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Abstract

Most compilers use separate scanning and parsing, and scan their input from left to right.
Lynas and Stoddart (2008) demonstrated an alternative technique where an input string is split
into multiple sub-expressions, divided at each operator.

We demonstrate an expression parser which extends this work. It runs in two passes. The
first pass scans code left-to-right or right-to-left depending on the associativity of the operator
sought, creating pointers to strings which together represent a parse tree. At the end of the first
pass, it uses lexical analysers to infer the type of each token, or find the type in a lookup table.

The types follow the theory of the B language, building up more complex types as if
with the powerset (IP) and Cartesian product (x) operators. The “parser” operations, whose titles
all begin with “P” assemble the elements into a postfix model of the parse tree, with the
operators tagged with a _ character.

The second pass can be run together with the first, or later, allowing the intermediate
representation of the code, as a tagged parse tree, to be inspected. The output can be executed as
FORTH code; each operator tagged with a _ is matched by a corresponding operation which tests
the types supplied, and leaves the type and postfix representation on the stack; the latter is
identical to the FORTH representation of the original expression.

We discuss possible uses of such a compiler, and possible problems about its efficiency,
since it runs in quadratic time.

Keywords

FORTH, compiler, recursion, parse tree, postfix notation, type tagging.

Address for Correspondence

C Ritchie, Formal Methods and Programming Research Group, Rm P1.10, Teesside University,
Borough Rd, Middlesbrough, England TS1 3BA.
work@critchie.co.uk and bill @tees.ac.uk



mailto:work@critchie.co.uk

Introduction

Many programming languages are written in infix notation (e.g. “l1 + 27), but most
computers execute the contents of a stack, which is most easily expressed in postfix notation (e.g. “1
2 +7). Both languages used for training only (e.g. “VSL” = very simple language (Bennett (1996))
and commercial production languages (e.g. Java™ (Gosling et al (2005)) are compiled by
conversion to an intermediate form in postfix notation. Since FORTH programs are written in
postfix notation, a compiler which produces its intermediate representation in a form similar to
FORTH syntax can use a FORTH virtual machine as its back-end. This allows one to write a
compiler consisting only of its front-end.

Lynas and Stoddart (2008) introduced such a compiler, originally for teaching
undergraduates. This parses an expression differently from most compilers. Instead of scanning the
code and dividing it into tokens, their compiler scans the code for operators and connectives,
splitting the expression into sub-expressions at each connective. After the code has been subdivided
at every operator, it is held in pointers to strings, which together represent a parse tree. Later, a
second pass of operations is used to rejoin the strings along with the operators. This resultant string
is identical to FORTH syntax for that expression, and can be executed as FORTH code.

Lynas and Stoddart (2008) introduced operations called by an operator followed by an
underscore character; for example, the +_ -_ *_ and /_ operations handle addition, subtraction,
multiplication, and division respectively. The first pass of compilation produces a parse tree, which
can be tagged for types; Lynas and Stoddart’s example shows “1 + 2.5 being converted to

" 1" INT " 2.5" FLOAT +_
by the first pass of compilation.

The values INT and FLOAT are constants representing integer and floating-point numbers,
and the other two values are Strings containing the operands. The second pass executes the values
on the stack as a FORTH program. The +_ operation requires four values on the stack representing a
parse tree. It compares the types, and places two values on the stack: a pointer to the output String

“1 S>F 2.5 F+”

which is itself executable as FORTH code, and the constant FLOAT denoting the type of the result.
This implementation technique permits one to use polymorphic operators, providing different
operations for different types of operand.

Rather than passing through the code from left to right, separating it into tokens, this parsing
technique seeks operators in the code and splits an expression into sub-expressions. It scans the
code from left to right for a right-associative operator, and vice versa.

We call programs such as +_ tagged operations. We showed plans to use tagged operations,
which can be executed as FORTH code last year (Ritchie and Stoddart, 2009). At the end of the first
stage of parsing, the operator, along with an underscore “_” is added to the intermediate
representation. This produces an output which can be executed as the second stage of parsing.
Rather than using integers to represent types, we use strings, allowing types of arbitrary complexity
to be declared. This same grammar as we used before, expanded by the addition of Boolean
expressions, is shown as an appendix to this paper.



