
Ways to Reduce the Stack Depth

M. Anton Ertl∗

TU Wien

Abstract

Having to deal with many different data can lead to
problems in Forth: The data stack is the preferred
place to store data; on the other hand, dealing with
too many data stack items is cumbersome and usu-
ally bad style. This paper presents and discusses
ways to unburden the data stack; some of them are
used widely, others are almost unknown or new.

1 Introduction

The data stack is the primary mechanism for pass-
ing data around in Forth. Its advantages include:
words that deal only with the stacks are reentrant,
i.e., they can be used recursively and in several tasks
running at the same time; and straight-line code us-
ing the stack can be factored easily (just split any
subsequence off into a separate colon definition).

The limitations of the data stack are: It can con-
tain only cell-sized items. And while it may con-
tain many items, accessing more than a few alter-
natingly requires quite a bit of stack shuffling and
is hard to read; idiomatic in Forth usage tries to
avoid stack shuffling.

However, some problems inherently have to deal
with more than the about three data items that can
be managed without too much shuffling.

A commonly-used example problem is drawing a
rectangle specified, e.g., by the lower left and up-
per right point, using line-drawing primitives that
take the start point and the end point: If each point
is specified by two numbers, the rectangle is repre-
sented by four numbers. Moreover, each number is
needed after the first line is drawn, so just before
the first line primitive we would have the four num-
bers for the rectangle on the stack, plus the four
numbers needed for the line primitive. Many differ-
ent ways have been suggested for dealing with this
example problem and others.

This paper looks at various ways to deal with
such problems, and discusses the advantages and
disadvantages.

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

2 Grouping data in memory

One approach is to store much of the data in one
or few structures in memory, and putting only the
address of the structure(s) on the stack. The disad-
vantage here is that it requires managing the mem-
ory for the structures; this includes specifying who
is responsible for deallocating the memory.

In our rectangle example, we might represent
each point as a structure, both in the input of our
rectangle word and in the calls to the line-drawing
words, but this would mean that we would have to
allocate, fill, and later deallocate at least two such
point structures (for the lower right and upper left
point of the rectangle), and let the caller deallocate
the structures (somewhat contrary to the Forth id-
iom of consuming stack items):

: line-line (p1 p2 p3 --)

\ draw a line between p1 and p2

\ and one between p2 and p3

over line line ;

: rect (ll ur --)

over point-x @ over point-y @ make-point

(ll ur ul)

>r 2dup r@ swap line-line r> free-point

over point-y @ over point-x @ swap make-point

(ll ur lr)

>r 2dup r@ swap line-line r> free-point ;

Of course, we could pass in the data to rect in
a structure and pass it to line on the stack, so the
memory management would not show up in rect,
but that would be less instructive, failing to show
that memory management overhead occurs.

Given that Forth does not normally have auto-
matic memory management (aka garbage collec-
tion), I tend to avoid such solutions where possible.

3 Multiple Stacks

A common way to deal with many stack items is to
put some of them on the return stack. The return
stack allows no shuffling and only direct access to
the top item, and data has to be moved or copied
back to the data stack for computations, so this
is usually limited to just one or two items. The
disadvantage of this strategy is that we lose the nice
factoring property of data-stack-only code: there

Ertl Ways to Reduce the Stack Depth

are some straight-line code sequences in code using
the return stack that cannot simply be split of into
a separate colon definition.

Floating-point code keeps floating-point numbers
on the separate FP stack, so the number of items
on the data stack (and the number of items on the
FP stack) is usually smaller than in equivalent in-
teger code, and there is usually much less shuffling
necessary.

As an example, consider the following word from
the integer matrix multiplication benchmark:

: innerproduct (a b -- n)

\ a points to a column in a matrix

\ b points to a row in a matrix

0 row-size 0 do

>r over @ over @ * r> + >r

swap cell+ swap row-byte-size +

r>

loop

>r 2drop r> ;

Note that this code already reduces the stack load
by passing row-size and row-byte-size in con-
stants. A floating-point variant of the word looks
like:

: finnerproduct (a b -- r)

0e row-size 0 do

over f@ over f@ f* f+

swap float+ swap row-byte-size +

loop

2drop ;

All the return stack usage went away.

