
Hardware multitasking within a softcore CPU

Ulrich Ho�mann (FH Wedel University of Applied Sciences), Andrew Read

June 2015

uh@fh-wedel.de, andrew81244@outlook.com

Abstract

We have developed and implemented hardware multitasking support for a softcore CPU.

The N.I.G.E. Machine's softcore CPU is an FPGA-based 32 bit stack machine optimized for

running the FORTH programming language. The virtualization model that we have developed

provides at least 32 independent CPU virtual machines within a single hardware instance. A

full task switch takes place in only two clock cycles, the same duration as a branch or jump

instruction. We have use the facility to provide a multitasking platform within the N.I.G.E.

Machine's FORTH environment. Both cooperative multitasking, by means of the PAUSE

instruction, and pre-emptive multitasking are supported.

1 Introduction

The N.I.G.E. Machine is a complete microcomputer system implemented on an FPGA development
board [1]. It comprises a 32 bit softcore processor optimized for the FORTH programming language,
a set of peripheral hardware modules, and FORTH system software (�gure 1). The N.I.G.E.
Machine was presented at EuroFORTH in 2012, 2013 and 2014 [2, 3, 4]. The N.I.G.E. Machine
follows in the footsteps of a number of signi�cant FORTH processors [6, 7, 8, 9, 10, 11], most
especially the J-1 [6]. The N.I.G.E. Machine design �les are are freely available with an open
source license [5].

Most embedded systems, including those that control scienti�c instruments (such as the Open
Network Forth system that controls the Munich particle accelerator [25]), require some level of
multitasking. In this paper we explain how we have implemented multitasking in a novel manner
on the N.I.G.E. Machine at the hardware level.

The development of the N.I.G.E. Machine has followed a path of utilizing FPGA hardware to
enhance the performance and features of a softcore CPU. The �rst version of the N.I.G.E. Machine,
presented at EuroFORTH 2012 [2], demonstrated the integration of a softcore CPU with a full set
of peripheral modules (VGA adapter, DMA controller, I/O ports) within the same FPGA to create
a standalone microcomputer system intended for the rapid prototyping of experimental scienti�c
apparatus. The second version, presented at EuroFORTH 2013 [3], added a custom memory
controller to facilitate faster and more �exible access to FPGA system memory. The third version,
presented at EuroFORTH 2014 [4], introduced a sophisticated hardware return stack to allow the
FORTH exception handling constructs, CATCH and THROW, to be implemented within the CPU
as atomic machine language instructions. With the same philosophy in mind, the fourth version
of the N.I.G.E. Machine described in this paper, adds the facility of hardware multitasking with
resulting bene�ts for performance and reliability.

1

After a short overview the paper begins with a review of prior work that looks at the history of
hardware support for concurrency, the history of multitasking FORTH systems and considers some
notable examples of hardware designs used to assist multitasking. The following section sets the
terms of reference for implementing a hardware multitasking scheme by noting the requirements
for multitasking on a FORTH system in general, the requirements for the multitasking of a stack
machine, and speci�c additional requirements that are applicable to the N.I.G.E. Machine. After
that, the implementation of hardware multitasking on the N.I.G.E. Machine is described in detail
at both the hardware and software levels, along with a description of how the N.I.G.E. Machine's
multitasking functionality can be accessed by user applications. Finally there is a brief discussion
of the advantages and limitations of our design and implementation.

Figure 1: System diagram of the N.I.G.E. Machine

2 Outline of our model for hardware multitasking on the

N.I.G.E. Machine

Our design provides 32 separate tasks hosted within a single softcore CPU instance. At any given
point in time one task will be executing live on the CPU. The complete state of the other 31 tasks

2

that are not executing, including their program counters, stack pointers, and various registers are
stored within a new sub-unit of the CPU, the virtualization unit. Because the multitasking unit
is fabricated from FPGA logic within the CPU, a task switch (i.e. transfer of execution from one
task to another) can be actioned with a single machine language instruction that executes very
quickly, in two clock cycles in fact, the same duration as a branch or jump instruction. A second
consequence of the fact that task switches are conducted entirely in hardware is that they are
entirely atomic from the perspective of the �ow of program code.

In addition, our design includes a lightweight task monitor that leverages the CPU hardware
multitasking facility to provide multitasking capability at the FORTH software level.

3 Review of prior work

The IBM VM/370 as described by Love Seawright and Richard MacKinnon [12] o�ered hardware
concurrency support in the form of virtualization. Rather than provide multitasking to software
applications via additional functionality within the operating system, Seawright and MacKinnon's
insight was to provide each application (or each operating system) with a virtual machine that
was an exact copy of the underlying hardware. The software layer that provided these hardware
replicas became known as the Virtual Machine Monitor (VMM).

At a lighter level than full virtualization are processor architectures that provide hardware support
for context switching, but without the full resource isolation of virtualization. They are generally
referred to as multithreading architectures of various types.

Barrel processors are processors that switch between n threads of execution on every cycle, thus
guaranteeing that each processor will execute one instruction every n cycles. This has advantages
for real-time threads operating with precise timing. The CDC 6000 range of supercomputers were
pioneers of this architecture [29]. Barrel processors are an example of interleaved multithreading
architectures.

Other processors such as the ARM [20] have multiple register banks to allow quick context switching
for interrupt processing. Multiple register bank designs are examples of block multithreading
architectures.

Another example of a block multithreading architecture is the Microcode Level Timeslicing archi-
tecture [28]. In this architecture CPU context information is held in hardware for a �xed number of
tasks. Context switching overhead is eliminated since a task switch requires only the appropriate
manipulation of select lines. A �stream control unit� performs the select line manipulation and
coordinates context switching for the prefetch and execution units of the CPU according to the
availability or otherwise of valid instructions in the prefetch registers.

