
EuroForth 2015

A Forth Programmer Jumps Into The Python Pit

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
4-5 Great Western Court
Ross-on-Wye
Herefordshire
HR9 7XP UK
Tel. +44 1989 768080
Email njn@micross.co.uk

Abstract
A unique opportunity arose to compare two similar applications on closely related
platforms, one written in Python and one written in Forth.

1. Introduction
In the past two years, the economics of display devices in industrial automation has
been transformed by the introduction of very low cost micro-PCs. These can be
regarded as circuit boards with an RJ45 Ethernet connector at one end, and an HDMI
digital video output at the other end. In our industry, several applications were
immediately suggested. Initially, no Forth compiler was then available, so the first
application was written using Python. Shortly afterwards, a version of Forth became
usable, and therefore a second, similar application was written using Forth, giving an
excellent means of comparing the efficiency of constructing new applications in each
language.

2. Economics
An industrial display application (excludes screen etc. common to both solutions)
BUYING IN COST (Not sales price)
a) Before Micro-PCs

Industrial fanless PC, including disc & PSU £475
PC mounting brackets £23
Operating system (Windows OEM license) £49
Replication time (approx. 1 engineer-hour) £45
TOTAL £592

b) Using Micro-PC
Micro-PC £26
Steel protective enclosure £11
PSU £7
SD card £10
Replication time (approx. 5 engineer-minutes) £4
TOTAL £58

3. Hardware overview
There is a wide variety of micro-PCs now available, all with similar function. By far
the best-selling of these devices is known as the "Raspberry Pi". It consists of a
circuit card 85mm x 56mm with a highly integrated ARM-based CPU, memory, and a
variety of ports. The "disc" consists of a plug-in micro-SD card.

4. Operating System
The recommended operating system for the Raspberry Pi is a version of Linux which
is very similar to Debian. However, when used in industrial applications, this has a
very serious drawback, in common with many other versions of Linux. In the event
of an unplanned power interruption, there is a high chance of corrupting the "disc". If
this happens in a conventional implementation, with a keyboard and mouse, there are
repair programs that can be run. However, in a standalone display only application, it
is not practical to have to repair the disc on a regular basis. To overcome this
limitation, we have constructed our own implementation of Linux that makes the SD
card "read-only". The systems are now highly reliable and maintenance free.
Development work takes place on a standard Linux, and on completion of
development, is copied onto the reliable Linux system, which can be switched
between read-only and read-write modes.

5. Application overview
Typical applications in our industry are for the purpose of displaying dynamic data to
a shop floor operator. The display device is in constant communication with a central
control PC, which sends out information to be displayed, typically every 0.5s, using
UDP messages over the Ethernet network.

In the example shown on the previous page, the display unit shows the status of two
healthcare laundry sorting stations. The customer, category, weight and piece count
are shown. The category is illustrated for quick identification. Indicator beacons show
the operator clearly when to sort items. This application was implemented using
Python.

In the example shown below, the display unit shows loads of towels approaching a
towel folder feed station. The operator can clearly see the classification of the towels
in the overhead rail bag approaching, on an intermediate belt conveyor, and in the
feed bin. The photograph also shows the Micro-PC protective enclosure, just below
the screen. This application was implemented using Forth.

6. Program structure
The structure of both programs is exactly the same. On startup, the graphical user
interface and the UDP port are initialised. A thread is started to process the
communications, and a GUI timer is started to keep the graphics up to date.
The communications thread accepts UDP messages from the central control PC,
indicates to the GUI that new data is available, and replies to the central control PC.
The timer compares each item of display data, and updates each part of the display as
required. It also displays error information if no new data has been received recently.

7. The Python Experience

Although I have very extensive
experience of programming in Forth,
and quite wide experience of several
other languages, this was my first
foray into Python. In addition, I had
not worked very much with Linux
before. So there was quite a big
learning process.

a) Ease of learning
Python is often suggested as a
beginner's language, and indeed it is
possible to write elementary programs
after only a few hours study. However,
some of the concepts of the language
are extremely subtle, and in order to
produce a serious and reliable
commercial program, a long period of
study is required. It is very
unfortunate that there is currently no
good book available which covers the
latest version of the language. The
online documentation is complete and
well organised but can be somewhat
terse.

8. The Forth Experience

Being already very familiar with
Forth, I had only to master a new
version, and the interface with Linux.

a) Ease of learning
Like Python it is possible to write
elementary programs after only a few
hours study. However, equally, in
order to produce a serious and reliable
commercial program, a long period of
study is required. In this case, a good
and up to date book is readily
available.

b) Dialects and variations
A Forth programmer will be shocked
to learn that the Python language is
highly regulated. There is essentially
only one version of the language that
is current at any time. Language
development follows a formal
process, and the originator of the
language is regarded as a "Benevolent
Dictator For Life" and is assumed to
have a power of veto.

c) Programming paradigm
Although Python bills itself as having
multiple programming paradigms, in
practice you are compelled to use an
object-oriented model, because all of
the really useful library functions
assume this.

d) Standard libraries
The best recommendation for the
Python language is the very
comprehensive standard library
support, covering almost every
eventuality. Python bills itself as
"batteries included". In practice, there
are some important libraries that have
not been updated to conform to the
last major release, which came out in
2008.

