
From exit to set-does>

A Story of Gforth Re-Implementation

M. Anton Ertl∗

TU Wien

Bernd Paysan

Abstract

We changed exit from an immediate to a non-
immediate word; this requires changes in the de-
allocation of locals, which leads to changes in the
implementation of colon definitions, and to gener-
alizing does> into set-does> which allows the de-
fined word to call arbitrary execution tokens. The
new implementation of locals cleanup can usually be
optimized to similar performance as the old imple-
mentation. The new implementation of does> has
similar performance similar to the old implementa-
tion, while using set-does> results in speedups in
certain cases.

1 Introduction

Over the years there were several complaints about
not being able to tick exit in Gforth. In July 2015
we decided to do something about this. In combi-
nation with other innovations, this led to a number
of further changes in the implementation, and even-
tually to a generalization of does>.

The story of these changes and the other imple-
mentation issues they touch on should be interest-
ing and instructive for readers interested in Forth
implementation techniques, and is told in Section 2.
These changes were not performed for performance
reasons, but performance should not suffer from
them. In Section 3 we evaluate the performance im-
pact with microbenchmarks. Section 4 discusses an
implementation caveat for locals cleanup on native-
code compilers.

2 The Story

While Forth-94 and Forth-2012 systems are allowed
to implement exit as an immediate compile-only
word, we have received a number of complaints
about Gforth implementing exit this way, so we
decided to change the implementation of exit into
a non-immediate word in July 2015.

∗Correspondence Address: Institut für Computer-

sprachen, Technische Universität Wien, Argentinierstraße 8,

A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

2.1 Locals cleanup

Now we had implemented exit as immediate
compile-only word for a good reason: When
exiting a definition with locals, we need to remove
the locals before exiting. In the following contrived
example:

: foo { a } exit ;

the original immediate exit compiles lp+ ;s,
where lp+ increments the locals-stack pointer lp to
remove a from the locals stack and ;s returns to
the caller of foo.

Our new, non-immediate exit is just an alias for
;s, so we have to clean up the locals in some other
way. We took the established approach of pushing
additional data and an additional return address on
the return stack. In our case the additional data is
the depth of the locals stack at the start of the colon
definition, and the return address points to a code
fragment equivalent to

r> lp! ;s

except that we have a single primitive
lp-trampoline that does what this sequence
would do; the (sub-optimal) AMD64 code1 for this
primitive is:

mov %rp,%rax

mov 0x8(%rp),%ip

lea 0x10(%rp),%rp

mov (%rax),%lp

add $0x8,%ip

mov -0x8(%ip),%rdx

mov %rdx,%rax

jmpq *%rax

So, an exit inside a colon definition with lo-
cals jumps to this code fragment, sets lp to its old
value, and finally returns to the calling definition
(see Fig. 1).

This solution for the clean-up problem poses
the problem of where these additional return-stack

1Register names for virtual machine registers are re-

placed, as follows: ip=rbx, rp=r13, lp=rbp, sp=r15,

tos=r14, cfa=rcx.

Ertl From exit to set-does>

: x { a b c } ... ;
: y x [’] x execute ;

new

return
stack

y
docol

call-loc

lit

execute
;s

head
code field
body

x
docolloc

>l
>l
>l
.
.
.

unlocal
;s

head
code field
body

locals
stack

a
b
c

lp-tramp

rp

lp

old

return
stack

y
docol
call

lit

execute
;s

head
code field
body

x
docol

>l
>l
>l
.
.
.

lp+!#
24
;s

head
code field
body

locals
stack

a
b
c

rp

lp

exit

Figure 1: Old and new implementation of cleaning up locals; the state of the return and locals stack
corresponds to execution being at the red arrows in the code.

items are pushed. A classical solution would be
to do it at the first definition of locals. However,
in Gforth, locals can be first defined inside control
structures, e.g.:

: foo ?do { a } i loop ;

Either we push the return-stack items before the
control structure, or we have to pop them off the
return stack at the end of the loop2.

