
Using System Hyper Pipelining for a Multi-Threaded
FORTH Compatible Stack Processor Mapped on an

FPGA

Tobias Strauch

Abstract— FORTH compatible stack processors are still
subject to research and development. They also face new multi-
processing and multi-threading challenges. Most notoriously the
multicore processor G144 from the inventor of FORTH Charles
Moore. This paper outlines an alternative concept to generate a
mutli-threaded FORTH compatible stack processor by using
System Hyper Pipelining (SHP), which overcomes the limitations
of classical multi-threading methods by adding thread stalling,
bypassing and reordering techniques to better cope with the
challenges of Symmetrical Multi-Processing and Simultaneous
Multi-Threading. SHP is ideal for FPGAs with their high
number of registers and their flexible memory usage. The paper
gives results for a FORTH compatible stack processor mapped
on an FPGA.

Keywords—FORTH, C-Slow Retiming, Symmetrical Multi-
processing, Simultaneous Multi-threading, Multi-processor
Systems

I. INTRODUCTION

Charles Moore, the inventor of FORTH introduced a
multicore array chip based on a FORTH compatible stack
processor in [1]. This design uses the traditional approach of
generating a multicore chip based on an array-like orientation.
This paper now proposes an alternative approach of generating
a multi-threaded stack processor by using System Hyper
Pipelining, which is a successor of C-Slow Retiming.

C-Slow Retiming (CSR) provides C copies of a given
design by inserting registers and reusing the combinatorial
logic in a time sliced fashion. CSR therefore improves the
performance per area factor. Leiserson et. al. introduced the
concept of C-Slow Retiming (CSR) in [2]. In section II, the
System Hyper Pipelining technology is shown and how it
differs from CSR. Section III outlines a thread controller
which copes with a high number of threads. Section IV
outlines, how a FORTH based stack processor can benefit
from SHP. A system is proposed in section V before the
results are given in section VI.

II. CSR AND SHP TECHNOLOGY

System Hyper Pipelining (SHP) has been introduced by
Strauch in [3]. This paper gives a 2-page introduction for the
readers' convenience again. SHP is based on C-Slow Retiming
(CSR). It enhances CSR with thread stalling, bypassing and

reordering techniques by replacing the original registers of the
design with memories and by adding a thread controller (TC).
In the remainder of this paper, the word “thread” (T) is used
synonym for the execution of a program or algorithm.

Figure 1: a) Simplified single clock design. b) Applying CSR
technique.

Figure 1a shows the basic structure of a sequential circuit
with its inputs, outputs, combinatorial logic (CL) and original
design registers (DR). The sequential circuit handles one
thread T(1). Figure 1b shows the CSR technique. The original
logic is sliced into C (here C=3) sections. This results in C
functionally independent design copies T(C=1..3) which use
the logic in a time sliced fashion. Each thread has its own
thread ID (TID). For each design copy it now takes C “micro-
cycles” to achieve the same result as in one cycle (called
“macro-cycle”) of the original design. The implemented
registers are called “CSR Registers”, (CR) and are placed at
different C-levels (CRn).

Figure 2: a) SHP-ed design with thread controller, memories
and CRs. b) Advanced SHP.

Figure 2a shows the modifications of a CSR-ed design
towards SHP. Assuming the DRs are now replaced by a
memory (M). The incoming design states / threads are stored
at the relevant address (write pointer) based on the TID. D is
the number of threads which the memory can hold (memory
depth). The outgoing thread can now be freely selected within
D available threads (read pointer), except the threads already
passing through the design logic. A CSR-ed design has usually
many shift registers. DRs are followed by a series of CR

registers. In the SHP-ed version, many memory data outputs
are connected to CRs. In this case, the shift registers at the
outputs can be replaced by registers at the read address inputs
of the memories (Figure 2b). The memory is sliced into
individual sections (M0, M1, M2) and each section has a
delayed read of the thread. The outputs can now be directly
connected to the relevant combinatorial logic and the shift
registers can be removed. The same trick can be applied on the
shift register chains at the inputs of the memory.

