Recognizers
Why and How

M. Anton Ertl
TU Wien

How to deal with literals

Recognizers Parsing Words
123 s" abc"

$£f H# ff

>a’ [char] a
1.2e3

e NO way to define new recognizers

e NO good way to define parsing words
non-default non-immediate compilation semantics
State-smartness and the like
Not just an implementation problem

e — user-defined recognizers

Ideal

e Recognized literal acts like a normal word

o : 123 123 ;

e Interpret
Compile

Postpone? 1] a 123 b [L VS. 1] a [[123]] literal b [[
e

find

find-name name>string 7

How to specify and implement recognizers

e Specify interpret, compile, and postpone actions
Advantage: Optimization possible
Disadvantage: Bugs can hide, especially for postpone

e Specify parse-time, run-time, and data-shifting actions
interpret: parse-time run-time
compile: parse-time shift |] run-time [[
postpone: parse-time shift]] shift |] run-time [[[[

e Define a temporary word
Advantages: Allows ticking etc.
Conceptual simplicity
Disadvantage: Optimization?

Temporary words

Separate dictionary pointer (like ELF section)

Should be inlined if compiled. But how?

Becomes permanent if postponed or ticked

Other permanent uses need explicit permanence

Recognized string as name?
Decompiler

name>string

Coding example

: usingle (c-addr u —- f)
0. 2over >number 0= if
drop 2drop 2drop false exit then
drop drop rot rot [’] constant execute-parsing

true ;

Inline when compiled

e Require using an intelligent compile,
Quite elegant
But set-opt is unlikely to be standardized

e Or specify parse-time and compile-time action
For compilation, perform these actions
In other cases, build the word

Performance with many recognizers

Linear search through recognizer stack?

Or fast pre-selection

Pre-selection may accept invalid strings
but must not reject valid strings

prefix pre-selectors = trie

regexp pre-selectors = NFA/DFA

Conclusion

e User-defined words are great!
Let s also allow user-defined recognizers

e New implementation approach:
Define temporary words
How to inline?

e Pre-Selectors for performance