We decided to push them before the control struc-
ture, on entering the colon definition, by changing
the code field to point to a new routine docolloc

instead of the ordinary docol routine. Docolloc

peforms all the work that docol does, but in addi-
tion pushes the current value of lp and the address
of the code fragment pointing to lp-trampoline on
the return stack. Here you see both routines for the
AMD64:

2In general, whenever the locals stack becomes empty.

docol docolloc

mov %rp,%rax mov %rp,%rax

mov %ip,%rdx mov %ip,%rdx

lea -0x8(%rp),%rp lea -0x18(%rp),%rp

mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)

lea 0x80(%rsp),%rdx

lea 0x18(%cfa),%ip lea 0x18(%cfa),%ip

mov %lp,-0x10(%rax)

mov %rdx,-0x18(%rax)

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx

mov %rdx,%rax mov %rdx,%rax

jmpq *%rax jmpq *%rax

Gforth uses primitive-centric threaded code
[Ert02], so the routines docol and docolloc are
executed only when the word is executed or called
through a deferred word. When calling the word
directly from a colon definition (about 99% of
the calls), Gforth uses the primitives call and
call-loc that take (the body address of) the called
definition from the next cell in the threaded-code:

Ertl From exit to set-does>

call call-loc

mov %ip,%rdx mov %ip,%rdx

mov (%ip),%ip mov (%ip),%ip

mov %rp,%rax mov %rp,%rax

add $0x8,%rdx add $0x8,%rdx

lea -0x8(%rp),%rp lea -0x18(%rp),%rp

mov %lp,-0x10(%rax)

mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)

lea 0x80(%rsp),%rdx

add $0x8,%ip add $0x8,%ip

mov %rdx,-0x18(%rax)

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx

mov %rdx,%rax mov %rdx,%rax

jmpq *%rax jmpq *%rax

Gforth has an intelligent compile, that produces
the appropriate primitive for the word, and it gen-
erates call for docol words, and call-loc for
docolloc words, plus (in the next cell) the body
address of the colon definition.

Some Forth programmers like to use code like
r> drop exit to return to the next-but-one sur-
rounding definition instead of the next one. If the
next one uses locals, the programmer has to force
a cleanup, and we provide the word unlocal to
achieve this. So if the calling word uses locals,
the sequence above has to be modified to r> drop

unlocal exit. Unlocal just removes the addi-
tional return stack data and removes the locals from
the locals stack:

unlocal unlocal-;s

mov %rp,%rax mov 0x10(%rp),%ip

lea 0x10(%rp),%rp mov 0x8(%rp),%lp

add $0x8,%ip add $0x18,%rp

mov 0x8(%rax),%lp add $0x8,%ip

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx

mov %rdx,%rax mov %rdx,%rax

jmpq *%rax jmpq *%rax

The sequence unlocal ;s is more efficient than
;s jumping to lp-trampoline (see Section 3), es-
pecially if we combine the sequence into a superin-
struction unlocal-;s. So, if the current definition
contains locals, and if we know that exit returns
from the current definition, we can compile exit

into unlocal ;s as an optimization (through the
intelligent compile,). If the definition performs
return-address manipulation (so that the exit may
return from a different definition), it first has to
clean up the locals with unlocal. So, if the word
contains unlocal, we disable this optimization.

2.2 does>

In addition to colon definitions, words defined with
does> also call code that may define locals. We will
use the following running example:

: const create , does> @ ;
5 const b
: c b ;

newold
head
code field
body

const
docol
call

create
call

,
call

(does)
@
;s

b
dodoes

5

c
docol

does-exec

;s

head

code field

body

head
code field
body

const
docol
call

create
call

,
branch

docol
@
;s
lit

call
set-does>

;s

b
dodoesxt

5

head

code field

body

head
code field
body

c
docol

lit

call

;s

head
code field
body

Figure 2: Old and new implementation of does>

: const create , does> (A) @ ;

5 const B

When running B, the code A after does> is called
with either the primitive does-exec (when B is
compile,d) or with the code-field routine dodoes

(when B is executed).
Now the does part may also define locals and

contain exit, so we have to push the additional stuff
on the return stack in these cases, too. Our first
idea was to add dodoesloc and does-exec-loc,
but that would have resulted in complications, so
we soon came up with the following, better idea
(see Fig. 2):

The code after does> (A in our example) is a full-
blown colon definition with its own code field and
execution token. Instead of using dodoes, which
(after pushing the body address of B) calls the
code at A as call does, we have dodoesxt, which
executes the xt of A. Here is the code for dodoes,
compared to dodoesxt followed by docol:

Ertl From exit to set-does>

dodoes dodoesxt, docol

mov %tos,(%sp) mov %tos,(%sp)

lea 0x10(%cfa),%tos lea 0x10(%cfa),%tos

mov %ip,%rdx

mov 0x8(%cfa),%ip mov 0x8(%cfa),%cfa

sub $0x8,%sp sub $0x8,%sp

mov (%cfa),%rdx

mov %rdx,%rax

jmpq *%rax

mov %rp,%rax mov %rp,%rax

mov %ip,%rdx

lea -0x8(%rp),%rp lea -0x8(%rp),%rp

lea 0x18(%cfa),%ip

mov %rdx,-0x8(%rax) mov %rdx,-0x8(%rax)

add $0x8,%ip

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx

mov %rdx,%rax mov %rdx,%rax

jmpq *%rax jmpq *%rax

The advantage for our locals problem is that no
additional work is needed: the first locals definition
in A changes the A colon definition into a docolloc

colon definition, and there is no need to change the
dodoesxt.