The Structure of this Paper

We first look at sets, and how our typing theory uses sets. Then we describe how this
compiler has grown from earlier work, and the three operations used in the parser, the “P”
operations which splits the text around an operator, and two tagged operations, <_ and +_. Then

follows a section about creating and manipulating sets, and the results of using this parser. Finally,
we discuss its potential use, and planned future work.



Sets And Types

Following the type theory of the formal specification and development languages Z and B
(Abrial, 1996), we regard each value as having the type of the set to which it belongs. A whole
number is a member of the integer set Z expressed in FORTH as “INT”, and a decimal fraction a
member of the set R for real numbers called “FLOAT” in FORTH. It is possible to use the
constructor P for power-set to produce a set whose members are themselves sets; this can be
expressed as “INT POW?”. Similarly the Cartesian Product operator x can be used to produce a set
or ordered pairs; for example the ordered pair (1, 2) or 1 = 2 is a member of the set ZxZ, called
“INT INT PROD”. Using these constructors, one can create set types of arbitrary complexity, which
the set package introduced to RVM FORTH by Stoddart and Zeyda (2002) handles.

Methods

We maintain the convention of Lynas and Stoddart (2008) of appending an underscore to the
operator, to give the name of an operation which tests the appropriateness of the typing for that
operator. There is however a new problem; we are using arbitrarily complex types, and compound
types, in addition to the built-in types “INT” “FLOAT” and “STRING”. These cannot be readily
expressed as constants, but can be incorporated in Strings which denote those types in the final
FORTH code, and which can be compared and manipulated with simple String operations.

Compiling the Expression Grammar

The grammar is shown as an appendix. It consists of a series of recursive equations, starting
with the lowest-precedence operator < and gradually increasing precedences. The
lowest-precedence operator appears in this line:

E=EeE, E
... meaning that the Strings forming E (for expression) consist of strings from E followed by the «
symbol and a string from E,, as well as any strings in E;. Note this grammar permits left recursion.
The equivalence (“iff”) symbol « takes two values, to test for equivalence. It is a binary,
infix, left-associative operator. The expression a < b can be parsed to form this parse tree:-

=4
a b
... and the expression a « b & c gives this tree:
=
@/ o]
a b
In the case where several operators are included in an expression, one splits the expression

on the lower precedence operators first. In the case of a left-associative symbol, where there is more
than one operator with the same low precedence, the rightmost operator is used to split first (for



right-associative operators, one splits first on the leftmost symbol). The values in a b and ¢ will
themselves be expressions from lower lines in the grammar, which are passed on to parsers for
expressions from the next line of the grammar.

The second lowest-precedence connective is the implication symbol =, which is a binary
infix, right-associative operator. The expression a = b = ¢ gives this parse tree:

The final output from a parser (Pg) for a string from “E” depends whether the string contains
the operator from that line or not. If it does, the right sub-expression is parsed as an E,, and the left
sub-expression as an E; otherwise the whole expression is regarded as an E, and passed unchanged
to the E, parser. The final output from an string e, a member of E can be expressed as

Pu(e” “=7 ) =Pule) Pule) “o” or PE(e) = Pgi(e)

... where P and Pg, are parsing operations for strings e and e; which are members of E and
E,. This maintains the form shown by Lynas and Stoddart (2008). This can be expressed as an

—

intermediate representation from the first pass of parsing; for example, Pg(e” “="" e,) gives
“n PE(e) n 1] Tu " PEl(el) " n UII c}_”

This is the result of parsing the left string e followed by its type “T” followed by the the
result of parsing the right string e, and its type “U” followed by the tagged operator <_. The output
is a string including the "straight" quote marks, which can be executed as FORTH code. “T” and
“U” must both be Boolean type for the < operator.

The maplet operator + creates ordered pairs and accepts operands of any type. As an
example, “f — b”, where the types of f and b are foo and bar respectively would be parsed to give
this intermediate representation: “" f" " foo" " b" " bar" +_". This can itself be executed as FORTH
code to leave “f b »” as the postfix form of the expression, and its type, “foo bar PROD”, on the
stack.

