
EuroForth 2013

Forth Query Language (FQL) -
Implementation and Experience

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
4-5 Great Western Court
Ross-on-Wye
Herefordshire
HR9 7XP
UK
Tel. +44 1989 768080
Email njn@micross.co.uk

Abstract
We will demonstrate how a hard problem in SQL becomes easy when combining
SQL and Forth using FQL - "Forth Query Language".

1. Introduction
Databases are at the root of many computer applications, and almost all
databases are programmed using SQL. In a previous paper (EuroForth 2006) I
introduced the concept of a highly efficient method of switching between Forth
and SQL, so as to achieve the maximum benefits from both. We have now had
several years experience of FQL and can report on its success.

2. Features of SQL
SQL stands for "Structured Query Language" and this is possibly the most
deceptive name ever devised by a computer scientist. SQL is very difficult to
structure, can do other things besides queries, and is not even a language in the
sense that a Forth programmer would understand. It is a "declarative" language,
in that one describes the output that one needs, but not the method used for
obtaining that output. It cannot be used by itself, and always needs some
program written in another language for an interface.
However, for the tasks that it was originally designed for, it is extremely simple
and effective. It is only when one tries to stretch it beyond its natural
capabilities, that it becomes hard to manage.

3. Features of Forth
Forth, as we all know, is the outstanding language for creating highly structured
and maintainable large programs. However, it is not particularly good at creating
large and complex strings, which is what is required to generate SQL queries.

4. A very hard problem in SQL
Although SQL has functional extensions (if for example IF... statements have
been added), almost any problem which requires a partly functional solution, is
difficult to code in tidy SQL.
Here is a example which is simple to describe, but not so simple to code.
Suppose we have a table which records the time when operators start and stop
working at a particular work zone. We want to produce a report like this:

We are looking at the total hours spent at this workzone, over a period of a
week, and an analysis by day, and by operator.

This appears to be deceptively simple. You just subtract each operator's log on
time from his log off time, and add them all up.

Unfortunately, some people work night shifts, and also move to other workzones
from time to time. Even so, the algorithm is fairly easy to understand. If we just
extract all log on and log off times for each day, we can pair them. Any unpaired
times can then be paired with the start and end of the day, as appropriate. Then
we can calculate the sum of differences.

It will be seen that while the data extraction, and the sum of differences, are very
easy in a declarative language such as SQL, the pairing and above all the
treatment of unpaired times, are extremely hard. On the other hand, a functional
language such as Forth can easily deal with the pairing.

5. Structuring and factoring a query using FQL

If we could easily switch between SQL and Forth, we could choose which part
of a problem to allocate to which language. This is what FQL achieves.

In the above example, we first extract from the table a list of times:

: PH-RAWQUERY { st -- parray } \ Get raw data into array
 SQL¦
 SELECT opref, opaction, TIME_TO_SEC(TIME(logsystime)),
 DAYOFWEEK(logsystime), DATEDIFF(logsystime,NOW())
 FROM operlog
 WHERE ¦ CH-LOGONOFF ¦ \ Machine log on or off
 AND ¦ st CH-WEEK ¦ \ Monday to Sunday
 AND ¦ PH-WORKZONES ¦ \ Sorting workzones
 ORDER BY opref,logsystime
 ¦SQL> CH-INSERTARRAY \ Insert results into array
;

The word SQL¦ starts to create an SQL query, until the next ¦ is encountered,
when we switch back to Forth. We then stay in Forth until another ¦ is
encountered, when we switch back to SQL. Finally, ¦SQL> executes the query
leaving a pointer to the resulting array. That result is then placed in a temporary
table in memory, ready for the pairing operations.

Note the other big advantage of FQL - we have introduced Forth structuring into
SQL code, making it much easier to read. Each part of the "WHERE" clause is
easy to distinguish. For example, "CH-WEEK" calculates, in Forth, the dates of
the previous Sunday and the following Saturday, given any specified date, and
inserts these dates into the SQL code as a "BETWEEN" clause.

6. Subquery reuse in FQL

Having carried out our pairing and sums of differences, we can then feed the
result into a temporary database table. The final SQL query is still fairly
complex:

