
Components for Certification.
Paul E. Bennett IEng MIET

Systems Engineer, HIDECS Consultancy

Abstract
Even the humble hexagonal nut has a data-sheet that describes its functionality, performance factors, interfaces and
limits beyond which its continued performance is not guaranteed. Electrical and Electronic Components also have

data-sheets that describe their functionality, interfaces, performance and limitations. Why should software be any
different? Yet, much of the software in existence has not carried through providing this useful artefact of the rest of the

engineering world.

Some consider software as a quite different aspect of creative development and so it has, for many, become a black art

for devotees of a specific programming language to get to understand the hieroglyphics that they use. Yet software is
being used in a wider range of products, some of which are becoming even more mission, security or safety critical, and

sometimes, all three aspects simultaneously.

There have been some attempts at Component Oriented Development[3] with artefacts like .NET, and CORBA. Huge

system modelling tools, built mainly for the software industry, have grown up that will churn out code from the model,
all without the real feel of whether the model was correct or whether the translation of that model to code was correct.

In such circumstances it becomes very difficult to be certain about any assessment of the final products fitness for
purpose and absence of hidden faults.

In this paper we will take a look at what is required for Component Oriented Development that can be proven to be
fully trustworthy to perform as its data-sheet implies.

 1 What is a component?
[4]

Across all engineering disciplines, the author
considers that the following features should be
common to all components. In fact Components

● have a unique reference identifier

● have Surfaces by which other

components are interfaced.

● have been specified for operation within

given environmental constraints

● have data-sheets that describe all

functionality, features, performance and
limitations of guaranteed performance.

● can be used and re-used many times

over.

● can be inspected, tested and certified

individually without impact on other
components.

● conform to standards relevant to its

functionality and performance.

● can, once certified, be used without

being re-certified for every new
situation, provided the new situation
does not exceed the expectations of its
published data-sheet.

However, using a certified component will not
imply that the whole system is certified just by
using it. To certify a whole system, the whole
system needs to be constructed from known
certified components throughout, have an audit
trail that has logged all component certification,
and itself be tested against its own statement of
requirements.

For software components, there is a need for a
development environment that allows the easy
inspection and testing for individual
components, preferably without having to write
special test stubs to implement the testing.
Where test stubs have to be created to perform

the test these should be logged with the
component for subsequent confirmation testing
and should receive as much attention to their
correctness as the component itself.

 2 Component
Specification

Specifications of components grow out of the
specification of the system to which they will
ultimately belong. Such specification will
mention aspects like the operational
environment, lifetime expectations, MTBF
(Mean Time Between Failures), Maximum and
Minimum expectations of operation, Nominal
Operating Regions and perhaps some notes on
intended methods of use. Specifications,
whether for the entire system or just a single
component, should always adhere to the precept
that they are Clear, Complete, Concise,
Coherent, Correct and Confirm-able. Any lesser
adherence to the principal 6 Cs[5] of
specification will detract from the ability to
fully assess the quality and robustness of the
eventual product.

 3 Component
Management

Having created a component, all the artefacts,
such as designs, data-sheets, inspection, test
reports and other ancillary information relevant
to the components use (like application notes)
should be stored in a secure archive for which
there is strong version control and strict change
management procedures in place. This ensures
the longevity of information about the
component and its inspection and testing.

Regular auditing of the archive ensures that
versioning and change management processes
are being carried out properly and that the
security of the information remains unsullied.
The version control and change management
becomes a very important aspect to

development processes where the expected
outcome of a development is a safe, secure,
mission critical product.

 4 Component Inspection,
Testing and Certification

The Requirements of High Integrity Systems,
especially in the Safety Critical[1] world, are:-

Arg1 - the system has been specified to
be safe - for a given set of Safety
Criteria, in the stated operational
environment

Arg2 - the resulting system design
satisfies the agreed specification

Arg3 - the implementation satisfies the
system design

In examination in accordance with these three
arguments, those who inspect the component
(and system) will need to see robust evidence
that the material presented is valid. Such
demonstration is given by provision of:-

Direct evidence - which provides actual
measures of the attribute of the product (i.e. any
artefact that represents the system), and is the
most direct and tangible way of showing that a
particular assurance objective has been
achieved.

Backing evidence –which relates to the quality
of the process by which those measures of the
product attributes were obtained, and provides
information about the quality of the direct
evidence, particularly the amount of confidence
that can be placed in it.

The references to inspection and testing, above,
have specific connotations in the light of
components. For the mechanical world, there
will be certificates on the material being used to
assure that it is of the appropriate quality for the
intended purpose. Physical viewing of the
component to confirm its identity as the right
component for the task, and measurements of

the final component to ensure that it conforms
to its design data (as in the case of the nut,
checking all the components dimensions to
ensure a match to the drawings). There may
even be a destructive stress test conducted on a
small sample of the component to ensure the
design criteria has been met.

For software, whilst we will still need an
inspection and testing method to ensure that the
design criteria is met, the methods are slightly
different. Below, we will cover the three aspects
of inspection and testing, namely the Fagan
Style Inspection, Functional Testing and Limits
Testing.