The “Isplit” and “rsplit” Operations and the First Stage of Lexical Analysis.

The first stage parsing is to analyse the input string representing the expression into its
operator and two arguments or operands, left and right. This is done with operations called Isplit
and rsplit; Isplit explores the expression from right to left, looking for left-associative operators, and
rsplit explores from left to right, to find a right-associative operator. Each requires two values on the
stack, the text to be analysed and a sequence containing the operators sought at the present level of
precedence.

The Isplit operation is shown here. It uses the following values internally as local variables:
the cardinality of the sequence, the end of the string, a loop count index, and a value as a place-
holder for the operator string. These are in addition to the two arguments. It also uses the prefix?
function, which tests whether a string is a prefix of another, endaz which finds the end of a
O-terminated string, myazlength which determines its length, and the bracket-avoider-for-Isplit



function, which skips backwards over any text in brackets.

The essence of the operation is two nested loops. The outer loop counts backwards from the
end of the text (skipping any text in brackets) and the inner loop compares each value in the
sequence in turn to see whether the operator sought has been found; starting from the current value
of “end” this would appear to be a prefix to the string.

The original value of “op” is O (null); whenever a matching prefix is found, “op” is replaced
by that value, and both loops terminate. The left sub-expression can be terminated simply by placing
a null (\0) character in the location of the “end” pointer with the C! instruction, and the right
sub-expression by adding the length of the “op” string to the current “end” pointer.

lsplit ( s seq -- sl s2 op )

( s is a string in the form "a + b" and seq is a sequence of strings e.g. )
( ["+", "-"1, sl is the string as far as the operator, s2 after it, and op )
( is the operator. If op is null = 0, the value below it must be regarded as a )
( nonsense value and deleted from the stack. )
( This function skips over any text in “”, (), [] and {} )

( string seq already on stack ) 0 0 0 0 ( 6 values now on stack )

(: string seq end op count size :)

string endaz to end ( One of the 0s gone )

seq CARD to size ( Second 0 gone )
BEGIN

end string >= op 0= AND
WHILE

0 to count
end bracket-avoider-for-lsplit to end ( Skip text in brackets etc. )

BEGIN
size count > op 0= AND ( Not reached start of string, nor found op )
WHILE
count 1+ to count ( Go through potential operators )
seq count APPLY end prefix?
IF
seq count APPLY to op
THEN
REPEAT
end 1- to end ( Count backwards to start of string )
REPEAT
op
IF
end 1+ to end ( Terminate string at op )
0 end C!
end op myazlength + to end ( Move forward length of op )
THEN

string end op

.
4

Note that if no “op” string is found, a 0 will be left on the stack. In that case, the “left” value
will be the original text unchanged, and the “right” value must be discarded as a “nonsense” value.
The rsplit operation, which is used for right-associative operators, is very similar but slightly
simpler, because there is no need to seek the end of the string before starting the two loops.

In this example, passing “f © b” and the sequence STRING [ " " , ] to Isplit places the
following three string values on the stack:

£ b e
. . whereas passing “f * b and the sequence STRING [ " +" , " -" , ] would produce the
result
f * b ??2? null

. 1.e. the original input unchanged, an undefined or nonsense value, and null (= \0).



Passing “1+2-3-4” and the sequence STRING [ " +" , " -" , | however, splits the input at the second
minus, leaving this result on the stack:

1+2-3 4 -
In all cases where there are several left-associative operators which can be found at the same
precedence, the input is split at the rightmost symbol, meaning the left string is parsed recursively;

similarly the right string (second value on the stack) is parsed recursively if there are several
right-associative operators found with rsplit.

The Parser Operations

The parser operations are similar to one another; an example is shown.