Fcsr = Forig * C * r C with r ~ 0.93 (1)
0 Hz <= Ft <= Forig * r C (2)
Fshp = Σ Ft <= Fcsr (3)

We define Forig as the maximal speed of the original
design. The maximal speed of a CSR-ed design can be
estimated by using Equation 1. Fcsr is C times the original
speed Forig reduced by a correction factor rC, which considers
the delay inserted on the critical path by the CRs. r is
technology dependent. Based on empirical data, r is roughly
0.93 for a Virtex-6 FPGA. Equation 2 says, that in an SHP-ed
design, a single thread can now run at any speed (over a long
period) between 0 Hz (stalled) and Forig * r C. The maximal
speed of an SHP-ed design Fshp is the sum of all active
threads (Equation 3). Fshp cannot be greater than Fcsr.

Figure 3: SHP based performance per area improvement based
on a Cortex M3 example.

Figure 3a shows a Cortex M3 (as it can be found in [4])
implementation on a a Virtex-6. With C=4 and D=16, the
SHP-ed version (Figure 3b) is just 33% larger (occupied
slices) but can achieve 230% more performance (overall
330%) compared to the original implementation. In other
words, SHP improves the performance per area factor if the
application can utilize this performance gain by using at least
4 independent threads.

Figure 4: Histogram of different scenarios (a-d) of running
CSR and SHP.

Figure 4 shows the advantages of CSR and SHP over the
original design. The x-axis shows different scenarios.
Assuming a single CPU runs at 60MHz on an FPGA (Figure
4a). It can be seen, how CSR improves the system
performance of the original system implementation, (Figure
4b). When using CSR, the system performance is not
necessarily limited by the critical path of the original design,
but - for instance - by the switching limit of the FPGA (e.g.
250MHz) or the external memory access instead.

There are two key observations when SHP is used on a
design. First, for executing multiple programs on multiple
CPUs (symmetrical multi-processing (SMP)) or for executing
multiple threads on a CPU (simultaneous multi-threading
(SMT)), SHP allows a more efficient usage of the system
resources. It adds the possibility to dynamically scale the
system performance over a minimum (C, Figure 4b), and a
maximum (D, Figure 4d) set of design copies, whereas any
solution in-between can be realized (Figure 4c). This load
balancing is handled by a thread controller (TC).

Secondly, threads don't interact with each other. There is no
register dependency between the individual threads. The
runtime of each thread is therefore deterministic. The variable
latency that the execution per thread may experience due to
different behavior in if-branches for instance is not an issue,
because all threads work independent of each other.

III. THE THREAD CONTROLLER

Figure 5: Thread Controller Mechanism.

A TC is used, which is controlled by a special function
register set TCRS (Thread Controller Register Set). It is
accessible by all active threads (T). Each thread has its own
thread register (TR). Figure 5 shows how the Thread ID (TID)
is provided for the SHP memories. When a thread is executed,
its TID passes through the ID-Queue (IDQ). It is reinserted
into the IDQ or into the ID-FIFO, if the relevant bit in the TR
shows that the thread is still active and not on hold or killed.
When less than C threads are valid, active threads need to be
re-executed, but the valid bit V of the IDQ indicates, that its
state copies should not be stored. When more than C threads
are executed or an additional thread is inserted, then the TID is
parked in the ID-FIFO.

Threads can be added to the active thread list by writing
their program start address to the “Activate” register. This sets
the thread-specific active A bit in the TR. Threads can be hold
by setting the hold H bit or killed by clearing the active A bit
in the TR. When the thread priority bit P is set in the TR, then

a thread execution has a higher priority than the threads stored
in the ID-FIDO or threads resulting from an interrupt or the
CPU. It is therefore directly re-inserted into the IDQ again and
not stored into the ID-FIFO.

