
net : Transport Layer —
Implemented

Tame the Net

Bernd Paysan

EuroForth 2012, Oxford

Overview

Motivation

Datenflusssteuerung

Reliability

Cryptography

Recap: What’s Broken?

• TCP–Flow Control: “Buffer Bloat”
• TCP as “carefree protocol” is not even remotely real–time

capable, so far from “carefree” for media use
• UDP is only a “easy” access to raw IP, and otherwise “do it

yourself”
• The SSL–PKI with their “honest Achmeds” as certification

authorities
• Encryption “too complicated, too difficult”, usually added

late, and therefore way too often not done

Changes from the Draft

• Packet size now 64∗2n, n ∈ {0, . . . ,15}, so up to 2MB in
powers of 2

• No “embedded” variant implemented, only 64 bit addresses
• Routing address length changed to 128 bits
• Encryption always active
• No “salt” at the start of a packet, but a cryptographic

checksum (128 bit) at the end

Status: TCP Flow Control
• TCP fills the buffer, until a packet has to be dropped,

instead of reducing rate before. Name of the symptom:
“Buffer bloat”. But buffering is essential for good network
performance.

buffer overflows

Fill until

Figure: Buffer Bloat

Alternatives?
• LEDBAT tries to achieve a low, constant delay: Works, but

not good on fairness
• CurveCP has a similar approach, which is not even

documented (but DAN BERNSTEIN’s code is by definition
“obvious”)

• Therefore, something new has to be done

Figure: That’s how proper flow control should look like

„Buffer Bloat“

• Retransmits are making the situation worse in case of
congestions and therefore should be avoided

• Riddle: How big should the buffer be, under the
assumption that the bandwidth is used optimally,the
bottleneck is on the other side of the connection, and a
second data stream is opened up?

• Answer: about half the round trip delay, which are
inevitably filled before any reaction is possible

• Buffers are good, but you shouldn’t fill them up to the brim
• The problem is inherent in the TCP protocol, but since

Windows XP did not provide window scaling, the
per–connection buffer limit was 64k for most connections
on the Internet for quite a long time.

net2o Flow Control

Figure: Measure the bottleneck using a burst of packets

Client Measures, Server Sets Rate

Client recores the time of the first and last packet in a
burst, and calculates the achieved rate for
received packets, extrapolating to the achievable
rate including the dropped packets. This results in
the requested rate.

: calc-rate (--)
delta-ticks @ tick-init 1+ acks @ */
lit, set-rate ;

Server would simply use this rate

: set-rate (rate --) ns/burst ! ;

Fairness
Fairness means that concurrent connections achieve about the
same data rate, sharing the same line in a fair way.
• Ideally, a router/switch would schedule buffered packets

round–robin, giving each connection a fair share of the
bandwidth. That would change the calculated rate
appropriately, and also be a big relieve for current TCP
buffer bloat symptoms, as each connection would have its
private buffer to fill up.

• Unfortunately, routers use a single FIFO policy for all
connections

• Finding a sufficiently stable algorithm to provide fairness
• We want to adopt to new situations as fast as possible,

there’s no point in anything slow. Especially on wireless
connections, achievable rate changes are not only related
to traffic.

net2o Flow Control — Fair Router

Figure: Fair queuing results in correct measurement of available
bandwidth

net2o Flow Control — FIFO Router

Figure: Unfair FIFO queuing results in twice the available bandwidth
calculated

Fairness I

• To improve stability of unfair queued packets, we need to
improve that P regulator (proportional to measured rate) to
a full PID regulator

• The integral part is the accumulated slack (in the buffer),
which we want to keep low, and the D part is
growing/reducing this slack from one measurement to the
next

• We use both parts to decrease the sending rate, and
thereby achieve better fairness

• The I part is used to exponentially lengthen the rate ∆t
with increasing slack up to a maximum factor of 16.

sexp = 2
slack

T whereT = max(10ms,max(slacks))

Fairness D
• To measure the differential term, we measure how much

the slack grows (a ∆t value) from the first to the last burst
we do for one measurement cycle (4 bursts by default, first
packet to first packet of each burst)

• This is multiplied by the total packets in flight (head of the
sender queue vs. acknowledged packet), divided by the
packets within the measured interval

• A low–pass filter is applied to the obtained D to prevent
from speeding up too fast, with one round trip delay as
time constant

• max(slacks)/10ms is used to determine how aggressive
this algorithm is

• Add the obtained ∆t both to the rate’s ∆t for one burst
sequence and wait that time before starting the next burst
sequence.