Again, dodoesxt is only used when B is executed
or called through a deferred word. When we
compile, B, the intelligent compile, compiles
the body address of B as literal, followed by
compile,ing the xt of A, resulting in call or
call-loc followed by the body address of A. We
have added static superinstructions for lit call

and lit call-loc to eliminate the overhead of
executing two primitives instead of one. Here is
the code for does-exec compared to that for the
lit-call superinstruction:

does-exec lit-call

mov %tos,(%sp) mov %tos,(%sp)

mov %ip,%rax

mov (%ip),%tos mov (%ip),%tos

mov %ip,%rdx mov 0x10(%ip),%ip

mov %rp,%rax mov %rp,%rdx

add $0x8,%rdx add $0x18,%rax

lea -0x8(%rp),%rp lea -0x8(%rp),%rp

sub $0x8,%sp sub $0x8,%sp

mov 0x8(%tos),%ip

mov %rdx,-0x8(%rax) mov %rax,-0x8(%rdx)

add $0x10,%tos

add $0x8,%ip add $0x8,%ip

mov -0x8(%ip),%rdx mov -0x8(%ip),%rdx

mov %rdx,%rax mov %rdx,%rax

jmpq *%rax jmpq *%rax

Given that our does> is now based on taking an
xt, we can make another interface to this function-
ality available: set-does> (xt --) changes the
last defined word to first push its body address,
then execute the xt. There are two benefits to
set-does>:

First, when there is only one word between does>

and ;, one can pass that word (instead of a colon
definition containing just that word) to set-does>,
saving one call-exit pair at run-time. E.g.:

: const create , [’] @ set-does> ;

5 const B

When compiling B, this produces lit @ (without
additional effort), and saves a call and ;s around
the @ at run-time.

The other advantage is that set-does> can be
used more flexibly than does>, e.g., inside control
structures; e.g, struct.fs contains

: dofield (--)

does> (name execution: addr1 -- addr2)

@ + ;

: dozerofield (--)

immediate

does> (name execution: --)

drop ;

: field (align1 off1 align size "name"

-- align2 offset2)

2 pick >r create-field r> if \ off1<>0

dofield

else

dozerofield

then ;

In the usual case, a field should perform the
does> part of dofield, but if the field has off-
set 0, then it should not compile anything, so it is
defined as immediate word that does nothing (not
even 0 +, to avoid stack underflow at compile time).
The properties of does> force this factoring, which
I don’t consider particularly conducive to under-
standing. With set-does>, we can define this as

: field (align1 off1 align size "name"

-- align2 offset2)

2 pick >r create-field r> if \ off1<>0

[: @ + ;] set-does>

else

[: ;] set-does> immediate

then ;

Another use case of set-does> is optimization:

: const (n "name" --)

\ you must not change the body of "name"

create ,

[’] @ set-does>

[: >body @ postpone literal ;] set-opt ;

set-opt (xt --) sets what happens when the
created word is compile,d (it is the basis for the
intelligent compile,). In this case it optimizes the

Ertl From exit to set-does>

word such that, instead of looking up the value at
run-time, the lookup happens at compile, time and
the resulting value is compiled as literal.

This can only happen after does> or set-does>,
because does> and set-does> change what the
word does, and that also overwrites any earlier
set-opt. It is possible to implement the above with
does>, but, like the field example, it would be
more cumbersome.

Continuing onwards from set-does>, we
could also define a defining word does-create

(xt --) that combines the functions of create

and set-does, used as follows:

: const (n "name" --)

[’] @ does-create , ;

The advantage of does-create would be that
the defined word gets the final code field right
from the start, instead of being first created with a
dovar code field, and later overwritten with dodoes

and (in our example) A; the current two-step ap-
proach leads to problems on Forth systems com-
piling to flash memory; while Forth implementors
have found workarounds for these problems, it’s
better to provide an interface that does not need
such workarounds. Does-create is not (yet?) im-
plemented in Gforth.