The main disadvantage of the FP stack is the
additional implementation cost: managing another
memory area for this stack, per task; and having
another stack pointer that has to be saved and re-
stored by context switches and in exception han-
dling.

Some people have suggested additional stacks,
e.g., an address stack or a string stack. This has
not really caught on yet. In addition to the costs
mentioned above one often wants to use operations
like - on addresses and, e.g., string lengths. Keep-
ing these types on separate stacks would require
moving these data between the stacks for such op-
erations, which will increase the stack noise in some
cases.

4 Locals

Locals offer a way to deal with lots of data. E.g., for
our rectangle example a solution using locals would
be:

: rect {: x1 y1 x2 y2 -- :}

x1 y1 x1 y2 line

x1 y2 x2 y2 line

x2 y2 x2 y1 line

x2 y1 x1 y1 line ;

The result is readable and this approach scales to
dealing with many data.

Despite these advantages, using locals has been
vilified often by a considerable portion of the Forth
community. One disadvantage of this approach is
that we lose the nice factoring properties of data-
stack-only code, but using the return stack has the
same disadvantage without having the same accep-
tance problems as locals.

A common argument against using locals is that
locals discourage proper factoring; they only dis-
courage it in the same way that the return stack
does, but maybe the complaint really is that due to
the scalability they fail the encourage factoring in
the same way that stack-based approaches do; i.e.,
that locals take away the pressure to factor for less
active data at a time, because words that deal with
lots of data still remain manageable.

The question then is why we want a more highly
factored program. If locals achieve that goal (say,
readability) with less factoring, do we need more
factoring? If not, maybe we should be aware of
and strive for the desired property instead of just
avoiding some programming language features.

5 Global/user variables

5.1 ... within single definitions

Another related approach is using global variables.
As long as you use them inside a single colon def-
inition, the readability and scalability is similar to
using locals. And in contrast to locals, in some
respects they keep the nice factoring properties of
data-stack-only code. The disadvantages are that
the result is not reentrant or usable recursively un-
less special measures are taken.

The most serious problem, though, is: if you
make use of the factoring properties, now the data
does not just flow through the stack from caller to
callee and back, but through an arbitrary set of
global variables. This makes the data flow hard to
track, and makes programs hard to maintain. If you
want to avoid that, you lose the factoring property
with globals just as you lose it with locals.

Also, one nice property of normal factors is that
they are often useful for other purposes; however,
factors involving globals do not have a nice stack-
based calling interface, but something more compli-
cated, so they are usually not nice factors.

In conclusion, while globals are in theory less of

Ertl Ways to Reduce the Stack Depth

an obstacle to factoring than locals, it’s usually bet-
ter to avoid this kind of factoring.

If we use user variables to make the word reen-
trant in the presence of multiple tasks or threads,
the variables consume space in each task, all the
time. With cooperative multi-tasking, we can avoid
that as long as the variables live only between task
switches (which creates another maintenance prob-
lem), but with true concurrency this trick no longer
works; and we want to use true concurrency on the
increasingly pervasive multi-core CPUs.

5.2 ... across definitions

Global/user variables are sometimes used as addi-
tional input or output parameters for words. An
example in standard words is #, which takes base

as additional input and produces additional output
in the pictured numeric output buffer.

This global state complicates the interface, which
reduces reusability and causes maintenance prob-
lems. An example is trying to debug code between
<# and #> using .s.

One programming practice for reducing these
kinds of problems is to save the global variable be-
fore changing it and restoring it before returning to
the caller. An example of this practice is:

: hex.-helper (u --)

hex u. ;

: hex. (u --)

base @ >r

[’] hex.-helper catch

r> base ! throw ;

However, this practice is somewhat cumbersome
to program and Charles Moore prefers to just set
global state whenever that is needed [Bro04, Page
212]; this is a bad idea for reusability, but Moore
does not value reusability of code.