To cope with fork-join queueing, the following mechanism
is implemented. A set of Ts an be started from a single main
thread (MT) by successively writing the individual start
addresses of the Ts to be started to the TCRS called “Activate
and Count” (AC). By doing that, the number of Ts called (CT)
by the MT is stored in the AC register. Optionally the MT
stalls itself after that process. Each CT saves the MT's SID in
the “forked thread register” (FT). When a CT is killed, it
checks the FT and decrements the AC of the MT. If this
number gets 0, the MT stalling bit is cleared by default and the
MT continues. Alternatively the MT can read it's AC register
to continue execution.

The TCRS can be programmed to set a group of
consecutive threads into dynamic length instruction word
(DLIW) mode. By doing that, a given number of threads are
executed in parallel. The concept is similar to the very long
instruction word (VLIW) concept, except the fact that the
number of threads running in parallel can be dynamically
defined (but must be lesser or equal to D).

Figure 7: Grouping threads to run dynamic length instruction
words.

Figure 7 shows an example. The threads with the TID 2,3
and 4 are running as a group using DLIW. Thread 9 is listed to
show that alternative threads can still be actively running. The
first thread in the DLIW (TID 2) starts the parallel execution
when the number of subsequent threads (here 2) is written into
its DLIW register. Branch instructions (words) are only
consider by the initial thread (here TID = 2), the program
counter of the subsequent threads are always derived from its
trailing thread (by adding the value of 2 for instance).

This outlined TC has a low complexity (see result section).
It can stall and bypass individual threads and it is capable of
handling fork-join queues. By default, a thread runs
completely independent of the other threads when its priority
thread is set and when only less or equal number of C threads
have the priority bit set. It can also group threads to run
dynamic length instruction words. The DLIW method is
accompanied by the message passing implementation, which
is outlined in the sequel of this paper.

IV. BENEFITS OF A MULTI-THREADED STACK PROCESSOR

A. … compared to its single core implementation

This sections lists some of the benefits of an SHP based

multi-threaded stack processor. First, it is compared to a single
core implementation. It is assumed, that the application can be
partitioned into individual threads to a certain degree. This
certainly has its limit (Amdahl's Law), but applications in the
field of automation and controlling for instance can usually be
partitioned into individual tasks, whereas most of them can be
executed in parallel.

The key benefit of SHP when applied on a single core is the
increase of the performance-per-area (PpA) factor. This has
been shown in [3] based on FPGAs and it is demonstrated in
the result section of this paper again. The performance of a
system is already increased when a second thread can be used.
All threads of an SHP-ed processor can share the same data.
The time sliced access to the program memory increases the
memory bandwidth and reduces potential memory-wall
problems.

B. … compared to a multicore implementation

Charles Moore has introduced a multicore array stack
processor GA144 [1]. A functional identical SHP-ed version
can be realized on a smaller die size due to the increased ppa
factor. Alternatively more performance could be realized on
the same area when SHP is used.

The GA144 was used by Schneider et al. in a research
project [5]. In their work, an application is partitioned into
individual tasks, whereas each task is assigned to an individual
core on the GA144. It is easy to understand, that in this case,
tasks have to stall sometimes, because they need to wait on
data from other tasks to be processed. It has been outlined in
section II of this paper, that SHP allows the dynamic scaling
of individual threads on an SHP-ed processor. If a task can be
stalled (because it is waiting for data from other tasks for
instance), then its associated thread can be stalled and
therefore frees performance for other threads. A task on the
SHP-ed processor array does not necessary consume
performance nor logic area when stalled.

On an SHP-ed based processor array, multiple threads (D)
on each element can share the same memory. On a traditional
multicore array (GA144), data has to be transferred to the
individual core/thread.