Note that, while the new does> implementa-
tion makes the new locals-cleanup implementation
simpler, the reverse is not true: You can do the
new does> implementation (and set-does> and
does-create) just fine in combination with the old
style of locals-cleanup implementation.

3 Performance Impact

For a realistic evaluation of performance we would
need a number of application benchmarks that
spend a lot of time calling to and returning from
definitions containing locals, and application bench-
marks performing lots of calls to does>-defined
words.

Unfortunately, we are not aware of benchmarks
with these characteristics, so we use microbench-
marks here to evaluate the performance. Real ap-
plications may see much smaller performance dif-
ferences than we see in these microbenchmarks.

Fig. 3 shows the results, and they will be ex-
plained in the following.

We call ten different words, with results from the
old implementation shown in reddish colours and
new implementations in bluish colours:

baseline An empty colon definition (without lo-
cals) that gives us a baseline.

0-locals A colon definition that is empty ex-
cept that it contains the overhead of clean-
ing up locals (plus, for the new implementa-
tion, putting the additional stuff on the re-
turn stack). We measure three ways to clean
up the locals: old is the old way of cleaning
up locals (using lp+!#); lp-trampoline is the
new implementation without using unlocal,
so ;s jumps to lp-trampoline; unlocal is the
optimized variant of the new implementation
that performs unlocal before ;s, thus skip-
ping lp-trampoline. Both new versions incur
the overhead of pushing the additional data on
the return stack with call-loc or docolloc.

3x0-locals If there are several words with locals,
our new implementation (without unlocal)
calls the same instance of lp-trampoline from
each of these words, and the NEXT inside
lp-trampoline then jumps to different code;
this can lead to mispredicting this branch (de-
pending on the indirect branch predictor of
the CPU). 0-locals just has one such word
and should not have problems with the branch
predictor. For contrast, we also have 3x0-
locals, where we have three instances of a
word like the one used in 0-locals; for the lp-
trampoline variant, this leads to a mispredicted
NEXT in lp-trampoline on CPUs that use a
branch target buffer (BTB) for predicting in-
direct branches. The number of calls and the
number of loops is the same, so there should
be no other differences from 0-local (except for
the execute variants, where there is more over-
head for handling three xts instead of one, and
additional mispredictions, see below).

does A does>-defined word that just drops the ad-
dress that dodoes (or its replacement) pushes
on the stack. There are no locals in this set of
words (the new does> implementation can also
be implemented without changing the locals,
and the performance should be independent).
Here we also have three variants: the old one
using does-exec and dodoes; the new one gen-
erating lit call (as a superinstruction) and
dodoesxt; and finally a variant defined with
[’] drop set-does> that saves the call and
return overhead.

We call these words in a loop in two ways: We
compile, them into the loop, or we call them in a
loop with dup execute (a little more complicated
for the three-copy-variant). We also measure an
empty loop and subtract its instructions, cycles,
and branch mispredictions from the results to get
an approximation of the pure cost of executing just
that one word.

Ertl From exit to set-does>

: baseline ;
: 0-locals { } ; old lp-trampoline unlocal
: 3x0-locals { } ; : y { } ; : z { } ; old lp-trampoline unlocal
does> drop ; old new [’] drop set-does>

cycles from mispredictions (K8, Haswell)

compile, execute compile, execute compile, execute compile, execute
AMD64 instructions Haswell cycles K8 cycles ARM Cortex-A9 cycles

0

10

20

30

40

50

60

Figure 3: Instructions and cycles for performing a word (one invocation)

We used three different machines in our experi-
ments: A Core i7-4790K (Haswell) based machine,
an older (2005) Athlon 64 X2 4400+ (K8), and an
ARM Cortex-A9 based PandaBoard ES. All ma-
chines ran Linux. We used the same binaries for the
two machines with AMD64 architecture (Haswell,
K8). On the Haswell and K8 we measured instruc-
tions, cycles, and branch mispredictions using per-
formance counters; on the Cortex-A9 we measured
CPU time with time, and computed cycles from
that.

3.1 Locals performance

The first set of columns shows the AMD64 instruc-
tions executed when running the words. We see
that, in the old implementation, cleaning up the
locals stack takes two additional instructions over
the locals-less baseline, and the lp-trampoline im-
plementation takes 9 more instructions than the old
one; the unlocal implementation costs only 2 in-
structions more than the old implementation. The
same differences are seen in both the compile,d
variant and in the executed variant, but the base-

line is higher for the executed variant.