6 Context wrappers

Saving, changing, and restoring a global variable
can be factored out into a context wrapper. E.g.,
Gforth has a word base-execute that saves base,
changes it, executes an xt, then restores base. A
usage example is:

: hex. (u --)

[’] u. $10 base-execute ;

\ base-execute (xt u --)

Another example is execute-parsing, which
saves the input stream, sets it to the passed-
in string, executes an xt, and restores the input
stream. A usage example is $create, which takes

the name of the created word from a string instead
of the input stream:

: $create (c-addr u --)

[’] create execute-parsing ;

\ execute-parsing (c-addr u xt --)

A third example of this pattern is
>string-execute which redirects the console
output (e.g., type) into a string. This allows the
programmer to construct strings from many or
complicated words without having to deal with
intermediate strings on the stack.

: fe.>string (r -- c-addr u)

[’] fe. >string-execute ;

\ >string-execute (xt -- c-addr u)

The general convention used in Gforth (with the
exception of base-execute, which came before the
convention) is to pass the execution token into the
context wrapper on the top of stack, because it is
usually a literal.

An advantage of context wrappers is that they
make it possible to use words that would otherwise
be specific to some global resource (e.g., the console
output in case of fe.) in a more general way; with-
out a word like >string-execute, if you want to
transform an FP number into engineering notation,
you have to reimplement most of fe. yourself.

So context wrappers do not only make it possible
to reduce stack shuffling in new code, but also to
reuse some code in ways for which it has not origi-
nally been written.

Gforth also has the words infile-execute and
outfile-execute that allow to use console input
(key) or output (type) words for input from or out-
put to a file. A special advantage of using a context
wrapper here is that it restores the old, working
setting if an error is thrown; in contrast, if an error
occurs during a global redirection of console I/O,
the user has problems recovering from the error (es-
pecially if input is redirected).

The usual implementation of context uses
global/user variables and saves the contents of these
variables on the return stack when performing a
context wrapper. The disadvantage of this ap-
proach is that each context requires space for an-
other user variable in each task.

Hanson and Proebsting [HP01] discuss a related
concept: dynamically scoped variables; they also
present several implementation techniques that may
require less memory (but more run-time) than ap-
proach of using global/user variables with saving.

Ertl Ways to Reduce the Stack Depth

7 Implicit Parameters and Re-
sults

A common pattern in reducing the number of items
on the data stack is implicit parameters and re-
turn values. The context in context wrappers and
global/user state like base are two examples of this
pattern.

Another one is the loop control parameters in do

loops. The equivalent begin loops would often have
too many items on the stack to manage easily.

Finally, a number of object-oriented Forth exten-
sions have an implicit current object, e.g., this in
objects.fs [Ert97]; in this objects extension, the
current object is set automatically from the top-of-
stack when entering a method and the old current
object is restored when leaving the method. By con-
trast, in Bernd Paysan’s oof.fs model, the current
object is set explicitly, but is then used implicitly
whenever calling a method. In both objects exten-
sions, the current object is used implicitly when ac-
cessing fields of the current object.

8 Registers

ColorForth has the programmer-visible register A,
which is used for memory accesses (e.g., Forth’s !

becomes ColorForth’s A! !); moreover, the top of
the return stack R serves a similar function. Virtual
machine models with even more registers have been
proposed [Pel08].

A value in A does not have to be kept on the
stack, reducing stack load. This is supported by @+

!+, a fetch and store that autoincrement the address
in A.

These registers are global resources and share
many of the disadvantages of globals. However,
their usage model is somewhat different from or-
dinary globals:

• Most globals are specific for one particular pur-
pose, whereas any word that accesses memory
will set A in ColorForth. So, the usage of regis-
ters is much more temporary, and programmers
typically don’t expect the contents to survive
across calls (unlike, usually, globals). So, they
don’t reduce the stack load across calls.

• Interrupt handlers and task switchers will pre-
serve the contents of the registers across the
interrupt or for the next execution of the task,
so the registers can be used in reentrant code.