Hardware multitasking support focused speci�cally on the e�cient handling of exceptions has been
tackled by two notable systems.

Klaus Schleisiek's microcore includes a hardware mechanism to support multitasking and is specif-
ically focused on the problem of dealing with busy resources [7]. The microcore EXCEPTION
mechanism allows routines to access external resources without having to query status bits to
ascertain their availability/ readiness. This greatly simpli�es the software needed for serial chan-
nels communicating with external devices or processes. It works as follows: when the processor
intends to access a resource, the resource may not be ready yet. In such an event, the resource
can assert the EXCEPTION signal before the end of the current instruction execution cycle. This
disables storing the next processor state into any register except for the instruction register, which
loads a special �exc� instruction instead of the next instruction from program memory. In the
next processor cycle, exc will be executed calling the Exception Service Routine (ESR) at its �xed
address. The ESR address will typically hold a branch to code that performs an operating system
dependent task switch.

3

The INMOS Transputer [17], employed a rendezvous communication mechanism on external I/O
ports that was used to perform a task switch entirely in hardware.

An alternative to virtualization or hardware multithreading is a multi-core processor architecture.
In �eld of embedded design we note that most ARM Cortex [20] processors are now dual core or
quad core. In addition the Parallax Propeller [21] is a low cost micro-controller with eight 32 bit
cores that has a simple tool chain making it attractive for prototyping applications. Finally, the
GreenArrays GA144 is a more specialized system with 144 polyFORTH execution units on a single
chip [22]. Both the Transputer and the GA144 feature high speed connections between cores.

4 Hardware multitasking requirements

4.1 Requirements for a multitasking system in FORTH

The ultimate purpose of implementing hardware multitasking on the N.I.G.E. Machine is to pro-
vide a multitasking FORTH system. Brad Rodriguez's 1992 article, �FORTH Multitasking in a
Nutshell� [15], provides a comprehensive review of the requirements. These are, in terms of mem-
ory: private stacks, private user areas and private bu�ers, and in terms of software: re-entrant
FORTH system code, suitable mechanisms for the mutual exclusion of resources that cannot be
shared, and suitably designed task switching functionality.

Many FORTH systems o�er cooperative multitasking (where a call to the word PAUSE is required
to yield the CPU to the next task) in preference to pre-emptive multitasking (where the CPU
is automatically time sliced between tasks). In an embedded environment where all tasks are
part of a single integrated system pre-emptive multitasking may not be necessary. In these cases
cooperative multitasking may have some advantages for simplicity of design and testing, provided
that all tasks truly cooperate.

4.2 Requirements for the multitasking of a stack machine

The general requirements for multitasking of a CPU are the ability to (a) switch the execution of
the CPU from one task to another, (b) store the state of the task that is being �frozen� (i.e. preserve
the �state vectors�) and (c) restore the state of the task that is being �thawed�. This requirement
can be applied to a stack machine where the CPU state vector will in general comprise three
elements (1) the program counter, (2) the stack pointers and (3) the stack memory space. (If
stack memory space is global to all virtual machines then it is su�cient to switch only the stack
pointers.)

In addition, a stack machine may utilize a number of registers. For example, top of stack values
may be held in registers to enhance processing throughput, there may be �ags such as arithmetic
carry/over�ow, or an interrupt processing indicator, and the internal state of the CPU is likely to
be a �nite state machine (FSM) with its own state register. For each of these registers a decision
needs to be made as to whether (a) it will be included in the saved CPU state vector, (b) it will
be discarded on each virtual machine switch, or (c) whether virtual machine switching will be
arranged so that it is not necessary to save the value (e.g. switching can only occur when the FSM
is in a single, predetermined state).

4.3 Speci�c requirements relating to the design of the N.I.G.E. Machine

The parameter and return stacks of the N.I.G.E. Machine are connected directly to the datapath
through dedicated memory ports rather than being accessed via the general CPU system memory
bus. This design leads to performance advantages because the datapath is always in a position to

4

read or write from stacks with no latency. However it also means that a �software only� multitasking
implementation is not feasible on the N.I.G.E. Machine. Modi�cations must be made to the
datapath itself in order to facilitate the switching of stacks for each task.

In addition to the parameter and return stacks, the N.I.G.E. Machine datapath utilizes internal
subroutine and exception stacks that provide hardware support for subroutine calls, local variables
and the FORTH exception handling words CATCH and THROW [4]. Although these stacks are
not directly accessible to user applications, it is necessary for each task to have a private copies.

Lastly, the N.I.G.E. Machine has been designed speci�cally for embedded control and scienti�c
prototyping. As EuroFORTH 2012 paper explained [2], short interrupt response times and deter-
ministic execution are critical in these applications. Any hardware multitasking scheme employed
needs to respect both of these objectives.

5 Hardware multitasking design on the N.I.G.E. Machine

5.1 General features

As explained in the introduction, the purpose of incorporating hardware multitasking into the
N.I.G.E. Machine is to provide multitasking for the FORTH system software. (Since each task at
the FORTH system level will run on its own virtual machine instance.)

In the default con�guration of the N.I.G.E. Machine, 32 tasks are available, each with a parameter
stack depth of 256 cells and a return stack depth of 128 cells. Cooperative multitasking is achieved
with a PAUSE machine language instruction which executes a full task switch in 2 clock cycles (the
same duration as the execution of a branch or subroutine call). A pre-emptive multitasking mode
is also available that implements a task switch after a user de�nable count of executed instructions.
The default task scheduling system is round-robin among active tasks.

There is a lightweight task monitor included in the FORTH system software that comprises words
for starting, stopping, and otherwise managing tasks. The task monitor is not involved with task
switching since this is handled entirely by hardware. Each task has a 2 KiB private user memory
area that o�ers space for 245 longword user variables and holds private bu�ers and certain task
speci�c system variables. The N.I.G.E. Machine's remaining 128 KiB of FPGA systems memory
(including the FORTH dictionary) and all of the 16 MiB of PSDRAM is shared memory available
to all tasks.

