Reversible
University of
Teesside

High-level language

' 7 Teesside
’ University

A Compiler which Creates
Tagged Parse Trees and
Executes them as FORTH
Programs

Campbell Ritchie
and
Bill Stoddart

1+2%*3/4

/ N
/\4
2/\3

123*4/+

abece

a=b > c

/N
/N

abc-=->

A left-associative grammar will include A = A+T, A-T, T

And a right-associative grammar would include
A=T+A, T-A, T.

T+A

: © (sl s2 s3 s4 -- ssl boolean)

(
Executes the tagged tree and type testing for the equivalence operator. For
example, "x" "boolean" "y" "boolean" --> "x y <" "boolean".

)

(: l-value 1l-type r-value r-type :)

" " 1-type r-type check-types-for-booleans

1-value sspace AZ™ r-value AZ™ " " AZ™ 1-type ;

:+_ (sl s2s83s4--sslss2)
(: I-value I-type r-value r-type :)
(This can incorporate floating-point numbers as well as INTs)
" +" VALUE op (note additional space, also in F+ and S>F)
op I-type r-type check-types-for-arithmetic
I-type float string-eq r-type float string-eq OR
(Either or both is float)
IF
I-type int string-eq
IF (Add S>F as appopriate)
l-value StoF AZ" to 1-value
ELSE
r-type int string-eq
IF
r-value StoF AZ* to r-value
THEN
THEN
" F+" to op
float to I-type
THEN
l-value sspace AZ” r-value AZ” op AZN 1-type

1+2+3%(@E+5)

: Parith2 (s --s1)
plusminus Isplit
DUP 0=
IF
2DROP Pterm2 (No operator found)
ELSE
PUSH PUSH RECURSE (recurse on left subexpression)
POP Pterm2 AZ* (right substring to Pterm2 and catenate)
POP AZAX bar-line AZ» (add+_or-_)
THEN

b

“1+2+3*(4+35)
STRING["+","-",]

: Isplit (s seq -- sl s2 op)

(string seq already on stack) 0 0 0 O (6 values now on stack)
(: string seq end op count size :)

string endaz to end (One of the Os gone)

seq CARD to size (Second 0 gone)

BEGIN
end string >= op 0= AND
WHILE
0 to count
end bracket-avoider-for-Isplit to end (Skip text in brackets etc)
BEGIN
size count > op 0= AND (Not reached start of string, nor found op)
WHILE
count 1+ to count (Go through potential operators)
seq count APPLY end prefix?
IF
seq count APPLY to op
THEN
REPEAT
end 1- toend (Count backwards to start of string)
REPEAT
op
IF
end 1+ toend (Terminate string at op)
0 end C!
end op myazlength + to end (Move forward length of op)
THEN
string end op

b

‘1+275B*UHD)
A4 bA

Place nuSMﬁe{e" +" o " ’]
string end

A

op="+

"

1+2*-3

“1 42 %3.45e-67°

: Pterm2 (s --sl)

(
Where s is in the form 123 * 456 or similar, and the String is split with
timesdivide and the Isplit operation. Assuming an operator is found, the
left subexpression recurses, the right subexpression is passed to the next
parser (Puminus2) and the whole lot is catenated with the operator to form a
String in this format: " 123" " INT" " 456" " INT" *_ which is later passed
to the *_ operation; any errors should become obvious then.
If no operator, the right subexpression and operator are dropped as nonsense
and the left subexpression passed to Puminus?2.

)

timesdivide Isplit

DUP 0=

IF

(left subexpression to next parser: returns two strings catenated with quotes)
2DROP Puminus?2

ELSE
PUSH PUSH RECURSE (recurse on left subexpression)
POP Puminus2 AZ”* (right subexpression to Puminus?2)
POP AZA bar-line AZ” (add *_or/_)

THEN

9

‘a94.<"59 INT" " 5" " INT" *_7

‘55" " INT"
s

: Pterm2 (s -—-s1)

timesdivide Isplit

DUP 0=

IF

2DROP Puminus2

‘] ELSE
}ﬂ@? stack PUSH PUSH RECURSE
%123 POP Puminus2 AZA
il POP AZ bar-line AZA

THEN

2

"1+2+3%(4+)5)" Pexpression2 .AZ
" 1" " INTH " 2" " INTH +_
" 3" " INTH " 4" " INTH " 5" " INTH +_

K

+_

ok

" 1" " INTH " 2" " INTH +_ Ok..

" 3" " INT" " 4" " INT" " 5" " INT" +_ Ok
* ok....

+ ok..

AZ INTok.
AZ12+345+ %40k
12+345+*+.300k

RL(0)

Next Parser RECURSE

LL(0O)

Drawbacks

Each scan along a string has a duration
depending on the string’s length.

The number of scans depends on the string’s
length

This technique runs in O(n?) time.

Drawbacks

This technique 1s difficult to use 1f there are
any overloaded operators, and lookahead 1s
awkward.

Drawbacks

If a low-precedence operator 1s “part of”’
a high-precedence operator, it 1s difficult to
distinguish the two

T+2-++0

Drawbacks

Writing such a parser 1s rather repetitive;
1t may however be easy to automate the
process

Advantages

This 1s a sitmple procedure, allowing one to
see the parsing process.

It 1s particularly usetul as a teaching tool.

Advantages

This 1s a sitmple procedure, allowing one to
see the parsing process.

One can us the two-stage process to parse
a program 1n stages.

Advantages

The process 1s modular. It 1s quite easy to
“insert” a level of precedences into the
grammar.

FORTH interest

The entire compiler 1s written i1n FORTH.

Since FORTH accepts postfix syntax naturally,
one can parse a program into FORTH and not
need to provide a compiler back-end. Only a
front-end 1s necessary

Future Work

Enhance some parsers to take specific types, eg
 Pair (—) may need to take types of operand.
e Some equality and 1nequality operators
need to accept FLOAT operands

Refactoring, eg
e Multiple 1f blocks

Future Work

Some parts of the grammar not yet implemented, e.g.
e String literals
e Lambda expressions

Adding reversible features, especially guards

Future Work

Add control structures, eg
e Selection (““if-then-else-end”)
e [teration (“while-do-end”)

Implement arbitrary types

Implement user-defined functions

Advantages

This parsing techniques easily handles descent
both by right and by left recursion.

SO . ..

If the name “RUTH” has already been used,
we must resort to . . .

Reversible

University of

Teesside

High-level language, with

Descent by

Recursion

	RUTH
	Left and Right
	Title
	Left-associative 1
	Left-associative 2
	Right-associative
	Slide 7
	equiv-bar
	plus-bar
	Parith2 simplified
	start stack-arithmetic
	lsplit plain
	lsplit Workings
	lsplit problems
	Pterm2
	Pterm2 for 4 * 5
	Arithmetic screenshot
	RL(0)
	Splitting for right-associativity
	LL(0)
	Drawbacks 1
	Drawbacks 2
	Drawbacks 3
	Drawbacks 4
	Advantages 1
	Advantages 2
	Advantages 3
	FORTH interest
	Future Work 1
	Future Work 2
	Future Work 3
	Advantages 4
	Ruth DR