9 Example: Postscript Graph-
ics Model

The Postscript graphics model demonstrates some
of the ideas presented up to now in action. Here is
the rectangle example, written in Forth, but with
Postscript graphics operators as words:

: rectangle (x y w h --)

2swap moveto

over 0 rlineto

0 swap rlineto

negate 0 rlineto

closepath stroke ;

First, we have adapted the parameters of
rectangle (width and height instead of the coordi-
nates of the other corner), because that requires less
stack shuffling in combination with the Postscript
graphics operators. Now, to the essential parts:

Postscript has the current point as implicit pa-
rameter. We start out by setting the current point
with moveto.

Then we draw the first line with rlineto; the
current point determines the start of the line, and
the basis for our relative operation1, so we change
x by w and y by 0; rlineto also sets the current
point to the end point of the line.

The next rlineto draws the second, vertical line
of our rectangle, the third rlineto draws the third
line.

Actually, these words did not draw lines, they cre-
ated a path in the (implicit) graphics state (which
contains the current point and other information).
Now we add a final line to the path with closepath

that goes back to the start of the path.
Finally, stroke draws the lines described by the

path onto the canvas (the in-memory representa-
tion of the page). It takes a number of addi-
tional implicit parameters into account: line width,
colour, dash patterns, corner shape, scale and rota-
tion (more generally, a transformation matrix).

As we can see, Postscript makes effective use
of implicit parameters through the global graph-
ics state. To avoid some of the problems of global
state, Postscript provides gsave to save the current
graphics state on a dedicated graphics state stack,
and grestore to change it back to the old value.

10 Staged Execution

Another way to reduce the number of items on the
stack at any one time is to divide the computation
into different stages. The first stage deals with some

1In addition to the relative rlineto, which takes a coordi-

nate relative to the current point, Postscript also has lineto,

which draws a line to an absolute coordinate.

Ertl Ways to Reduce the Stack Depth

of the data and generates code for the second stage,
the second stage deals with more data, and either
completes the computation or generates code for a
further stage, etc.

As an example, consider innerproduct from the
matrix multiply benchmark. The single-stage ver-
sion (already shown in Section 3) looks like this:

: innerproduct (a b -- n)

0 row-size 0 do

>r over @ over @ * r> + >r

swap cell+ swap row-byte-size +

r>

loop

>r 2drop r> ;

a b innerproduct .

This version already uses a number of techniques
to reduce the stack depth: a do loop to get rid of
the stack items for loop control; the number of el-
ements in the vectors (row-size), and the strides
(cell and row-byte-size) are not passed in through
the stack; and the return stack is used for the in-
termediate result.

Here is a version that divides the execution into
two stages:

: gen-innerproduct (a[row][*] -- xt)

\ xt is of type (b[*][column] -- n)

>r :noname r>

0]] literal SWAP

[[row-size 0 do ~~]]

dup @

[[dup @]] literal * under+ cell+

[[row-byte-size + loop

drop]] drop ;

[[;

a gen-innerproduct b swap execute .

This code uses the syntax]] x y [[, which is
equivalent to postpone x postpone y, but more
readable. The staged code uses the same stack
depth reduction techniques (except the return
stack, which becomes unnecessary) as the origi-
nal code, but it adds staged execution; this results
in less stack shuffling, and no need to use the re-
turn stack (except to get the parameter a past the
:noname. The second stage then contains an un-
rolled loop that contains the values from the vector
a; in source code it would look like this (for a three-
element vector a containing 5, -3, 2):

:noname

0 swap

dup @ 5 * under+ cell+

dup @ -3 * under+ cell+

dup @ 2 * under+ cell+

drop ;

Of course, this technique incurs the CPU and
memory costs of generating the code for the sec-
ond stage, and is normally only efficient if the sec-
ond stage is used several times (if it is used often
enough, it can be significantly more efficient than
the single-stage code [LL96], if the Forth compiler
supports fast code generation); and the program-
mer may have to deal with recovering the memory
for the generated code.

So, this technique is not very general-purpose,
but it still is an interesting addition to the arsenal
of stack depth reduction techniques.