Simple semaphore based locks have been implemented in the FORTH system software to mediate
access to shared I/O resources. The locks are arranged so that no FORTH system routine will ever
attempt to lock more than one resource at any given time. In this way it is not possible for user
applications to enter a deadlock situation if they only call system functions.

The N.I.G.E. Machine also provides a feature that we describe as �virtual interrupts�. With a
virtual interrupt, a task may cause another task to jump to a subroutine (typically a FORTH
execution token) before returning to its prior point of execution. A virtual interrupt may be
scheduled in advance at any time and will be actioned when a switch to the task in question next
occurs.

5.2 Multitasking unit

The multitasking unit is a new component within the CPU alongside the control unit and the
datapath (�gure 2). The multitasking unit is responsible for two functions: �rstly for storing the
states of all of the tasks that are not currently executing, and secondly for managing the transition
between executing tasks.

5

To achieve the �rst objective the multitasking unit relies on an internal RAM module termed
the �freezer RAM�. The freezer RAM module is 116 bits wide and 32 addresses deep. (The RAM
modules within the multitasking unit are implemented with FPGA logic elements (registers) rather
than BLOCK RAM - see section 6 for further explanation).

The state of each task is arranged as a 116 bit state vector as illustrated in table 1.

Task state vector component Number of bits

Program counter 20

Top-of-stack register 32

Next-on-stack register 32

Parameter stack pointer 8

Return stack pointer 8

Subroutine stack pointer 8

Exception stack pointer 8

Total 116

Table 1: Storage of the task state vectors within the �freezer� RAM module

The freezer RAM module is dual ported with a single write port and a single read port. When
a task switch is signaled, the state vector of the current (and now retiring) task is presented at
the write port with a valid write enable signal, while the state vector of the next-to-execute task
is taken from the read port. These state vectors are routed to and from the control unit (for the
program counter) and the datapath (for all other elements). Figure 2 illustrates the place of the
multitasking unit in relation to the control unit and datapath within the CPU.

The address input of the freezer RAM module's write port comes from a 5 bit wide register within
the multitasking unit that holds the number of the currently executing task. The address input for
the read port (i.e. the number of the next-to-execute task) is drawn from a second RAM module
within the multitasking unit called the task control RAM. The signal to execute a task switch
originates from the control unit (described more fully below).

6

Figure 2: Relationship between the multitasking unit, control unit and datapath with the CPU

The task control RAM module is 16 bits wide and 32 addresses deep. It can be considered as
a set of 32 x 16 bit registers, one belonging to each task. The lower 5 bits of each resister hold
the number of the next-to-execute task following that task. For example if register 1 holds the
value �00010�, then task 2 is the next-to-execute task following task 1. The task control RAM
module is dual ported. The �rst port is read-only and is addressed with the register holding
the value of the currently executing task. The output from this port is therefore the number of
the next-to-execute task (in the lowest 5 bits). It is used to address the read port of the freezer
RAM as described above. The second port is a read/write port that is memory mapped to the
system memory address space. The task monitor within the FORTH system software uses these
memory mapped addresses to con�gure the order of task execution by appropriately setting the
individual task control registers. The upper 11 bits of each task control register are not read by
the multitasking hardware but are used by the task monitor as general storage for further task
control purposes as described below.

In order to initialize a new task the task monitor needs to be able to con�gure the program counter
of a task before it begins execution for the �rst time. A third dual ported memory block, the �PC
override� RAM block, is used to provide this facility. The PC override RAM module is 20 bits
wide and 32 addresses deep. It can also be thought of as 32 individual registers. Like the task
control RAM module, each register is mapped to the system memory address space and can be
written to by the task monitor. When a task switch occurs, if the PC override register of the
next-to-execute task contains a non-zero value, then that value is sent to the control unit as the
new program counter address in place of whatever value may have been held in the task's state
vector in freezer RAM. The PC override register for that task is then automatically reset to zero

7

so that the following task switch will proceed without a second override.

The fourth RAM block (the �virtual interrupt� RAM block) provides functionality for virtual
interrupts in a similar manner to the PC override RAM. However in the case of a task switch with
a virtual interrupt, the control unit pushes the saved value of the PC from the state vector onto
the subroutine and return stacks before setting the program counter register to the value from the
virtual interrupt RAM.

The multitasking unit also contains a number of individual memory mapped registers that allow
the task monitor to control the conduct of task switching. These are scheduled in table 2. Table 3
schedules the overall memory map of the multitasking unit as seen from the system memory bus.

Figure 3 illustrates the key operational features of the of the multitasking unit.

Figure 3: Illustration of the key operational features of the multitasking unit

8

Register name Function R/W Width
(bits)

System
address

SINGLEMULTI Enable ('1') or disable ('0') multitask-
ing. If a PAUSE machine language
instruction is encountered with multi-
tasking disabled then it will be treated
as a NOP

R/W 1 3F000

CURRENTVM The number of the currently executing
task. Tasks are numbered 0 through 31.
At power-on task 0 will be executing the
FORTH system software

R 5 3F004

INTERVAL The interval for pre-emptive multitask-
ing task switches, in count of instruc-
tions. If INTERVAL = 0 then pre-
emptive multitasking is disabled.