C. … when used in a safety critical environment

FORTH compatible stack processors can be used in a safety
critical environment. Most notoriously is the controlling of the
Philae landing process, using FORTH and a radiation
hardened processor [6]. A C-slow retimed processor can be
used to generate a time redundant system, as outlined in [7]. It
enables the detection of single event upsets (SEUs) and allows
an on-the-fly recovery. The same technique can be applied on
almost the same area on an SHP-ed stack processor.

As an alternative concept to detect malfunctions of an
application running on a stack processor is the usage of
different software tasks, which are aiming to deliver the same
results. If the results differ, at least one task did not execute
the code as expected. The “free” additional threads that come

with SHP and its increased PpA factor enable the execution of
redundant tasks on almost the same die size without loosing a
reasonable amount of system performance.

D. … and what turned out to be not very beneficial

The idea of combining a FORTH compatible SHP-ed
processor with OpenMP [8] was not very successful. Although
some OpenMP concepts can be used in the FORTH language,
the restriction comes from the write/read policies of
private/shared variables used by individual tasks. Still, the
programmer can use the TCRS to benefit from the
implemented fork-join mechanism.

Another intriguing idea when working with an SHP-ed
FORTH processor is that each thread can access the stack of
alternative threads. It turned out that the resulting logic is too
complex and therefore inefficient. Alternatively, threads can
be synchronized using the TC's DLIW technique as well as the
message passing method, which is outlined in the next section.

V. THE PROPOSED SYSTEM

Figure 8: Overview of the Proposed System.

A. Overview

Figure 8 gives an overview of the proposed system. It is
based on the diploma-thesis of G. Hohner, which is released
on the OpenCores webpage [9]. A FORTH compatible
program can be compiled by the original client (compiler).
The program is then downloaded through an USB interface to
a 12-bank wide SDRAM block. The original stack processor is
enhanced by the SHP technology. A thread controller is added
which can be programmed by the processor using special
function registers (SFR). There are also some standard
peripherals like GPIO, UART and Timer. The design is
mapped on an FPGA. An external SRAM provides enough
memory for data access.

B. The FORTH Stack Processor and its SHP-ed Version

The CPU is a FORTH compatible stack processor with 6
stages and two 32-bit wide stacks. It supports all common
FORTH commands (see [9] for more details).

The CPU is slightly optimized so that it can be used for an
automatic transformation process towards an SHP-ed version,
which is done by a tool called CoreMultiplier [10]. Based on
empirical data of other CPUs of comparable complexity, the
parameter C was set to 4, which results in a good
performance-versus-area (occupied slices) trade-off. In other
words, 3 (C-1) registers are automatically inserted into each

path in the CPU by a timing driven algorithm (, whereas some
of the registers are merged into their adjacent memory blocks
again, see section II). The parameter D was initially set to 16.
Less than 16 threads do not reduce the number of occupied
memory resources. Due to the high registers count of the CPU,
D was then reduced to 8 so that the stacks can share FPGA
memory resources.

The CPU accesses an external SRAM using an SHP-ed
SRAM controller for data transfer and a external SDRAMs
using an SHP-ed SDRAM controller for the program code.
The external SDRAM is based on 16-bit wide devices so that a
pair generates a 32-bit wide interface. Three individual
SDRAM pairs build an SDRAM list with 12 banks. This
allows individual threads to access individual banks. Each
thread can access the complete SRAM range and the complete
SDRAM range as program memory.

C. The Message Passing Extension

Before SHP was applied on the original design, one
additional coprocessor register COR is added. A new FORTH
instruction CTC (copy to coprocessor) writes the stack value
into COR. An additional instruction CFC (copy from
coprocessor) writes the COR value back onto the stack. The
SHP-ed version was then modified so that each thread writes
the stack's value into the COR of the thread with the next TID.
This adjacent thread can then read this value one cycle later by
using the CFC word. This mechanism is very helpful when the
DLIW method is used and a message needs to be passed to
another thread.

D. The FPGA Board

Figure 9: FPGA Board with unique SDRAM access structure.