e) Graphical user interface
Python strongly encourages the use of
the TCL/Tkinter GUI. This is
extremely unfortunate because it lacks
the flexibility of GUIs that are more
regularly maintained.

b) Dialects and variations
A Python programmer will be shocked
to learn that the Forth language is
unregulated to the point of anarchy.
There are as many versions of the
language as there are programmers.
Any "Benevolent Dictator" would be
instantly overthrown. From here
downwards, this paper will describe
the VFX Forth for Linux by MPE.

c) Programming paradigm
Forth is its own paradigm.

d) Standard libraries
VFX Forth comes with a fair range of
extensions covering many frequently
needed functions. It is in the nature of
Forth that these are regarded as
suggestions only, and are frequently
modified to suit a particular
application.

e) Graphical user interface
VFX Forth provides elementary
wrappers for the GTK+ GUI.
Unfortunately the wrappers support
only the older principal version 2 of
GTK+, rather than the current
principal version 3. In Forth, it is not
difficult to create upgraded wrappers
using the older code as a model.
GTK+ is highly complete, very
flexible, regularly updated, and far
superior in every respect to the
Tkinter GUI preferred by Python.

f) Style and compactness
Python is the only language I have
come across that approaches the
compactness of Forth. In my view this
is a very important feature of any
language because it enables complete
functions to be read in one glance,
which greatly assists in bug detection.
But, this compactness is achieved by
the use of indentation to delimit
blocks. This prevents free formatting
which we use regularly to improve
code readability. In addition, multiple
statements per line are discouraged.

g) Readability
All languages can be used to produce
more, or less, readable code. But
Python programs when well written
are definitely easier to read than most
other languages.

h) Community support
Python has a very large user base, and
as one might expect there is a variety
of community forums. In practice
these tend to be clogged with
elementary queries from beginner
programmers, and it can be hard to get
good advice on the very subtle
difficulties of the language.

f) Style and compactness
Forth is still the most compact
language to code, primarily due to its
low structuring overhead and
concatenative programming model.

g) Readability
In a language that contains such "bad"
key words as -ROT and PICK, it is of
course easy to write obfuscated code
in Forth. However, with careful
naming, use of Forth's completely free
formatting, and careful structuring,
Forth code can still be the best
language for readability and
maintainability.

h) Community support
Forth has a rather small active base of
practising commercial programmers,
and therefore the chance of finding
anyone else working in the same
dialect and in a similar application
area is slight. On the other hand, there
is the opportunity (possibly after
liquid bribery) to consult the actual
author of the compiler.

i) Difficulties
In addition to the problems with the
obsolete default GUI, and the out of
date libraries, we encountered the
following problems with Python.
i. Scope of variables
There is an assumption in Python that
all variables are as local as possible.
Python is extremely averse to global
variables, and for anyone used to the
opposite assumption, this leads to
frequent misunderstandings. In fact
the whole subject of scoping of
variables is so tricky in Python that it
fills the community forums with
obscure problems.
ii. Structures
The whole approach to structures in
Python is completely different from
that in C or Forth. The Python
approach is really quite clever, but it
is also quite complex and hard for a
beginner to grasp. This makes it very
difficult when writing a
communications protocol, in which
the data is normally defined as a C-
like structure.
iii. Garbage collection
This is the biggest weakness of
Python, and one which occupies
reams of forum discussion about the
difficulty of debugging. Extreme
coding care is needed to avoid either
memory leaks (caused by uncollected
garbage) or miraculously dereferenced
variables (due to over-zealous
binmen).

i) Difficulties
In addition to the problems with the
obsolete GUI version, we encountered
the following problems with VFX
Forth for Linux.
i. No initial support for floating point
Unfortunately this meant that for the
first application, it was not possible to
use Cairo for drawing. The floating
point is now working and will be used
on the next application.
ii. Difficulties with cache flushing in
Linux
This means that perfectly correct code
will sometimes fail to compile. It is a
temporary irritation only, as a second
(sometimes third) compilation attempt
will succeed.

9. Equivalent codes examples
The communications thread, with almost identical function in both applications:
a) Python

def coms(app):
 pcsock=socket_init()
 while apprunning:
 if socket_ready(pcsock):
 rbytes, raddress = pcsock.recvfrom(2000)
 app.mq.put_nowait(rbytes)
 sbytes = struct.pack('B', 0)
 pcsock.sendto(sbytes, raddress)
 time.sleep(0.05)

b) Forth

: COMACTION (---) \ Communications task action
 SOCKET-INIT \ Initialise socket
 NEWFLAG OFF \ Clear new data available
 BEGIN
 SOCKET-READY IF \ Message ready
 SOCKET-GETPACKET LFPC4TX1 = IF \ Correct message length
 SOCKET-PROCESS \ Process received packet
 SOCKET-TRANSMIT \ Reply
 THEN
 THEN
 50 ms PAUSE
 AGAIN
;

9. Conclusion
Each language has both advantages and disadvantages. Full mastery of either
language could only be achieved by constant practice. Since all our principal
applications are written in Forth, we will continue to use it for future applications in
Linux on Micro-PCs.

NJN
September 2015