R/W 16 3F008

Table 2: Multitasking control registers

Register name Function # registers System
address

Multitasking
control registers

As table 2 3 3F000

Task control
registers

Each virtual machine has an associ-
ated task control. Bits 4 down to 0 of
this register specify the next-to-execute
task. Bits 15 down to 5 are for task
monitor usage

32 3F200

PC override
registers

Writing a non-zero address to a PC
override register will cause the task in
question to continue from that address
on the next occasion that it executes

32 3F400

Virtual interrupt
register

Writing a non-zero address to a virtual
interrupt register will cause the task to
branch to a subroutine at that address
on the next occasion that it executes

32 3F600

Table 3: Memory map of the multitasking unit as viewed from the system memory bus

5.3 Softcore CPU - datapath

Two updates were necessary to the CPU datapath in order to support hardware multitasking.
Firstly, the parameter, return, subroutine and exception stacks were extended so that each task
would have its own private stack. This was achieved by increasing the addressable width of each
stack and allocating to each stack additional FPGA BLOCK RAM. Following this modi�cation,
each stack is addressed within the datapath by concatenating the number of the current virtual
machine (higher 5 bits) with the current stack pointer (lower 8 bits).

Secondly, the values of the top-of-stack and next-on-stack registers and the values of the stack
pointers were interfaced with the freezer RAM within the multitasking control unit. This was
done simply by including additional multiplexers and extending the width of microcode instructions
communicated from the control unit to 23 bits. Further details on the operation of the datapath
and how the control unit uses microcode to choreograph the datapath multiplexers is given in the

9

EuroFORTH 2012 paper [2]. By way of illustration, table 4 shows how the exception stack pointer
is updated each clock cycle according to the microcode signaled from the control unit.

Function Microcode bits
22 down to 20

No change 000

Decrement 001

Increment 010

Set to zero 011

Load value from virtualization unit 100

Table 4: Control table for the exception stack pointer illustrating the extension for hardware
multitasking. The exception stack pointer is a datapath register that is operated from the control
unit by microcode bits 22 down to 20

5.4 Softcore CPU - control unit

The �rst modi�cation made to the control unit was to specify a new PAUSE instruction to e�ect
a cooperative multitasking task switch. No major �rewiring� of the control unit was required to
accomplish this: the PAUSE instruction acts on the same level and in the same way as all machine
language instructions within the control unit's �nite state machine via microcode lookup. In fact
the PAUSE instruction was implemented as a modi�ed jump (JMP) instruction, but with the
appropriate microcode to control the datapath registers, and with the next-instruction address
read from the multitasking unit rather than from the parameter stack. It is because a task switch
can be executed as a standard machine language instruction that the latency for a task switch
is the same as for any other jump or branch (2 clock cycles). A task switch involving a virtual
interrupt involves an additional stage to push the value of the program counter onto the subroutine
stack and therefore executes in 3 clock cycles.

Secondly, a 16 bit counter was introduced to count the number of instructions executed since
the last task switch. This counter is compared with the INTERVAL register of the multitasking
unit and a pre-emptive task switch is triggered when the INTERVAL count has been reached or
exceeded, if preemptive multitasking is enabled.

The control unit uses a common mechanism to handle a PAUSE instruction and a preemptive task
switch. One important di�erence however is the value of the program counter that is saved to
the multitasking unit. In the case of encountering a PAUSE instruction, the task should resume
execution at the instruction following this PAUSE. In the case of a preemptive task switch, then
the current instruction (whatever it is) will not be executed since the preemptive task switch has
priority. In this case the task should resume execution at this instruction. This di�erentiation is
similar to how the control unit selects the appropriate value of the program counter to push onto
the subroutine stack in the cases of jump to subroutine (JSR) instructions and interrupts, and
identical hardware logic was used.

5.5 Interrupts

With any multitasking design a decision is needed as to how interrupts will interact with task
switching. There are two broad alternatives: either interrupts are synchronized with task switches
so that interrupt handlers always run within their own tasks, or interrupts are handled by whichever
task happens to be running at the time when the interrupt request occurs.

We did not examine the trade-o� between these two approaches in great detail. The N.I.G.E.
Machine takes the latter approach. For us the simplicity of design thus a�orded and the avoidance

10

of any possible latency in interrupt responses were su�ciently compelling advantages in the absence
of any obvious considerations to the contrary.

Given this design decision, the N.I.G.E. Machine system interrupts for RS232 and PS/2 I/O execute
in whichever task is running when the interrupt request occurs. The RS232 and PS/2 interrupt
service routines operate by transferring characters between the relevant hardware interface and
memory bu�ers, updating the bu�er counters accordingly. Tasks that need to wait for RS232 or
PS/2 communications do so by polling for updates to the relevant bu�er counters in a loop that
includes a PAUSE statement. The FORTH word KEY? is implemented in this manner.

In order to avoid any performance or reliability impact in interrupt handling, it is necessary to
ensure that interrupts cannot themselves be interrupted by task switches. Pre-emptive multitask-
ing is automatically disabled by the control unit during interrupt processing. If the preemption
instruction counter reaches INTERVAL while an interrupt is in progress then the task switch is
postponed until immediately after the interrupt service routine has concluded. For cooperative
multitasking, it is a N.I.G.E. Machine software design requirement that PAUSE machine language
instructions should not be included within interrupt service routines.

5.6 Task monitor software

The task monitor software is a set of words within the FORTH system software available to initiate
and control tasks. A description of some of the words is presented in section 7.

The task monitor's method to control the default sequencing and allocation of tasks is as follows:
the lowest 5 bits of each task control register (there is one task control register for each task)
indicate the number of the next-to-execute task. These 5 bits are utilized directly within the
multitasking unit to sequence a task switch as described above. The remaining 11 bits do not
directly control hardware but are utilized by the task monitor. Bit 15 is used to indicate whether
a task has been allocated to a running task ('1') or is unassigned and therefore available for a new
task upon request ('0'). Bits 9 down to 5 are used by the task monitor to indicate the number of
the task that points execution to this task. In this way the lower 10 bits form the nodes of a doubly
linked list that speci�es the task execution order. Bits 14 down to 10 are reserved for expansion.