: PH-HOURS { st -- } \ SQL query that lists operator hours at packing area by week
 ¦
 SELECT IFNULL(operator.name,'Total') AS 'Operator name',
 TIME_FORMAT((SEC_TO_TIME(sunday.minutes *60)),('%H:%i')) AS Sun,
 TIME_FORMAT((SEC_TO_TIME(monday.minutes *60)),('%H:%i')) AS Mon,
 TIME_FORMAT((SEC_TO_TIME(tuesday.minutes *60)),('%H:%i')) AS Tue,
 TIME_FORMAT((SEC_TO_TIME(wednesday.minutes*60)),('%H:%i')) AS Wed,
 TIME_FORMAT((SEC_TO_TIME(thursday.minutes *60)),('%H:%i')) AS Thu,
 TIME_FORMAT((SEC_TO_TIME(friday.minutes *60)),('%H:%i')) AS Fri,
 TIME_FORMAT((SEC_TO_TIME(saturday.minutes *60)),('%H:%i')) AS Sat,
 TIME_FORMAT((SEC_TO_TIME(total.minutes *60)),('%H:%i')) AS Tot
 FROM ¦ st PH-OPERATORS ¦ AS employee
 LEFT JOIN ¦ 0 CH-MINUTES ¦ AS sunday ON employee.opref = sunday.opref
 LEFT JOIN ¦ 1 CH-MINUTES ¦ AS monday ON employee.opref = monday.opref
 LEFT JOIN ¦ 2 CH-MINUTES ¦ AS tuesday ON employee.opref = tuesday.opref
 LEFT JOIN ¦ 3 CH-MINUTES ¦ AS wednesday ON employee.opref = wednesday.opref
 LEFT JOIN ¦ 4 CH-MINUTES ¦ AS thursday ON employee.opref = thursday.opref
 LEFT JOIN ¦ 5 CH-MINUTES ¦ AS friday ON employee.opref = friday.opref
 LEFT JOIN ¦ 6 CH-MINUTES ¦ AS saturday ON employee.opref = saturday.opref
 LEFT JOIN ¦ -1 CH-MINUTES ¦ AS total ON employee.opref = total.opref
 LEFT JOIN operator
 ON employee.opref = operator.opref
 ORDER BY operator.name
 ¦
;

This illustrates a further useful feature of FQL. "CH-MINUTES" generates an
SQL sub-query which is re-used multiple times. The complete query is in fact
rather long and it is not easy to see the structure when written out in full.
Expressing it in Forth makes the structure clear.

"CH-MINUTES" takes a parameter which generates a slightly different sub-
query each time.

: CH-MINUTES { pday -- } \ Inserts the time subquery
 ¦
 (SELECT IFNULL(opref,0) as opref, SUM(pmins) AS minutes
 FROM sortlog
 WHERE ¦ pday CH-DAY ¦
 GROUP BY opref WITH ROLLUP
)
 ¦
;

Within this word, "CH-DAY" either introduces a "WHERE" clause for each day,
or a "WHERE 1=1" type clause, for the totals.

: CH-DAY { pday -- } \ Inserts day clause, 0=select all
 ¦ (pday= ¦ pday -1 <> IF
 pday ZFORMAT
 ELSE
 Z"" pday" \ Select all gives pday=pday
 THEN >SQL ¦) ¦
;

Note that we could have introduced two Forth DO...LOOPs for the days of
week, which would have made the code more compact. However, I think the
readability is probably better without the loops.

7. Making FQL thread safe

Because SQL queries often take an appreciable time to execute, they are usually
carried out in separate threads of execution. Furthermore, in an automation
application, such as our flagship program "Tracknet", there may be many
database operations taking place simultaneously, in different threads. Making
FQL thread safe is simply a matter of assigning a private SQL connection handle
and query string pad, for each thread.

STRUCT _TASKPRIVS
 PADSIZE FIELD .OWNPAD2 \ PAD2 and PAD3 for that thread
 PADSIZE FIELD .OWNPAD3
 MAXQUERYSIZE FIELD .OWNSQLPAD \ SQL pad for thread
 CELL FIELD .OWNHSQL \ Handle of SQL connection
 MAX_PATH FIELD .OWNCURRPATH \ Current directory for that thread
 CELL FIELD .VAHDTASK \ AHD task
 CELL FIELD .VAHDPROG \ AHD progress
END-STRUCT

: SQLPAD (---addr) \ SQL pad owned by a thread
 GET-TASK-PRIVATE .OWNSQLPAD
;

: HTHREADSQL (---addr) \ Handle to SQL connection owned by a thread
 GET-TASK-PRIVATE .OWNHSQL
;

8. Comparison of code size

We noted the code lengths, when we converted a particular query from an older
technique (see Swialowski, EuroForth 2006) to FQL. The old code required 136
lines, despite the lines being longer and difficult to read. The FQL solution
required 89 lines, despite the lines being deliberately shortened to improve
reliability. Typically, the old solution required approximately 50% more code
than FQL.

9. Comparison of performance

Very significant performance improvements can sometimes be achieved by
using FQL instead of pure SQL. The most dramatic improvements are observed
when the SQL code contained extensive use of procedural "enhancements" for
which SQL was never originally designed.

Extreme example: Operator efficiency query.
Pure SQL 86s
FQL 4.5s

A further advantage is that, because the SQL is broken up into lots of smaller
queries, it is possible to support a plausible "progress" bar and cancel button, for
time consuming operations.

10. Conclusion

By combining the best features of both SQL and Forth, FQL creates code that is
faster, more compact, more readable and easier to maintain.

NJN
September 2013

References:
1. The Nearly Invisible Database or ForthQL

N.J. Nelson, EuroForth 2006
2. Database access for illiterate programmers

K.B.Swiatlowski, EuroForth 2006