These differences in instruction count are not re-
flected in the Haswell cycles; this processor appar-
ently manages to execute most of the additional
instructions in parallel to the instructions that it
already performs in the baseline. But why can
it not extract more parallelism from the baseline?
There is probably a data-dependence chain having
to do with the Forth VM instruction pointer (ip).3

In more realistic code there is more code inside
the loops and definitions, so ip-based dependency
chains probably do not usually determine perfor-
mance in realistic code. Therefore, the instructions
counts may be a better indicator of the performance
impact of our changes on real code than the Haswell
cycle counts.

The Haswell has a very good branch predictor
[RSS15], so branch mispredictions don’t play a sig-
nificant role on Haswell, even for 3x0-locals.

The K8 also mostly shows few performance dif-
ferences between the implementations of the locals,

3Save ip to the return stack, load it back, load the tar-

get of the (loop) primitive, and perform a few additions in

between.

Ertl From exit to set-does>

except that there are big differences in some cases
coming from branch mispredictions (the K8 predicts
indirect branches with a BTB). We estimate 20 cy-
cles penalty per misprediction, and have coloured
the corresponding part of the bars in black; com-
paring the non-black part of the 3x0-locals bars
with the 0-locals bars, this estimate is about right.
The compile,d 3x0-locals benchmark causes one
misprediction with the lp-trampoline variant, from
lp-trampoline, as discussed above. Optimizing
the new locals implementation with unlocal elim-
inated this slowdown.

The executed 3x0-locals benchmark has an ad-
ditional branch misprediction, in docol/docolloc,
with all implementations.

The ARM Cortex-A9 timing results seem to be
influenced by instructions counts (which are proba-
bly be similar to the AMD64 counts), and (compar-
ing 0-locals with 3x0-locals) also by mispredictions
in a way similar to the K8 results, so the Cortex-
A9 probably also has a BTB. Unfortunately, we do
not have performance counter results for this CPU,
so we cannot present misprediction results (nor in-
struction counts).

Concerning the difference between the old and
the new locals cleanup implementation, we see
that, on the Cortex-A9, lp-trampoline is quite a
bit of slower than the old implementation, but the
unlocal implementation has similar performance
as the old implementation.

3.2 DOES> performance

When compile,d, the new implementation of the
does>-defined word uses one instruction less (with
the lit call superinstruction) than the old imple-
mentation. There are also corresponding small dif-
ferences in the cycles on the K8 and Cortex-A9; on
the Haswell the new implementation takes 0.5 cy-
cles more than the old one.

When executed, the new implementation takes
three additional instructions; on the K8 and Cortex-
A9 this is also reflected in the number of cycles,
while there is little difference on the Haswell.

The [’] drop set-does> variant saves 15 in-
structions for the compile,d version and 8 instruc-
tions for the executed one compared to the old
implementation. It also gives good speedups on all
CPUs; this time this even includes the Haswell, be-
cause this variant shortens the dependence chain.

4 Native-code Caveats

If implemented näıvely, the additional return ad-
dress can have a high cost on native-code systems
that (unlike Gforth) use the architecture’s return
instruction for implementing exit. Return instruc-

tions on modern CPUs have a special branch predic-
tor that is called return stack (yes, the same name
as the Forth return stack, and it also contains re-
turn addresses, but it’s not programmer-visible). A
return to the address of the corresponding call nor-
mally predicts correctly, and a return to a differ-
ent address causes a misprediction (about 20 cycles
penalty on a modern CPU). Therefore each return
address should be produced by a call instruction,
and not manipulated. One way to achieve this in a
native-code system is to push the additional (Forth)
return stack items as follows:

push data needed for cleaning up locals

call rest-of-definition

clean up locals

ret

rest-of-definition:

...

ret

5 Conclusion

If we require that [’] exit execute works, we
have to clean up locals in a compatible way. The
popular technique of pushing extra data and the
return address of a cleanup code fragment on the
stack works, but has some performance caveats.
Fortunately, we achieve performance similar to the
old implementation in most cases by optimizing
exit to perform unlocal ;s.

The new locals cleanup implementation also led
to a new does> implementation (but the new does>

implementation can be implemented without the
new locals cleanup). The performance for code us-
ing does> is comparable to the old implementation;
but the new implementation also makes it possible
to use set-does>, which allows more flexibility in
structuring words, and may save a call-return pair,
increasing performance.

References

[Ert02] M. Anton Ertl. Threaded code vari-
ations and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002.

[RSS15] Erven Rohou, Bharath Narasimha Swamy,
and André Seznec. Branch prediction and
the performance of interpreters — don’t
trust folklore. In Code Generation and Op-
timization (CGO), 2015.