: Pequiv ( s -- sl )
(: text :) text equivalence lsplit
VALUE left VALUE right VALUE op

op
IF

left RECURSE right Pimplies op bar-line AZ" AZ" AZ"
ELSE

left Pimplies
THEN
H

.. where “equivalence” is defined as STRING [ " <=>", " " | ] (allowing “<=>" as a

synonym for “=”) and bar-line a string containing “_\n”'. The parser splits the “text” into three
parts, “left” “right” and “op”. Passing “f = b” as input results in “f” being parsed recursively, “b”
being passed to a Pinpies parser, and the results being catenated (using the AZ” operation) with the
operators and “_\n”. If no operator is found, only the “left” sub-expression represents a real value,
which is passed to the next parser in the sequence. In the case of a right-associative operator, rsplit
is used, and the recursion is applied to the “right” sub-expression Eventually the recursion reaches a
stage where the expression can be subdivided no more; then the parsers return the text and its type
with the necessary quotes and spaces included. For example “f” would be parsed to “" f" " foo"” and
the type is sought in a lookup table. This has the corollary that variables must be declared in
advance, so their type can be entered into the lookup table. The parser above requires one string as
input; for “f @ b”, it returns “" {" " foo" " b" " bar" _" onto the stack.

It is possible to create versions of the parsers which call the operations directly, e.g. with the
<_ instruction, and these will call both phases of compilation together.

The Tagged Operators as Operations

The ~_ operation as a Simple Example

The output from the parsing operations can be passed to a FORTH virtual machine; the
output “" f" " foo" " b" " bar" +_" puts the four values f foo b bar onto the stack and calls the —_
operation. The —_ operation has the simplest typing of any; it accepts any type except null, and is
shown below:

1 Here, \n is the line-feed character 0x10.



: » ( sl s2 s3 s4 -- ssl ss2 )

(: 1l-value l-type r-value r-type :)

" p»" l-type r-type check-types-not-null

l-value sspace AZ" r-value AZ" " »" AZ" l-type sspace AZ" r-type AZ"
" PROD" AZ"

The check-types-not-null operation simply checks that null has not been passed as a type
because — has no restriction about its types of operand. Then, —_ takes the two operand values
“l-value” and “r-value”, catenating them with spaces and —. Then is catenates the two type values
“l-type” and “r-type” with “PROD” and the appropriate spaces, leaving those two values on the
stack. The equivalence operator < causes the <_ operation to be invoked; this uses the
check-types-for-booleans operation, which tests that both operands have a Boolean type. Almost
every tagged operation is similar to —_, except those for unary operators which only take one value
and one type, and those where the output may differ with the type of input.

Every “check” operation emits an error message and then calls ABORT; this means only one
error message is displayed, even if there are several errors.

The +_ Operation as a More Complex Example

As described by Lynas and Stoddart (2008), arithmetical operations may take different input
types and produce different output. In a simpler version which accepts only integer numbers, the +_
operation is very similar to +_. In the version which accepts floating-point numbers as well, it may
be necessary to change the type of the argument with the S>F operator, and prefix the + with an F.
The complex version follows:

: + (sl s2 s3 s4 -- ssl ss2 )
(: l-value l-type r-value r-type :)
" +" VALUE op op l-type r-type check-types-for-arithmetic
l-type " FLOAT" string-eq r-type " FLOAT" string-eq OR
( Either or both is float )

IF
" F+" to op
l-type " INT" string-eq
IF ( Add S>F as appropriate )
l-value " S>F" AZ" to l-value
ELSE
r-type " INT" string-eq
IF
r-value " S>F" AZ" to r-value
THEN
THEN
" FLOAT" to l-type
THEN

l-value sspace AZ" r-value AZ" op AZ" l-type

The check-types-for-arithmetic operation confirms that both types are “INT” or “FLOAT”.
On checking whether either operand is a “FLOAT”, the operator is changed to “ F+”, and whichever
of the operands is an INT has “ S>F” appended. Also the type to return is changed to “FLOAT”.
This operation will take " 1" " INT" " 1.34" " FLOAT" +_ and return “ 1 S>F 1.34 F+” and the type
“FLOAT”.



