

,
an

d
vi

d
eo

—
b
u
t

p
le

as
e

n
o

p
lu

gi
n
s!

P
ro

p
er

ly
se

cu
re

d
sc

ri
p
ti
n
g

(n
ee

d
s

to
b
e

si
m

p
le

en
ou

gh
fo

r
th

at
!)

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

M
o
ti
v
a
ti
o
n

R
e
c
a
p
:

T
o
p
o
lo

g
y

Im
p
le

m
e
n
ta

ti
o
n

S
ta

tu
s

T
o
d
o
-L

is
t

S
u
m

m
a
ry

S
um

m
ar

y

T
h
er

e
is

al
re

ad
y

a
lit

tl
e

b
it

of
co

d
e

A
lo

t
m

or
e

w
or

k
fo

r
lo

n
g

d
ar

k
w

in
te

r
ev

en
in

gs

A
ft

er
co

m
p
le

ti
on

of
re

fe
re

n
ce

im
p
le

m
en

ta
ti
on

:
R
F
C
,
IE

T
F

d
is
cu

ss
io

n
s,

pr
es

en
ta

ti
on

s
at

la
rg

er
n
et

w
or

k-
re

la
te

d
co

n
fe

re
n
ce

s

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

A
p
p
e
n
d
ix

F
o
r

F
u
rt

h
e
r

R
e
a
d
in

g

F
or

F
ur

th
er

R
ea

di
ng

I

B
er

n
d

P
ay

sa
n

In
te

rn
et

2.
0

h
t
t
p
:
/
/
w
w
w
.
j
w
d
t
.
c
o
m
/
~
p
a
y
s
a
n
/
i
n
t
e
r
n
e
t
-
2
.
0
.
h
t
m
l

B
e
rn

d
P
a
y
sa

n
n
e
t2

o

68

The Forth NetGerald Wodni∗ M. Anton Ertl †September 24, 2010Abstra
tCPAN and PECL are impressive ways of sharing
ustom libraries. Proje
ts are dis
ussed, hosted anddownloaded. Their dependen
ies are
lear (no needto sear
h a
ross the web) and also downloaded aton
e. There is no su
h web portal for Forth � untilnow.1 Introdu
tionWhen working on the SWIG - Gforth Extension, wedesigned a platform independent �le format for Cinterfa
es
alled FSI[1℄. Creating su
h �les requiresSWIG[2℄ to be installed and some understanding ofthe C interfa
e as well as the library. Thats whenwe thought about having a
entral pla
e to put FSI�les, whi
h are just downloaded and
ompiled us-ing a normal C
ompiler (mu
h likelier to meet atthe end users system than SWIG). When hostingsu
h libraries on a website, users also want to share
ode examples, host proje
ts built on top of theselibraries, as well as dis
ussing about libraries andproje
ts.So instead of
reating a FSI host and ex
hangewebsite, we
reated a Forth portal
apable of morethan that. We want developers to be able to sharetheir proje
ts, get some feedba
k, explain the us-age of their work and de�ne dependen
ies to otherproje
ts. Users on the other hand should be allowedto browse through all proje
ts, �nd related proje
tsand download the sour
e
ode.2 Related WorkSour
eforge[3℄ provides easy
reation of proje
ts,but the relation between them is not always obvi-ous. Downloading requires human intera
tion and
ould be
umbersome if you have to look up de-penden
ies by yourself. A

ess is granted by usingOpenID[4℄, so if one already pre
esses an OpenID,no registration is required.The Comprehensive Perl Ar
hiveNetwork(CPAN)[5℄ supplies developers with
∗TU Wien; gerald.wodni�gee.at
†TU Wien; anton�mips.
omplang.tuwien.a
.at

their own web spa
e. Read a

ess is publi
lyavailable, write a

ess is only allowed to theauthor. The registration pro
ess is human driven,one is approved as
ontributer after �lling outa registration form and wait for up to 3 weeks.Using modules is easy as the download pro
ess willinform you about all dependen
ies, and allow youto download them at on
e.The PHP Extension CommunityLibrary(PECL)[6℄ is similar to CPAN but reg-istration works via normal email
on�rmationform.Forth also has a website for sharing libraries
alled Forth Library A
tion Group (FLAG)[7℄. Itis operated by a steering
ommittee whi
h managesthe a

