
Minimal Forth

Peter Knaggs Paul E. Bennett

September 27, 2015

Now that the Forth 2012 document has been pub-
lished, it is time to review the direction on the
standards effort. Both the ’94 standard and the
’12 document are directed at the professional
Forth programmer. Providing a set of expecta-
tions that allows both the programmer and the
program to be portable between different standard
systems.

We argue that it is time to consider the niche mar-
ket where Forth is generally used, that is em-
bedded control systems. Such systems are of-
ten small will little memory and no or limited
user Input/Output. The Core word set includes
many words that are not relevant to such systems
(around 100 words). Such embedded control sys-
tems require a small number of words.

However, even a minimal Forth system would
tend to provide a full implementation of both the
Core and Core-Ext word sets.

The current standard has separated into several
sections within the same document, some of the
words that one would expect in a minimal system
are spread across several different word-sets. To
this end, we would like to start a discussion over
what would be the minimal word-set we would
expect of any Forth. The aims of this discussion
is two-fold:

First, from a professional standpoint for those de-
veloping critical controls, having a small system
footprint that can be fully verified and validated is
beneficial. The workload in knowing you have a
good basis from which to springboard the applica-
tion is reasonably simple as it will not take a long
time to perform certification confirmation efforts.
You can only certify from a know surface (sur-
faces are the interface between lower level and

upper level words).

Second, from an educational standpoint, a Forth
with 400+ words is rather daunting for a those
wanting to learn a new language. Even know-
ing that they do not have to do so all at once
still leaves many confused. Therefore, a less clut-
tered dictionary at the start will help the begin-
ners learning process. This will be especially the
case for someone who has never programmed be-
fore. Table 1 is a comparison of items to lean for
different languages. It shows Forth as being well
out it front with around 100 more items to lean
than other languages, and that assumes the stu-
dent only looks at the core word set.

Both of these aims could be met with a mini-
mal Forth word set provided there is a reasonable
number of useful words to aid in application cre-
ation and debugging. The only question then be-
comes what words and how many?

Frank Sergeant proposed a Forth with just 3 words
(XC@, XC!, and XCALL). However, that is only
useful in umbilical development and probably
only by those who are already well experienced
with creating such systems. Table 1 shows us
that keeping a minimal word set to around 70–
80 words would be acceptable from an educa-
tional standpoint. Staying away from desk-top
aspects, and just sticking to controllers, it is ex-
pected around 50 would be reasonable for use on
smaller controllers and provide a capable enough
basis to grow control applications. At this end
of consideration we are dealing with controllers
the likes of the MSP430 and low end ARM sys-
tems used for embedded control applications and
robotics. Such systems do not tend to have disk or
graphics screens but will usually have a low-tech

1

Langauge Words keywords operators functions
Forth ’79 129
Forth ’83 131
Forth ’12 182 133 49 450

(core) (core-ext) (overall)
Minimal Forth 69
C 96 32 39 25
Java 85 50 39 —
C# 116 77 39 —
Ada 85 73 12 —

Table 1: Number of “words” in different languages

terminal communications capability and enough
resource to run a minimal Forth system.

Proposal

We propose the standard be reduced to a basic de-
scription of the abstract machine that represents
the language, complete with a limited minimal
word set. The composition of this word set is a
topic of debate, and appendix A gives a list of 69
words that we propose as a starting point for that
debate.

Such a language description would allow people
to grasp the language without being daunted by
the size of the language. It would also allow for a
possible formal description of the language, lead-
ing to certified compilers, and thus confidence in
the program code.

In the description of the abstract machine it may
be useful to allow for a number of more advanced
topics. However, it would not be necessary to in-
clude words to access these functions in the min-
imal word set. Such topics could include:

• exception handling

• interpretation

• Multitasking/threading

The words necessary to access these features can
be given in a number of supplements to the base
description. These supplements may extend the

abstract machine, or simply provide additional
word sets.

A number of proposed supplements include, but
are by no means limited to, the following:

• IEEE Floating Point

• String

• Double numbers

• Local variables

• Heap / User memory

• File access

• Networking / Sockets

• Internationalisation

• Multitasking (cooperate)

• Multitasking (pre-emptive)

• Security (cryptography)

• Exceptions

2

A Proposed minimal word set

1 Memory Access
6.1.0010 ! store
6.1.0150 , comma
6.1.0650 @ fetch
6.1.0705 ALIGN

6.1.0706 ALIGNED

6.1.0880 CELL+ cell-plus
6.1.0890 CELLS

6.1.0850 C! c-store
6.1.0860 C, c-comma
6.1.0870 C@ c-fetch

CALIGN c-allign
CALIGNED c-alligned

6.1.0897 CHAR+ char-plus
6.1.0898 CHARS chars

2 Arithmetic
6.1.0120 + plus
6.1.0090 * star
6.1.0320 2* two-star
6.1.0110 */MOD star-slash-mod

6.1.0160 - minus
6.1.0230 / slash
6.1.0330 2/ two-slash
6.1.1890 MOD

3 Logic
6.1.0270 0= zero-equals
6.1.0480 < less-than
6.1.0720 AND

6.1.1720 INVERT

6.2.2298 TRUE

6.1.1805 LSHIFT l-shift

6.1.0530 = equals
6.1.0540 > greater-than
6.1.1980 OR

6.1.2490 XOR x-or
6.2.1485 FALSE

6.1.2162 RSHIFT r-shift

4 Stack
6.1.1290 DUP dupe
6.1.2260 SWAP

6.1.0580 >R to-r
6.1.2070 R@ r-fetch

6.1.1260 DROP

6.1.1990 OVER

6.1.2060 R> r-from
6.1.2160 ROT rote

5 Flow Control
6.1.1700 IF

6.1.2270 THEN

6.1.2430 WHILE

6.1.2140 REPEAT

6.1.1240 DO

6.1.1680 I

6.1.0070 ’ tick

6.1.1310 ELSE

6.1.0760 BEGIN

6.2.0700 AGAIN

6.1.2390 UNTIL

6.1.1800 LOOP

6.1.1730 J

6.1.1370 EXECUTE

6 Definitions
6.1.0450 : colon
6.1.0950 CONSTANT

6.1.1000 CREATE

6.1.0460 ; semicolon
6.1.2410 VARIABLE

6.1.1250 DOES> does

7 Device
6.1.1750 KEY

6.1.1320 EMIT

10.6.1.1755 KEY? key-question
6.1.0990 CR c-r

8 Tools
6.1.0080 (paren
15.6.1.0220 .S dot-s

6.2.2535 \ backslash

3