Sets and Types

A set expression such as {1, 2, 3} can be implemented in FORTH by executing the code

INT {1, 2, 3, }
where each token is a FORTH operation. The INT provides the type of the set, by placing a pointer
to an empty set of INTs on the stack, which is opened by the { operation. Each number is placed on
the stack in turn, and added to the current set by the comma operator, and the } operation completes
the set construction, leaving a new reference to the whole set on the stack.
Sets may contain individual values, or pairs, or sets. {{1, 2}, {3}} is an example of a set of
sets, which is represented in FORTH as

INT SET { INT { 1 , 2 , } , INT { 3, } , }
and the following is an example of a set of pairs (called a “relation”) from Strings to integers:
{“Bill” » 2673, *“Campbell” » 2680, “Dave” » 2680}
The set of its left-hand elements ({“Bill”, “Campbell”, “Dave”} is called its Domain, and the set of

its right-hand elements ({2673, 2680}) is its Range. It can be translated into FORTH as
STRING INT PAIR { " Bill" 2673 » , " Campbell" 2680 » , " Dave" 2680 » , }

It is possible to retrieve a value from the range of that relation, which we are calling “r”, in infix
notation by writing r(“Bill”’) which translates to FORTH postfix notation as
r " Bill" APPLY

If that relation is inverted and the value 2680 applied, there are two possible results, “Campbell”
and “Dave”; the choice can be made non-deterministically and on a reversible FORTH
implementation the choice can be altered on backtracking.

Sequences can be represented similarly, but using square brackets [...] instead of curly braces
{...}; in terms of sets, a sequence is regarded as a relation from integers to another type, T
(INT T PROD). In the case of a sequence, its domain is equal to the set of consecutive integers up to
its cardinality c, expressed as 1 ... ¢* It is possible to have relations from integers to T whose
domain does not consist of consecutive numbers, and which do not represent sequences. All the set
operations can be applied to sequences. As an example where this might be useful, one can compare
two sequences of the same type, s and #; s is a prefix of #, if s is a subset of # and the union of s and ¢
equalst (s Ct A (sU1t=1)).

Operations to Create a Set

The operations to create a set are used in the following order:

{_ Puts “{” on the stack (twice) and O (= null) because the type is not yet known.

1 Puts the value 1 on the stack, and the string “INT” being its type.

- Catenates the type { 1 and , to leave “ INT { 1, ”, and changes the type on the stack
to “INT”.

2 Puts the value 2 and its type “INT” onto the stack.

’ Checks the “INT” is the correct type and catenates the previous value with 2 and , to

produce “ {1,2,”.
Puts the value 3 and its type “ INT” onto the stack.

} Checks the remaining “{*“ matches “}”, and that the type “INT” is the same as
before, and catenates 3 comma and } to leave “INT { 1,2,3, }” and the type “INT
SET” on the stack. This resultant code can be executed as a FORTH instruction.

Since the type of variable is checked, we restrict sets to homogeneous sets, i.e. those which
only contain one kind of element.

2 We are using 1, not O, for the number of the first element in the sequence.



Other Set Operations and Typing

In the case of set union and intersection and difference, the types must be checked that the
two operands are the same sort of set, i.e. each shows its type as “T POW”. Relational overriding,
using the @ operator replaces values in a relation on the left by values in the same domain in the
right operand; overriding of s by ¢ is written as s @ ¢ and can be implemented in FORTH as
“s t OVERRIDE”. So each operand must be a relation of the same type, e.g. “S T PROD”.

The typing for other operations can be more difficult. For example the domain restriction
operation, using the < operator requires the left operand be a set of type “T” and the right operand
be a relation from “T” to a type “U”. So R < S returns a relation from S of all those elements whose
domain is included in the set R, and if the type of R is “T POW?”, the type of S must be
“T U PROD POW”.



Results

We demonstrate a compiler for expressions which can be simply constructed with a recursive
architecture. Each component is relatively simple, the most complicated one being a version of rl-lex
which can distinguish “-” as a binary or infix operator, for subtraction, from “-” as a unary prefix
operator, which occupies 41 lines when comments are excluded. The operation of the compiler can
easily be seen by running a FORTH virtual machine. The expression can be fed onto the stack,
followed by the name of the operation to compile it, and the output (highlighted in pale grey) can be
seen with the .AZ command; feeding this output back to FORTH e.g. with “copy-and-paste”
initiates the second pass of compilation, which produces the type “INT” and the postfix expression
123 *+ 4/, which evaluates to 2.

"1+ 2 * 3/ 4" Pexpression .AZ " 1" " INT" " 2" " INT" " 3" " INT" *_
" 4" " INT" /

| _|

ok

*1v " INT" " 2" " INT" " 3" " INT" *_ ok....