When a new task is requested (see RUN in section 7) the task monitor �rst searches the set of task
control register to identify an unassigned task (indicated if bit 15 is clear). The new task is then
inserted into the doubly linked list of executing tasks after the currently executing task by updating
the nodes of the double linked list maintained within the lower 10 bits of the task control registers.
For all newly initialized tasks, the program counter for the new task is directed to a common
initialization routine. This brief (~60 byte) initialization routine is responsible for resetting the
stack pointers of that task to zero, copying the set of initialization parameters speci�ed by the RUN
command to the stack via. intermediate storage in shared memory, initializing the user variable
area, initializing the exception stack variables and then jumping to the speci�ed execution token.

When a task is put to sleep (see SLEEP in section 7), it is removed from the doubly linked list of
executing tasks but bit 15 of the task control register remains set to indicate that the task is still
allocated. When a task is woken (see WAKE in section 7) it is re-inserted into the doubly linked
list of executing tasks. When a task is stopped, then in addition to removing it from the list of
currently executing tasks, bit 15 is cleared to indicate that it is now free for reallocation.

5.7 Controls over task switching

The multitasking unit operates two controls to limit task switching and thus avoid glitches:

Firstly, because the state-vector of the next-to-execute task is automatically transferred from the
RAM blocks within the multitasking unit into the control unit and datapath when a task switch

11

occurs, it is necessary for these RAM blocks to have time to update properly between task switches.
The minimum interval between task switches is 3 clock cycles due to this update requirement. A
control device within the multitasking unit imposes a 5 clock cycle minimum interval between task
switches. If a PAUSE instruction or pre-emptive task switch occurs within this limit then it will
simply be ignored. This is a critical control since cooperative PAUSE instructions continue to
remain e�ective even after pre-emptive multitasking has been enabled.

Secondly, multitasking is automatically disabled by the multitasking unit when there is only one
active task (i.e. where the lower 5 bits of the currently active task's task control register references
itself). This is necessary on account of the same update constraint.

5.8 User memory area

Each task has a private 2 KiB user memory area that is mapped to the system address space. The
user memory areas are hosted within 64 KiB of FPGA BLOCK RAM. The upper 5 address bits are
linked directly to the register that holds the number of the currently executing task. In this way
each of the 32 user memory areas can be mapped to the same address range in the system address
space. The currently executing task will always have guaranteed private assess to its own user
memory area but no access to the user memory areas of other tasks. Table 5 is an outline memory
map of the user memory area. Further details are given in the N.I.G.E. Machine documentation.

Usage # bytes System address

FORTH system task speci�c variables 44 3D000

Available for USER variables 980 3D02C

The FORTH PAD bu�er 512 3D400

The FORTH ACCEPT bu�er 256 3D600

Reserved for expansion 256 3D700

Table 5: Outline memory map of the 2 KiB user memory area

5.9 Memory management

We took the decision not to implement any form of memory management over the 128 KiB of
system memory that holds the FORTH system dictionary and user applications, or over the 16
MiB of o�-chip PSDRAM that holds the screen bu�er and is available for application data storage.
As a result, all of the system memory and PSDRAM is available to any task without restriction.
The discussion in section 8 considers the merits and limitations of this approach.

5.10 Motivation for the design decisions

The principal motivations for our design decisions are discussed in section 8 by way of comparison
to alternative concurrency strategies.

A hardware multithreading approach o�ers some advantages, as described in this paper, but nec-
essarily also entails some �xed allocation of resources at design time. Our resource allocations
were based on �educated guesses� rather than speci�c research, but this is a softcore design and
�exibility is retained since the allocations can quite easily be adapted for individual builds, often
simply by changing VHDL GENERIC declarations.

12

6 FPGA implementation

The N.I.G.E. Machine is implemented on a Digilent Nexys4 development board [18] which features
a Xilinx Artix-7 FPGA (Xilinx part number XC7A100T-1CSG324C [19]). The design has been
developed using the VHDL hardware description language and the Xilinx ISE development studio,
version 14.6. Table 6 shows the FPGA utilization for the fully synthesized design. Table 7 analyzes
the usage of BLOCK RAM.

FPGA resource Utilization

Slice registers 4%

Slice look up tables (LUT's) 9%

FPGA BLOCK RAM 97%

Table 6: FPGA utilization

Design component BLOCK RAM count

System memory 32.0

Task private user memory 16.0

Parameter stacks 7.5

Return stacks 4.0

Subroutine stacks (including space for
local variable storage)[4]

68.0

Exception stacks [4] 5.0

VGA display interface 1.0

CPU microcode 0.5

Table 7: FPGA BLOCK RAM usage by design component. Each BLOCK RAM resource represents
4Kbytes.

The Xilinx XC7A100T is a latest generation FPGA in the Xilinx �value� range. The N.I.G.E.
Machine utilizes less than 10% of the fabric logic on this device. On the other hand the BLOCK
RAM is signi�cantly utilized at 97%. The simple reason for the high utilization of BLOCK RAM is
that the private stacks and user memory areas for all of the 32 tasks are pre-dedicated at synthesis
time regardless of how many active tasks any given application will actually create. However it is
also possible to synthesis the design with 16, 8, 4, or 2 virtual machines instead of 32 by adjusting
the top-level VHDL GENERIC declarations and the ipCORE declarations of the relevant RAM
blocks.

Not all of the RAM modules on the N.I.G.E. Machine are instantiated with BLOCK RAM. All
of the RAM modules within the multitasking unit are instantiated using distributed FPGA logic
elements for resource e�ciency reasons. Xilinx Artix-7 BLOCK RAM units can be con�gured in
a variety of formats between 32K x 1 and 512 x 36 (address depth x bit width), but the freezer
RAM has a relatively wide but shallow format of 32 x 116 which would lead to poor utilization in
BLOCK RAM.