VDSL

Figure: One connection on a VDSL

VDSL, Congestion

Figure: One of four connections on a VDSL

Unreliable Air Cable (WLAN)

Figure: Single connection using WLAN

Unreliable Air Cable, Congestion

Figure: One of four connections using WLAN

Transport Reliability

• Packet ordering is dealt with the address each packet
carries

• The receiver tracks received packets in two alternating
bitmaps

• Received packets are marked as received in the active
bitmap

• The other bitmap is filled up, until the bitmaps are swapped
(twice per round trip delay RTD)

• Wait one RTD for retransmits
• Retransmits are preferred, but no timing measurement on

retransmits (two identical packets in flight)

Reliable Execution of Commands

• The command block at that address is received first time
−→ execute, remember the reply command

• The command block has already been received −→ send
the reply again (don’t execute the command)

• No replies requested −→ Do nothing
• Acknowledges are amended by a checksum, which only

the sender or the receiver can compute, so no fake
acknowledge for dropped packets is possible.

Cryptography

Communication needs the first three goals, the fourth one isn’t

Confidentiality no third party (Eve) should eavesdrop the
communication

Integrity The data is complete and unmodified
Authentication The sender of the data can be identified
Non–repudiation is not necessary for two–way communication

Used Technology: Curve25519

• Elliptic Curve Cryptography doesn’t base on large number
factoring (as hard to solve problems), but on natural
logarithms of elliptic curves

• Security level of Curve25519 corresponds to 128 bits in a
symmetric key — that’s sufficient today

• Curve25519 has a very efficient implementation
• It is optimized for 1:1 connections
• Each participant “multiplies” his secret key with the public

key of the other side, both products are identical

Wurstkessel
At the moment, I’m using Wurstkessel as symmetric encryption,
even though there hasn’t been a thorough review:

• Wurstkessel provides en/decryption and authentication in a
single pass, computing a key–dependent secure hash

• Thus a single run of Wurstkessel solves all three tasks:
confidentiality, integrity, and authentication.

1 the data is encrypted
2 the correct hash proves its integrity
3 the hash can only be calculated knowing the key, therefore

proving the authentication of the sender

• AES has something similar, the CBC–MAC. However, in
AES, it is necessary to use different keys for encryption
and MAC, i.e. no single run possible

Hidden Initialization Vectors

• No key reuse allowed (only for retransmissions), otherwise
a known–plaintext attack is possible

• Usual approach: initialization vector (IV) transmitted with
each packet

• Disadvantage: Overhead and the “other” part of the key is
known to the attacker

• Solution: Generate the IVs using a PRNG (with
Wurstkessel in PRNG mode) on both sides — these IVs
are “shared secrets”. Only the seed for the PRNG is
transmitted, and used together with the shared key to
generate the IVs (Idea: HELMAR WODKE).

Public Key Infrastructure (PKI)
At the moment, three approaches are used:

1 Hierarchical Certification Authorities (e.g. SSL): The trust
is delegated to “notaries”, i.e. the CAs, which then must be
trustworthy (all of them, since each CA can create a
certificate for anybody). The server is certified, i.e. the
user knows that he can trust this connection as much as
the worst of those 600 CAs.

2 Peer to Peer (e.g. PGP): trust is obtained through a “web
of trust”, i.e. you either trust directly or by using several
people you trust. It is not sufficient to corrupt a single
person in your trust network to obtain trust.

3 Observing changes (e.g. SSH): trust is reiterated by
repeated contacts, and as long as keys don’t change, trust
is assumed.

What Was the Problem?

The typical reason to use a trusted connection is to obtain a
secure login, and then access private data. This begs a
question:

• Isn’t it actually the client, which should be trusted?

The connection is a trusted connection, if one participant has
successfully evaluated the trust of the other.
Therefore, by inverting the trust relation, the SSH approach is
sufficient in most cases.

For Further Reading

BERND PAYSAN

Fossil Repository und Wiki
http://fossil.net2o.de/

http://fossil.net2o.de/

	Motivation
	Datenflusssteuerung
	Reliability
	Cryptography
	Appendix