+_ ok..

" 4" " INT" /_ ok..

.AZ INToOk.

AZ 1 2 3 * + 4 /ok
123 *+ 4/ .2 ok

More complicated expressions can also be analysed. This set expression produces the
intermediate result highlighted in grey, and the second output “INT POW” and “INT { 1,2,3, }™

" {1, 2, 3}" Pexpression .AZ {_

"o1" " INT" ,_

"o2m v INT"

" 3" " INT" }_

{_ ok...

" 1" " INT" , oOk...
2" " INT" , oOk...
" 3" " INT" } ok..

.AZ INT POWok.
.AZ INT {1, 2, 3, }ok
INT {1, 2, 3, } .SET {1,2,3}0k

Similarly, nested and bracketed expressions can be compiled, for example:

" (1 +2) * 3/ 4" Pexpression .AZ " 1" " INT" " 2" " INT" +_
" 3" " INT" *_

" 4" " INT" /_

ok

"1™ " INT"™ " 2" " INT" +_ ok..

" 3" " INT" * ok..

" 4" v INT" /_ ok..

.AZ INTok.

JAZ 1 2 + 3 * 4 /ok
12+3*4/ .2 0k

This expression also evaluates to 2.



Discussion

“The primary criterion for a parsing algorithm is that it must be efficient.” (Bennett 1996,
page 80).

Unfortunately, for each stage, it is necessary to traverse the String representing the
expression at each of these stages. As described humorously by Spolsky (2001), traversing a
null-terminated (or ASCIIZ) String takes a time proportional to the length of the String. Also, the
number of traversals is roughly proportional to the number of operators, which again depends on the
String’s length. Our compiler must therefore run in quadratic time (O(n?) complexity). So its utility
for compiling long programs must be limited, but performance will be better if a large program can
be divided into small functions or operations. It may be possible to enhance the FORTH RVM by
adding persistent memory, allowing the output from the first pass of compilation to be retained for
use by the second pass.

We have, however, demonstrated a compiler for expressions which the writer and reader can
simply understand, and which can easily be expanded to complicated expressions. This compiler has
the unusual feature that it recursively seeks operators or connectives, rather than going through the
text from left to right. It is quite easy to examine and interpret the code, which makes this technique
a potential teaching and research tool. Compilers created with automated tools, e.g. yacc (Johnson,
1975) and lex (Lesk 1975) create much code which is difficult to understand at first reading, and
does not lend itself to didactic use.

This compiler is suitable for expansion. For example, it would be easy to add Boolean
expressions, including conjunction disjunction and implications. It would also be possible to add
more operators of different precedences to the grammar, and intersperse parsers to accommodate
those operators.

The grammar, as we have written it, easily permits arbitrary recursion both to left and right.
This can be seen in the parse trees, and can be seen where the keyword RECURSE appears in the
parsers.

Further Work

We plan to add control structures, to implement assignments, loops and selection
(if-then-else blocks). These will necessitate Boolean values to control their flow. For assignment, it
will be necessary to declare variables before use, so a technique to add variables and their types to a
lookup table is needed. Since B6hm and Jacopini (1966) demonstrated that programs of arbitrary
complexity can be assembled from elements of sequence, selection and iteration, these control
structures are sufficient to build a language capable of any operations. As well as these, additional
control structures, including choice and guards, can take advantage of the reversible virtual machine
described by Stoddart Lynas and Zeyda (2010).

We shall need a parsing method for Strings, using the opportunity for nesting “smart” quotes
provided by Unicode support. It will be necessary for such quotes to be nested in pairs; this
following example, which quotes Milne (1926) shows such nesting:

“ “In Which Pooh Goes Visiting and gets Stuck in a Tight Place” by A A Milne
includes the following:

“Pooh . . . said that he must be going on. “Must you?” said Rabbit politely.
“Well,” said Pooh, “I could stay a little longer if . . .7 ”

It is easy to count from end to end of such a String, until both opening and closing quotes



have been identified.

We hope to implement higher order functions, including A expressions; these may require
both a definition of the function and insertion of its input and output types into a lookup table.
Some functions may be implementable as sets of ordered pairs from input to output.