We had concerns that the over utilization of BLOCK RAM would signi�cantly impede place
and route performance, since the design e�ectively requires that signals be routed to and from
BLOCK RAM instances right across the FPGA. During development we found that ISE's simulated
annealing placement algorithm was quite sensitive to design changes (meaning that small changes in
the logic design could have signi�cant impact on the place and route performance, presumably due
to their implications for routing). ISE's SmartXplorer, which is a tool for automatically optimizing

13

placement using for example, di�erent cost tables within the simulated annealing algorithm, was
able to meet timing with a clock frequency of 100 MHz but signi�cant search e�ort was required (8
out of 100 strategies succeeded). At a clock frequency of 95 MHz, SmartXplorer was able to meet
timing with the vast majority (95 out of 100) of strategies. The N.I.G.E. Machine's 100 MHz clock
frequency has been retained, but it would likely be easier to develop future projects with a clock
frequency of 95 MHz and then use SmartXplorer re-optimize place and route for a clock frequency
of 100 MHz as the �nal step.

7 N.I.G.E. Machine multitasking functionality

This section describes a selection of the FORTH words that are available to user applications to
control multitasking on the N.I.G.E. Machine. A full list is give in the N.I.G.E. Machine system
documentation [5]. The majority of words are directly analogous to those of the PolyFORTH
multitasking system [16].

7.1 Multitasking con�guration

SINGLE (--)

Disable multitasking. PAUSE instructions will be treated as a NOP. Multitasking is enabled at
power-on by default on the N.I.G.E. Machine.

MULTI (--)

Enable multitasking. Note that if there is only a single active task then PAUSE will be treated as
NOP.

7.2 Task initiation

RUN (p1 ... pn n XT -- TN true | false)

Initialize a new task to take n stack parameters (p1 ... pn) and execute the code pointed to
be execution token XT. Return the number of the task allocated to this task (TN) and true if
successful, or false if all tasks are currently otherwise allocated. The newly created task will be
positioned in the round-robin sequence immediately after the current task. Tasks are numbered 0
through 31. Note that the XT must either code an in�nite loop or contain termination instructions
to self-abort.

7.3 Task switching

PAUSE (--)

Task switch. Yield CPU execution of the current task and switch CPU execution to the next-to-
execute task.

SLEEP (n --)

Put task n to sleep by removing it from the list of executing tasks. The task remains allocated
and can be woken at a later time.

WAKE (n --)

Wake task n by inserting it into the list of executing tasks immediately following the current task.

STOP (n --)

Deallocate task n and remove it from the list of executing tasks. This task may now be recycled
by RUN.

14

7.4 Pre-emptive multitasking

PREEMPTIVE (n --)

Enable preemptive multitasking with period of n instructions between task switches. If n = 0 then
preemptive multitasking is disabled. Preemptive multitasking is disabled at power on by default
on the N.I.G.E. Machine.

7.5 Virtual interrupts

VIRQ (XT n --)

Virtual interrupt. Cause task n to branch to the subroutine at XT and then return to its prior
point of execution. The virtual interrupt will be actioned when task n is next scheduled to execute.

7.6 Mutual exclusion

ACQUIRE (sem --)

Acquire the binary semaphore (sem) or yield until it becomes free. A semaphore can be any
FORTH variable with global scope. Semaphores are minimum single byte in length (word or
longword length variables may also be used). A semaphore contains the number of the latest
successfully acquiring virtual machine XOR 255, or 0 if not acquired.

RELEASE (sem --)

Release the binary semaphore (sem).

7.7 Inter-task communication

We have not attempted to provide hardware based support for inter-task communication. As noted
above, each task's 2 KiB private memory is not accessible by other tasks but the rest of the 128
KiB system memory and all of the 16 MiB of PSDRAM on the N.I.G.E. Machine is accessible by
all tasks. Application speci�c inter-task communication designs can utilize shared memory for data
passing and may take advantage of the ACQUIRE and RELEASE words for mutual exclusion.

8 Discussion

8.1 Comparison with other hardware multithreading strategies

The N.I.G.E. Machine's approach to hardware multitasking has some similarities with the multiple
register �le / block multithreading architectures referenced in section 3 but as a whole is di�erent
from those strategies.

Multiple register �le architectures essentially use control lines to select which instances of the CPU
registers are to be updated each cycle. The N.I.G.E. Machine takes a similar approach in selecting
the parameter and return stack for each task by extending the address width of each stack and
concatenating the number of the currently executing thread at the high end of the address bus
with the relevant stack pointer at the low end.

However the N.I.G.E. Machine does not apply this approach to the registers within the CPU and
datapath (e.g. the program counter and top-of-stack register), rather they are saved and reloaded
from an external store (the multitasking unit) each time a task switch occurs. The reason for doing

15

this is timing e�ciency. The N.I.G.E. Machine operates at 100 MHz meaning that each clock cycle
must complete within 10 ns if the design is to �meet timing�. Each additional layer of logic in a
signal path adds delay due to both the response time of the logic itself and the necessary signal
routing. In terms of logic layout, a register �le of 32 registers is essentially a 32 way multiplexer
that must sit between say the ALU and the register to be updated. Even though modern FPGA
multiplexers are highly optimized, a 32 way multiplexer would need to be implemented in 2 or 3
additional layers of FPGA logic[30]. By storing register information for each task in a separate
unit, the N.I.G.E. Machine avoids the need for any extra FPGA logic on the signal path that
updates each cycle. Rather the �update burden� is shifted to the cycles that occur between clock
cycles, which in the case of the N.I.G.E. Machine is only 2 clock cycles in any case.

A �nal di�erence is that a task switch on the N.I.G.E. Machine switches more than the CPU
context: the USER memory areas that are private to each task are switched concurrently. Hence
we have termed the N.I.G.E Machine's architecture as hardware multitasking rather than hardware
multithreading.

