
net : Application Layer
Factor the Content

Bernd Paysan

EuroForth 2011, Vienna



Outline

Motivation

Requirements

Solutions
Some Basic Insights
Factor Data
Distribute the Code



net2o Recap: Lower–Level Parts

• Shared memory datagrams with short headers, packet size
a power of two, see [1].

• Abstraction: files and attributes (name −→ value pairs)
• Network model: peer to peer distributed file system with

version control, “single data cloud,” see also [2]
• Real–time ability allows data streaming
• Legacy implementation based on UDP
• P2P principle: access data by cryptographic hash (Merkle

trees for larger data)



Status: Legacy Flow Control

• TCP flow control too aggressive, fills buffers until packet
drops occur — huge delays (in the order of 4s for a typical
DSL account)

• Somebody did my homework: LEDBAT flow control adds
constant delay — not so aggressive

• Can’t use LEDBAT in naive form, needs adaption — I like
to have a bandwidth control, not a window or even packet
size control

• BitTorrent already implements LEDBAT, seems to be a
good idea [3]

• Assumption is single bottleneck with few shared
connections



What for?

People like to share information (share means making copies)

• Messages, photos, videos, music
• Longer, structured documents
• Two–way real–time (chat, telephony, video conferencing)
• Collaborative gaming



How to find?

Information needs to be organized, or we are lost

• By person/group
• By topic
• By content
• By relevance (“page rank”)
• By preference (“like it”–button, visited regularly. “hate

it”–button to rate annoying pages down)
• By date or geographic location



Web Pages as Application
How to Present

Elements of a web page, classified by user experience

1 User interface — navigation, modes, and actions
2 Textual content
3 Graphics and photos
4 Videos
5 Games. . .



Factoring 1.0

• HTML glues together all textual and user interface
elements into one file

• Separated CSS for layout
• Separated JavaScript for application logic
• Separated graphics and videos
• Plugins for games and videos



Browser as Application Environment

Remember: The browser is meant as application environment
for net–centric applications!

• Requires a general purpose language to write the
applications in

• Requires a good development and debugging environment
• Must be fast/low power budget (performance is key on

mobile devices, PCs are fast enough)
• HTML5+CSS+JavaScript doesn’t cut the mustard



Factor the Text!

• Dynamic web pages use AJAX to partially replace
elements of the page

• Why put everything into a single file first, and then start
tearing it apart?

• Put each element (article, comment, message, navigation
bar, images, videos, sound) into a file of its own, and refer
to embedded objects, regardless of their type

• Use scripts to generate dynamic references (“the last three
comments to that article”)

• Provide low–level services, and let the application logic
and libraries do the rest



Downsides

• Client has to pull data together, more network traffic
• Data assembly may be pretty static
• Collated queries work in a client–server environment, but

not in a P2P environment



ACID on Data Clouds
• You want your data to be in shape, thus you need the

ACID1 properties of the data repository
• You can’t do read–modify–write on data clouds. You can

push new data, that’s it. Forget about “delete,” there’s no
easy way to call your data back. You can’t implement locks.
All you get is durability: “the net will not forget.”

• However, you can say “this is the next revision of document
x .”

• Two concurrent edits will produce a fork. It’s up to the
authors to decide how to merge forks back.

• When you publish something, you can’t guarantee that it’s
available in order. If the reader gets an incomplete
transaction, he must either retry or fall back to the previous
version.

1Atomicity, Consistency, Isolation, and Durability.



Hash–Indexed Content

Hashes as “handle” to actual content are the key to data
management

• h(data)−→ hash produces a unique hash for each data file
• d(hash)−→ data allows to retrieve the data when the hash

is known
• Hash trees provide a mean to distribute large files
• Relationships between data revisions are stored as graph,

using the hashes as symbol for the actual data



Privacy

• You can control with whom you share (cryptography)
• Recalling information requires cooperation (“the net will not

forget”)
• You can’t control with whom your receivers re–share

(impossibly of DRM)
• There is no real anonymity, but your traces can be lost in

the clouds



Secure Execution Environment
• Any sufficiently powerful language let you write malware
• The libraries of any sufficiently powerful environment (even

with a very restricted language) contain enough exploits to
write malware

Sandbox

• Sandbox the process, restrict network access (read is ok,
write needs user permit)

• Using your keys (decyption, encryption, signing) must be
outside the sandbox

• “Same origin”–policy doesn’t work for a data cloud — the
destination is again “the cloud”

• Signed scripts and social control can help to some extend
• The boundary to malware is non–trivial to define. Is

Farmville malware?



Push vs. Polling

• Polling is stupid
• Push–style solutions require open connections or ports
• Stored procedures in the cloud — or better call them

“callbacks,” because they can only call the originator



Source Code vs. tokenized Binaries

• We (Forth) can compile source code quickly
• Source code distribution allows to inspect software, and

reduce the malware threat (reduce, not eliminate!)
• Secretive companies like binaries, more difficult to reverse

engineer
• Everybody can build his own VM compiler, if he likes to



Factor Data
scalability of graphics — bandwidth and detail reduction for small and slow devices

Images Use progressive formats where scaled–down
versions of the same image are transferred first
(progressive JPEG, wavelet compression)

Video Encode streams with a lowres, low–FPS base
video, and additional streams which add spatial
and temporal resolution

Geometries Use level–of–detail algorithms to provide
approximations of complex geometries (2D and
3D)



Factor the Code

• Provide a way to distribute common libraries
• Use the version control system to request the right

dependencies, if you need those
• Allow precompiled basic functions to speed up rendering

startup



Basic Libraries

• Canvas and OpenGL for 2D and 3D rendering
• HarfBuzz for text layout and shaping engine
• A typesetting engine (codename “BUX”)
• JPEG/PNG decoding
• Video engine
• Audio engine
• GUI library (MINOS–like, but using the rendering

infrastructure)



Most Stupid Mistakes of the Net 1.0

• There really must be an easy to use (i.e. WYSIWYG)
in–browser editor for the content!

• Client–server instead of peer to peer — the original idea
behind the Internet was peer to peer, but it was soon
forgotten

• Postel principle — do not be liberal in what you receive, do
explicit consistency checks even if that is costly (Rose
principle)

• Unencrypted by default (was too costly; but then,
cryptographic protocols such as SSL are really ugly and
full of mistakes)



For Further Reading

BERND PAYSAN

Internet 2.0
http://net2o.de/

POUWELSE, GRISHCHENKO, BAKKER

swift, the multiparty transport protocol
http://libswift.org/

ROSSI, TESTA, VALENTI

Yes, we LEDBAT
http:
//www.pam2010.ethz.ch/papers/full-length/4.pdf

http://net2o.de/
http://libswift.org/
http://www.pam2010.ethz.ch/papers/full-length/4.pdf
http://www.pam2010.ethz.ch/papers/full-length/4.pdf

	Motivation
	Requirements
	Solutions
	Some Basic Insights
	Factor Data
	Distribute the Code

	Appendix