It may also be possible, after a full language is written, to bootstrap the compiler by
rewriting it in the new language.

Conclusion

We have demonstrated a two-pass compiler for a rich expression language; one can execute
the two passes separately or together. It supports strongly-typed sets and sequences, following the
conventions of B. This compiler is made up of small, mostly simple modules which are assembled
to form a parse tree, and uses operations called after the operators, tagged with a _ character, to
complete the compilation.

Since parse trees have a structure very similar to the postfix notation used in FORTH, it is
simple to convert a parse tree to FORTH code which can be executed directly.
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Appendix

The expression grammar is given here, in bunch notation (Hehner, 1981 and Hehner, 1993).
The comma is an operator representing bunch union, including all members of both bunches which
are its operands. As an example, if “A” means the bunch of all strings representing arithmetic
expressions and “A;” means the bunch of all strings representing terms in arithmetic, and “+” means
joining or catenating two strings around a + sign (with or without spaces), etc., we can regard the
top line in an arithmetic grammar as

A=A “+" A, A “=" A, A

... 1.e. the bunch of strings constituting arithmetic expressions followed by + followed by an
arithmetic term, AND arithmetic expressions followed by — followed by a term, AND arithmetic
terms. There may be white-space between the sub-expressions and the operator. Another definition
of “arithmetic term” or A, is an arithmetical expression which does not contain + or — as its
lowest-precedence operator.

The following abbreviations are used:

e L A comma separated list of expressions. In this case, the underlined comma , is used
to represent a literal comma rather than bunch union. L=L_, E, L

An expression

A boolean expression

An expression representing a pair

An expression representing a set

An expression representing a string or a set

An arithmetic expression (expression representing a number)

Numeric literal

String literal

An identifier

Details of the grammar of some non-terminals, e.g. string and numeric literals, are omitted below.

— ¥ Z» < ®nT WM

E = B “e” B1 N E1

E, = B,“="B,, E;

E, = B,“A”B;, B“V”B;, E;

E3 = “e” B3 5 E4

E, = E“€e” S, E<“¢”S, E,“="Es, E, “#” Es

Es = A“< A, A“S A, A“S” A A2 A, Es

Es = S«“C”S, S“g”S, S“C”S, S«“¢”S, E,

E; = E;“~"Es, Esg

E; = Es “\” Eo , Es“U”Ey, Es“n”Ey, Eg“®”E,, Eo

Eg = Sg “q” Sg s Sg “q-” S2 , E10

Ep = S;“«"E, W< W,,  S2D”Ss, S, “>7 S5, S, U7 A,
S, “17 A, En

E, = A“4+ A, A“T A, En

E12 = A] ok A2 ’ A] “/” A2 ’ E13

E13 = “r A3 5 E14

Eyu = N, $, I, F, “{L“}y
TLT, CCEY,



B — B ey B1 , B]

B, = B, “="B;, B

B2 = B2 “A” B3 5 B2 « V” B3 . B3

B; = “="B;, B,

B, = E“€e” S, E“¢”S, E, “=" E4, E, “#” E4

Bs = A“<T A, AS7 A, A" A, A“S” A, Be

Be = S“C”S, S “¢_” S , S“C”S, S«“¢”S, B,

B, = “true”, “false I, [“C"L° )” , “B“)”

S — S “\” S] , S “U” S] , S “ 99 S] , S “®” S] , S1
S1 — S ccqn S1 , S2 “4—” Sl , S2

52 — S 13 ” E 52 TR) S3 , S “ 9 S3 , 52 “|>-” S3 , S1 “T” A ,
52 “l” A , S3
83 — I , F , “{” L “}” , “[” L “]” , “(” S “)” , }\

W — Sl“<—”E, W‘ﬁ,mW1, S “ 29 S3, S2 “[>_” S3, Sl“T”A,
S2 “l” A , Wl
Wl — I , F , “{” L “}99 , “[” L “]” , “(” W cs)” , }\

A — A “+” A1 , A “_» Al , Al

Al = ATTAL ATA, A
A= AL A

A3 - I , F , N , 66(” A 66)”
A = NIeE

3 Here the underlined A is used to represent a literal A in the text, rather than a A expression.
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