11 Pipelines

An program can be organized as multiple tasks that
are connected in a pipeline. One reason for this or-
ganization is that it allows the flexible composition
of useful reusable parts; that is the main reason for
using pipelines in Unix. Another benefit of pipelines
is that the tasks of a pipeline (pipeline stages) can
be executed in parallel.

In the context of our topic the benefit is that
each task has its own stack; if we have multiple pa-
rameters to pass in and multiple data to handle,
hopefully each task needs only a part of these pa-
rameters and only needs to deal with a part of the
data, reducing the stack depth pressure in that task,
compared to a program that tries to do it all in a
single task.

I am not aware of an implementation of this idea,
but it should not be hard to implement on a multi-
tasking Forth system. In any case, the following is
just a somewhat elaborate idea, not something you
can use as programmer at the moment.

The following code fetches a vector x from mem-
ory, multiplies it with an FP number a, and adds the
product vector to another vector y in memory. This
is a common linear algebra function (called SAXPY,
DAXPY, etc. in BLAS, depending on the type). In
our pipelined implementation each of these steps
(fetching, multiplying, adding) has its own pipeline
stage:

: v@ (f-addr nstride ucount --)

0 ?do

over f@ fput

tuck + loop

endput 2drop ;

: vf* (ra --)

begin fget? while

fover f* fput repeat

fdrop ;

Ertl Ways to Reduce the Stack Depth

: v+! (f-addr nstride --)

begin fget? while

over f@ f+ over f!

tuck + repeat

2drop ;

: faxpy (ra f-addr-x nstride-x

f-addr-y nstride-y ucount --)

rot rot 2>r [’] v@ xxx|

[’] vf* f|

2r> v+! ;

Here the input parameters are the start address
address, stride2, and size of x, the value of a, and
the address and stride of y (the size is the same as
for x). So we have five cell-sized parameters and one
FP parameter, too many for handling in one func-
tion with stack manipulation words only (therefore
I present no version without pipelining).

In our pipelined version each pipeline stage only
has to handle a few of the parameters, and conse-
quently there is little stack manipulation code. The
interface word faxpy sees them all, but only has to
pass them to the stages, which is relatively simple.

Each pipeline stage passes its FP result with fput

to the next stage, which receives it with fget?.
The connections between the stages are implicit,

so we can only have a linear pipeline. Linear
pipelines have been good enough for a lot of work
in Unix, but one still might want to consider less re-
stricted options (ideally, any data-flow DAG); the
main disadvantage would be that we then have to
identify which connection an fput or fget? refers
to, and since this identifier would be passed on the
data stack, this would increase the stack load. An-
other disadvantage of data-flow graphs beyond trees
is that simple pipeline implementations can lead to
deadlocks.

12 Conclusion

In this paper we look at various ways to reduce the
stack load. There is no silver bullet, except locals.
Yet, using a combination of the other techniques,
most of the time it is possible to keep the stack
load manageable even if we do not use locals: us-
ing the return stack, the counted loop parameters
and various implicit parameters present in the Forth
system.

The Postscript graphics model shows how a prob-
lem that appears hard for stack-based languages can
be solved using such techniques.

We also present the more exotic (in Forth) tech-
niques of staged execution and pipelines, which pro-

2The stride parameter allows using the function on vec-

tors that are not consecutive in memory, e.g., a column or

diagonal of a matrix.

vide additional weapons against high stack item
pressure.

References

[Bro04] Leo Brodie. Thinking Forth. Punchy Pub-
lishing, 2004. reprint of the 1984 edition.

[Ert97] M. Anton Ertl. Yet another Forth objects
package. Forth Dimensions, 19(2):37–43,
1997.

[HP01] David. R. Hanson and Todd A. Proebsting.
Dynamic variables. In SIGPLAN ’01 Con-

ference on Programming Language Design

and Implementation, pages 264–273, 2001.

[LL96] Peter Lee and Mark Leone. Optimizing
ml with run-time code generation. In
SIGPLAN ’96 Conference on Program-

ming Language Design and Implementa-

tion, pages 137–148, 1996.

[Pel08] Stephen Pelc. Updating the Forth virtual
machine. In 24th EuroForth Conference,
pages 24–30, 2008.