 4.1 Inspection of Software
The author recommends the Fagan Style
Inspection[2] as the best technique to perform a
rigorously intense examination of the software
itself. Getting to the point of inspecting a
component for certification will have already
initiated a series of inspections and reviews to
ensure that the specifications on which the
specification of this component relies are sound
in principle and capable of compliance. Aspects
that need to be observed during this inspection
are:-

● Each component shall have a full

statement of specification in which the
functionality, performance
characteristics, methods and limitations
of the software component are fully
described (references to specific clauses
in standards or other document relied
upon for the component are permitted
but have to be made available to the
inspection team).

● Any components on which this

component relies already has
certification in place as evidenced by the
availability of that components
certificate of conformity.

● All logical pathways through the code

are checked individually to ensure that
there are ways in which all pathways can
be executed, and that the logic used is
sound. Preferences are for simple
decision structures or non decisions at
all.

● The logical pathways in the code

implement precisely the logic demand
by its specification. Disparities should
be recorded in the inspection and test
report and regarded as a failure.

● The component has exactly one entry

and one exit point.

● The Cyclomatic complexity is as low as

is reasonably practical to the intended
task described in the specification.

As you will detect, a lot of reliance is placed on
having the specification and code closely allied
during the inspection process. Fagan Inspections
are, essentially, a style of static analysis but
conducted with close attention to the details of
implemented intent.

 4.2 Functional Testing
[6]

Functional testing, for certification, has to
operate the component in its normal mode
function but ensure that all logical pathways are
fully exercised. The requirement is 100%
logical pathway coverage. Running a functional
test with a copy of the source code to hand and a
marker to indicate when the pathway is taken
and under what conditions. The function
performed should precisely match the
description in the component specification. Any
deviation from the functional specification is
seen as a failure of the functional test and
should be noted in the test report.

 4.3 Limits Testing
[6]

Much of software may operate without
encroaching any limitations whatsoever.

However theoretical the limitless possibilities
might be, all implementations of a software
component will exhibit limits with respect to the
cell-width of the machine on which it will
operate. So long as such limitations are
understood by the user of the component there
is usually no real concern.

However, some software components
implementing specific algorithms, will exhibit a
limitation of their accuracy or performance
outside certain bounds. Hence, the specification
should make it clear where such limits
theoretically lie in order that testing against such
limits can be undertaken to ensure the
component continues remains to remain stable
despite exceeding such limits (ie: takes the
appropriate actions when limits are exceeded).
An example of such a limitation is the divide by
zero error in routines that use division. For such
errors, an appropriate means of managing the
error needs to be put in place and tested to
ensure that in all cases where the limitation is
achieved, the proper course of action is always
taken.

Implementing such testing often requires quite
wild imaginations to accomplish but the
intention is to actively try and destroy the
software component, much like you would
destroy the test sample of a mechanical
component.

 5 Summary
This paper has been but a brief run-through of
the Component Oriented approach to software
development. We have briefly mentioned the
need for all components to have a data-sheet in
which its functionality, interfaces, performance
and limitations are fully described. Additionally,
we have covered a brief overview of the
necessary inspection and testing regimes by
which component certification can be
accomplished. Treating the development of

software components similarly to the
development of any hardware component, with
a specification, inspection, and testing regime
that is fully explorative of the component
properties, will improve overall quality of the
delivered system. Finally, that attention to detail
is beneficial to the outcome and re-usability of
the components developed by this means.

That the above implies an increase in
documentation should not be seen as any reason
to reject such an approach, as this increase in
documentation is substantiated by the ease with
which certification of components can be
achieved.

This usually leads to an eventual saving of
development costs for those developing the
higher integrity systems which will ensure our
continued safety and security.

 6 References
[1] Functional Safety by Design – Magic or Logic?

Derek Fowler; Safety-critical Systems Symposium,
Bristol UK, February 2015.

[2] A History of Software Inspections Michael Fagan,
sd&m Conference 2001, Software Pioneers Eds.: M.

Broy, E. Denert, Springer 2002
<http://www.mfagan.com/pdfs/software_pioneers.pdf>

[3] Component Software
<http://www.webopedia.com/TERM/C/component_softw
are.html>

[4] Component
<https://en.wikipedia.org/wiki/Component>

[5] High Integrity Systems CODE Paul E. Bennett IEng
MIET, EuroForth 2014.

[6] Software Testing – Goals, Principles, and
Limitations S.M.K Quadro & Sheik Umar Farooq

International Journal of Computer Applications
<http://citeseerx.ist.psu.edu/viewdoc/download?

rep=rep1&type=pdf&doi=10.1.1.206.4616>

The author is willing to advise on and oversee any software component oriented development
process leading towards full system certification against any standard. He is also a member of
the IET, Safety Critical Systems Club and has been using Forth, in a component oriented
manner, for high integrity systems since the mid 1980's.

Paul E. Bennett IEng MIET <Paul_E.Bennett@topmail.co.uk>

Tel: +447822639972

mailto:Paul_E.Bennett@topmail.co.uk
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.206.4616
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.206.4616
https://en.wikipedia.org/wiki/Component
http://www.webopedia.com/TERM/C/component_software.html
http://www.webopedia.com/TERM/C/component_software.html
http://www.mfagan.com/pdfs/software_pioneers.pdf