ounts. Every library's �
hampion� is respon-sible for keeping his stable release up to date andavailable through FLAG.3 FeaturesIn order to attra
t users, and �t into the so
ial web,we used some Web2.0 te
hniques, and tried to sim-plify pro
esses on the website. We also
onsideredrelated websites and pi
ked up some of their ideas.Login No registration is required, login is donewith OpenID[4℄, so be
oming a user of theForth net is a matter of se
onds. If one ownsno OpenID, he is free to
hoose from manyexisting providers, or even be
ome providerhimself[8℄.Proje
ts Every user who is logged in
an
reatea new proje
t. To point out this feature andmake people
ontribute, the �Create� menu isvisible at all times. Proje
t names are onlyallowed to
ontain alphanumeri
al letters andminus `-', that way they
an dire
tly be used aspart of a URI or as de�nition names in Forth.Tags As a hierar
hi
al system of
ategorization
annever quite serve the des
ription of a proje
tand sometimes make it even harder to �nd be-
ause one thought of it to be in another
ate-gory, we only use tags. The author
an assignTags that �t his proje
t, if a tag is not withinthe database, it will be
reated as soon as re-quested. To avoid a big amount of tags, they1

69

are only allowed to
ontain letters and num-bers and are
ase insensitive. Popular tagslike Forth Systems are marked as popular bythe administrators and get better rankings, sousers are en
ouraged to use them.Personalization When dealing with lots of userswithin a
omment se
tion, its hard to remem-ber who is who. Small avatars allow qui
k as-so
iation of replies, to use the so
ial web again,we in
luded Gravatar[9℄. It allows users to hostmultiple avatars at a
entral pla
e and makeuse of their fast
ontent distribution network.On
e a user has logged on to the Forth net andenters his email address, the MD5
he
ksum ofit used to referen
e his image on Gravatar. Ifnone is set, Gravatar supplies a random geo-metri
 pattern using the email address as seed.URIs Instead of using old fashionedURIs with lots or parameters, e.g.:/index.php?display=
ont&user=42&si=...pretty URIs are used:/proje
ts/the-Forth-net. This wayusers and visitors qui
kly realize how the URIworks and
ould easily link to them.Every user has his own pro�le site whereproje
ts managed by him are displayed andother users
an send him private messages.4 Con
lusionThe Forth net aims to be the de fa
to standardfor sharing forth libraries some day. By using es-tablished Web2.0 te
hnologies su
h as OpenID andGravatar, the threshold of be
oming a proje
t main-tainer is mu
h lower than in other networks where
onta
t to the hoster needs to be made �rst. Usingpretty-URIs, sear
h engines and users
an easily seethe link between the URI and the
ontent and referto the homepage.5 Further Work5.1 fgetInstead of letting the user struggle with keeping hislo
al library
opies up to date and resolve any de-penden
ies to others, a download manager � work-ing titled �fget� �
ould do this for him. Theweb server will have spe
ial a

ess features with nomarkup for this sole purpose.5.2 CrawlerTo minimize the e�ort for developers, a
rawler
ould
olle
t the most up to date version of a proje
tfrom a given URI. As several se
urity issues be
ome

relevant this feature will only be allowed to userswho have been approved by the administrators.Referen
es[1℄ GeraldWodni. SWIG - Gforth Extension (Ba
h-elor Thesis), 2010.[2℄ David M. Beazley et al. Simpli�ed Wrapperand Interfa
e Generator (SWIG). URL http://www.swig.org.[3℄ Sour
Forge. URL http://sour
eforge.net.[4℄ OpenID. URL http://openid.net.[5℄ Comprehensive Perl Ar
hive Network. URLhttp://www.
pan.org/.[6℄ The PHP Extension Community Library. URLhttp://pe
l.php.net/.[7℄ Forth Library A
tion Group. URL http://soton.mpeforth.
om/flag/.[8℄ OpenID Explained. URL http://openidexplained.
om/.[9℄ Gravatar. URL http://gravatar.
om.

2