8.2 Comparison with multi-core processor strategies

In recent years the trend in processor development has been �rmly towards multi-core CPU's,
even in embedded applications [20]. However this trend is not without a number of di�culties
imposed by the complications of multi-core software development [23]. Our focus on developing
a virtualization model for the N.I.G.E. Machine has been to attempt to balance the pursuit of
absolute performance with simplicity for the application programmer.

The key di�erence between programming a single core multitasking architecture such as the
N.I.G.E. Machine as compared with a multi-core CPU is the elimination of possible asynchronous
e�ects. The N.I.G.E. Machine used in cooperative multitasking mode will have absolutely deter-
ministic behaviour (and timing) since there is a single execution path through all contexts. In
a multi-core CPU multiple asynchronous execution paths must be modelled, programmed and
debugged.

The N.I.G.E. Machine is intended for rapid prototyping applications where fast and easy software
development should be a particular advantage. The certain absence of asynchronous e�ects is the
programmer simpli�cation motivating our preference for a single core rather than a multi-core
approach.

8.3 Chosen approach to memory management

As described in section 5, aside from providing a 2 KiB private memory area, we decided not to
implement any memory management mechanisms for the 128 KiB of main system memory and
the 16 MiB of PSDRAM. We recognize that on a modern server or desktop based multitasking
system it would be considered a fatal weakness not to provide memory protection mechanisms that
prevent tasks from corrupting the memory used by other tasks. High-reliability computing is also
in demand in the embedded space.

However the intended focus of the N.I.G.E. Machine is in relatively small scale deeply embedded
applications. For that reason we envisage that in most situations, all tasks will be sub-modules
of a single overall application and so inter-task protections may be a less critical factor in total
application reliability.

Another reason for our decision is that since the overall system memory is only 128 KiB (albeit
this is probably still a reasonable system memory size for a deeply embedded device [24]), it would
not be feasible to subdivide this memory between tasks and still retain a sensible amount for each.

Finally, the FORTH language is dictionary based and it is typical for multitasking FORTH systems
to have access to a common system dictionary. The FORTH system software on the N.I.G.E.

16

Machine implements the ANSI Search-Order word list which allows individual applications or
tasks to extend or restrict the dictionary with private word lists if desired.

8.4 Alternative task scheduling models

The task scheduling model implemented by the task monitor is a simple round-robin scheme. That
is, all active tasks take their turn to be executed once per round. This is the fastest task switching
model that can be implemented using the N.I.G.E. Machine's hardware multitasking framework
since the next-to-execute task is determined in advance and task switches take place atomically in
only two clock cycles. Given the high performance of this scheduling model within the N.I.G.E.
Machine, and it's ubiquity on multitasking FORTH systems [15], we believe that it would likely
be the most e�ective choice for most embedded applications.

However many other priority based task scheduling models exist [13]. A priority based task schedul-
ing model can be accommodated within the N.I.G.E. Machine's hardware multitasking framework
by changing the way that task control registers are used by the task monitor. An outline of how
this could be achieved is as follows: the task control registers of all tasks are set such that the
next-to-execute task is always a common scheduling task (say task 31). The scheduling task would
be responsible for maintaining a list of task priorities and determining the next-to-execute on a
real time basis. It would conclude its operation by setting the value of its own task control register
before executing PAUSE.

Paul Bennett has pointed out [26] that an alternative model for cooperative multitasking is the
Time-Triggered Systems (TTS) approach [27]. TTS is typically based on just one interrupt (the
system tick timer). It schedules cooperative tasks to run at intervals according to their order in
the �tick list�. There is no main loop of program execution aside from the tick list itself. All I/O
is polled. TTS could quite likely be implemented on the N.I.G.E. Machine using this multitasking
hardware with light adjustments to the task monitor software.

Although we have not further investigated in any detail, it was mentioned to us that this archi-
tecture might also be leveraged to support the high level language features of co-routines and
continuations.

8.5 Limitation of the hardware multitasking approach

An obvious limitation of the N.I.G.E. Machine's approach to multitasking is that the number of
tasks is limited to the 32 that are pre-instantiated in hardware. We did not conduct a feasibility
study of the number of tasks typically required by an embedded system but would expect based
on general experience that parallel programming complexities might become a constraint in an
embedded application before the limit of 32 tasks had been reached.

Another limitation is that hardware resources (mainly FPGA RAM blocks) are pre-allocated to
tasks that may never be used, in which case they are e�ectively wasted. With 32 tasks allocated
there is 128Kbytes of system memory for FORTH applications and parameter and return stack
depths of 256 and 128 cells respectively in each virtual machine. So su�cient resources are available
for a meaningful FORTH system. As explained in section 6, it is possible to synthesize the N.I.G.E.
Machine with 32, 16, 8, 4 or 2 tasks by adjusting the generics declarations in the VHDL code.

8.6 Advantages of the hardware multitasking approach

We suggest that there are a number of advantages to using hardware multitasking to provide a
multitasking FORTH system as compared with traditional software-based multitasking.

17

Firstly although task switching on FORTH systems is typically very fast [15], the ability to complete
a full task switch in the same duration as a jump or branch means that e�ectively multitasking
has no performance overhead on the N.I.G.E. Machine.

One way this performance advantage could be put to use for enhancing reliability is by including
PAUSE instructions within FORTH loop structure words (LOOP, +LOOP, UNTIL, AGAIN, RE-
PEAT) [26]. Although that has not been done with the current version of the N.I.G.E. Machine's
FORTH system software, the advantage of doing so would be to decrease the likelihood of tasks
failing to cooperate due to their being insu�cient PAUSE instructions within their routines.

Secondly, because pre-emptive multitasking is implemented directly by the CPU and not via in-
terrupts, it is never necessary to disable interrupts during tasking switching, or even during the
initiation of new tasks. This means that the N.I.G.E. Machine avoids any interrupt latency due to
multitasking.

