< redhat

Forth concurrency for the 21st century, Part 2:
What are we going to do about volatile?

Andrew Haley



’_ redhat

Where are we, recap

Moore's law has not been cancelled: every 18 months, the
number of transistors per unit area doubles

However, clock speeds have not been increasing for several
years, and if anything have got slightly slower

Performance can still be increased with new pipeline and cache
designs, but not by much.

There seems to be a 4 GHz barrier
Future machines will have more and more cores



’_ redhat

Motivation
VFX forth compiled

counter @ dup 2 +
Into machine code equivalent to

counter @ 2 + counter @ swap

This breaks a common idiom for a shared counter:

begin
counter @ dup N +
counter compareé&swap
until



’_ redhat

Motivation

| sent an email to Steve, who replied:

“It's not a bug ... it's the volatile problem!”
“Note that this is only a problem for x86 and hosted systems.”

So, there is a volatile problem. And that's official!



’_ redhat

Profane languages and volatile

C has volatile. s it the first language to have it? | think so

Hans Boehm points out that there are only three portable uses for
it. Summarizing,

* marking a local variable in the scope of a setjmp so that the
variable does not rollback after a longjmp.

* variables may be "externally modified", but the modification in
fact is triggered synchronously by the thread itself, e.g.
because the underlying memory is mapped at multiple
locations

*A volatile sigatomic t may be used to communicate with a
signal handler in the same thread



’_ redhat

Profane languages and volatile

Java has volatile. But its meaning is totally different from that of
C's volatile

Java's volatile is a memory barrier



’_ redhat

Memory barriers and data races

Current processors feature out-of-order execution. From the point
of view of a thread, memory accesses appear to occur in program
order. However, from the point of view of another thread, there is
no guarantee that memory writes from another thread will occur in
the same order, or that its stores into memory will ever be visible!

The new C++ standard takes the view that all access to data
shared between threads that are not explicitly protected by locks
or atomic operations are undefined

Because some Forth systems are implemented in C, they will
necessarily have the same problem



’_ redhat

data races

Thread 1:

99 result ! 1 ready !

Thread 2:

begin pause ready (@ until
result (@

The value in result is undefined



’_ redhat

load acquire and store release

What would it take to make this work?

Thread 1:
99 result ! 1 ready volatile!

Thread 2:

begin pause ready volatile@ until
result (@



’_ redhat

load acquire and store release

volatile! and volatile@ must be memory barriers

Every store to memory that happens before a volatile! is visible
to another thread after

that other thread does a volatile(

These operations are known as load acquire and store release



’_ redhat

load acquire and store release: x86

On x86, load acquire is:

mov memory -> register

store release is:

mov register -> memory

Compilers don't have to do anything special because on the x86
there is a guarantee that all threads see stores in the same order.
Other processors don't have such guarantees, so naive
programmers may accidentally write non-portable code



’_ redhat

load acquire and store release: ARM

On ARM, load acquire is:

ld memory -> register
dmb ( flush all locally cached loads)

store release is:

dmb ( force all pending stores)
mov register -> memory

There are other equivalent sequences



’_ redhat

load acquire and store release: PowerPC
On ppc, load acquire is:

|d memory -> register;
lwsync ( flush all locally cached loads)

store release is:

lwsync ( force all pending stores)
ld register -> memory

There are other equivalent sequences



’_ redhat

Forth and the future

The C an C++ standard committees used to think that they didn't
have to worry about these things. They have now changed their
minds, because threading issues can't be left to libraries

If Forth has a future on multi-core systems these issues must be
addressed. We should start thinking about them now



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