Lastly, since task switching is handled by a single machine language instruction, each task switch
is atomic, i.e. the thread of execution is always with one task or another, never in-between tasks.
This may have some reliability bene�ts since there are no task switching software routines that
have the potential to become corrupted during program execution.

9 Conclusion

FORTH systems have o�ered multitasking since very early in the history of FORTH language
and on very lightweight system [15, 16]. Now that the N.I.G.E. Machine includes multitasking
capability with fast and e�cient hardware support, we believe that the platform is su�ciently
developed to be applied to its intended �eld in the rapid prototyping of experimental scienti�c
apparatus. It is hoped that the next stage of development will focus on opportunities in this area.
In addition there is the possibility to port the design to other FPGA development boards (e.g. the
Diligent Nexys4-DDR) or enhance the range of input/output ports.

The authors wish to thank the anonymous academic reviewers for their comments, especially those
relating to the terminology of the architecture. Their comments have signi�cantly improved the
clarity of the paper.

References

[1] Andrew Read, YouTube video demonstrations
https://www.youtube.com/channel/UCz_LqPfKT0r2rEID7Av-Chw

[2] Andrew Read, �The N.I.G.E. Machine: an FPGA based micro-computer system for prototyp-
ing experimental scienti�c hardware�, in EuroFORTH, 2012

[3] Andrew Read, �Optimizing memory access design for a 32 bit FORTH processor�, in Euro-

FORTH, 2013

[4] Andrew Read, �Concept and implementation of an extended return stack to enhance subrou-
tine and exception handling in FORTH�, in EuroFORTH, 2014

[5] Andrew Read, Github open source repository
https://github.com/Anding/N.I.G.E.-Machine

[6] James Bowman , �J1: a small Forth CPU Core for FPGAs� in EuroFORTH, 2010

[7] K. Schleisiek, �MicroCore,� in EuroFORTH, 2001.

18

https://www.youtube.com/channel/UCz_LqPfKT0r2rEID7Av-Chw
https://github.com/Anding/N.I.G.E.-Machine

[8] B. Paysan, �b16-small � Less is More,� in EuroFORTH, 2004.

[9] E. Hjrtland and L. Chen, �EP32 - a 32-bit Forth Microprocessor,� in Canadian Conference on
Electrical and Computer Engineering, pp. 518�521, 2007.

[10] E. Jennings, �The Novix NC4000 Project,� Computer Language, vol. 2, no. 10, pp. 37�46,
1985.

[11] Rible, John, "QS2: RISCing it all," Proceedings of the 1991 FORML Conference, Forth
Interest Group, Oakland, CA (1991), pp. 156-159.

[12] L. H. Seawright, R. A. MacKinnon: �VM/370-a study of multiplicity and usefulness�, IBM
Systems Journal, 1979

[13] Andrew S. Tanenbaum, Albert S. Woodhull, �Operating Systems Design and Implementation�,
Prentice Hall, 2nd ed., 1997

[14] Dawson R. Engler, �The Design and Implementation of a Prototype Exokernel Operating
System�, MIT, 1995

[15] Brad Rodriguez, �Forth Multitasking in a Nutshell�, The Computer Journal #58, 1992

[16] GreenArrays Inc., PolyFORTH Reference Manual, 1986-2012

[17] INMOS Limited, The Transputer Reference Manual, 1988

[18] Digilent Inc, Nexys4 FPGA Board Reference Manual, 2013-2015

[19] Xilinx, Artix-7 FPGAs datasheet, 2014

[20] ARM, ARM Cortex Portfolio, 2014

[21] Parallax Semiconductor, Propeller P8X32A datasheet, 2011

[22] GreenArrays Inc, GA144A12 chip reference, 2011

[23] David Patterson and John Hennessey, �Computer Organization and Design, Fifth Edition:
The Hardware/Software Interface�, 2013

[24] Atmel AVR 8-bit and 32-bit microcontrollers datasheet, 2015

[25] Open Network Forth Control System for the Munich Accelerator Facility, Ludwig Roher, Heinz
Schnitter, Egmot Woitzel, at the FORML conference, 1998

[26] Paul E. Bennett IEng MIET, private correspondence, 2015

[27] Michael J. Pont, �The Engineering of Reliable Embedded Systems�, ISBN 978-0-9930355-0-0

[28] Daniel Curtis McCrankin, �The Microcode Level Timeslicing Processor Architecture�, Mc-
Master University, 1988

[29] Control Data Corportation �CDC Cyber 170 Computer Systems; Models 720, 730, 750, and
760; Model 176 (Level B); CPU Instruction Set; PPU Instruction Set�, 1979 - 1981

[30] Xilinx, �Multiplexer Design Techniques for Datapath Performance with Minimized Routing
Resources�, 2014

19

	Introduction
	Outline of our model for hardware multitasking on the N.I.G.E. Machine
	Review of prior work
	Hardware multitasking requirements
	Requirements for a multitasking system in FORTH
	Requirements for the multitasking of a stack machine
	Specific requirements relating to the design of the N.I.G.E. Machine

	Hardware multitasking design on the N.I.G.E. Machine
	General features
	Multitasking unit
	Softcore CPU - datapath
	Softcore CPU - control unit
	Interrupts
	Task monitor software
	Controls over task switching
	User memory area
	Memory management
	Motivation for the design decisions

	FPGA implementation
	N.I.G.E. Machine multitasking functionality
	Multitasking configuration
	Task initiation
	Task switching
	Pre-emptive multitasking
	Virtual interrupts
	Mutual exclusion
	Inter-task communication

	Discussion
	Comparison with other hardware multithreading strategies
	Comparison with multi-core processor strategies
	Chosen approach to memory management
	Alternative task scheduling models
	Limitation of the hardware multitasking approach
	Advantages of the hardware multitasking approach

	Conclusion