The proposed system is mapped on a Spartan 6 LX25
FPGA board with a unique SDRAM access structure (see
Figure 9). It allows the individual threads on the CPU to
access up to 12 individual SDRAM banks. Without that
infrastructure, the memory bandwidth would be a major
bottleneck (memory wall).

E. The Software Compiler and Client

The FORTH compiler and the client are taken over from the
original source [9], which is written in Java. The two

additional instructions (CTC and CFC) are added to the
compiler code. The communication with the board was
enhanced for HS-USB using an FTDI [11] DLL and an FTDI
USB chip.

VI. RESULTS

In this section, the original design variations are compared
to the system hyper pipelined version of its single core
implementation. The original work includes a feature to
automatically generate a multicore solution by modifying a
parameter called “core”. By increasing the core parameter, the
number of CPUs and CPU stacks increases accordingly.

Table 1. Comparing Performance per Area of the Original Design
and the SHP-ed Version.

unit original, core = SHP, C = 4,
D = 81 2 3 4

occS 1377 1865 2380 3143 1927

Perf. MHz 45,44 45,44 45,44 45,44 159,12

PpA kHz/occS 32,99 24,36 19,09 14,45 82,57

ΔPpA % 100 73,83 57,86 43,81 250,23

Table 1 compares the results for the different
implementations mapped on a Spartan 6 LX25 FPGA. The
occupied slices (occS) of the original design with increasing
core factor (1, …, 4) is shown. The performance remains
stable for all 4 core variations at 45,44 MHz. This decreases
the performance-per-area factor (PpA) due to the increased
number of occS. The SHP-ed achieves a performance of
159,12 MHz on 1927 occS, which results in a PpA of 82,57
kHz/occS. This is a PpA increase of 250% compared to a
single core implementation of the original core. The occS
number of the SHP-ed version includes the design of the TC,
which consumes just 226 slices of the FPGA.

Further performance tests are not conducted, because they
heavily depend on how the algorithm can be partitioned into
multiple independent threads. The runtime of the original
program and the runtime enhancements when using the
multithreaded SHP-ed version can easily be derived from the
numbers given in Table 1.

VII. CONCLUSION

This paper showed how C-Slow Retiming (CSR) and
parallel programming can be combined to a new method
called System Hyper Pipelining (SHP). SHP benefits from the
higher performance per area (PpA) factor, which can be
achieved when using CSR. Additionally, SHP offers also
flexible thread stalling, bypassing and reordering features
which are used by multi-threading methods to improve the
system performance.

SHP is applied on a FORTH compatible stack processor.
This stringent transformation process can be automatically

accomplished within seconds and results in a multi-threaded
version of the stack processor. Fig. 4 shows, how the increased
system performance can be distributed among multiple design
copies by using a thread controller. Individual threads can run
at different speeds and can even be completely stalled without
consuming relevant power anymore. The paper shows how a
thread controller enables fork-join operations by accessing its
special function registers. Also very large instruction words
(VLIW) can be executed by running consecutive threads. In
the proposed system the VLIW can also have a dynamic
length.

The system is mapped on an FPGA. The increased system
performance though requires an enhanced memory access
method to reduce the potential memory bottleneck. A
hardware solution with 12 SDRAM banks is proposed. The
time shared memory access works in-line with the time-shared
mechanism used to duplicate the functionality of the FORTH
compatible stack processor.

REFERENCES

[1] GreenArrays. B001 - F18A Technology Reference.
Available online: www.greenarraychips.com/home/
documents/greg/DB001-110412-F18A.pdf, as of April 21,
2013.

[2] C. Leiserson and J. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, vol. 6, no. 1, pp. 5-35, 1991.

[3] T. Strauch, "The Effects of System Hyper Pipelining on
Three Computational Benchmarks Using FPGAs", 11th
Intern. Symposium in Applied Reconfigurable
Computing, ARC 2015, 13-17 April 2015, Bochum,
Germany, pp. 280 – 290

[4] Atmel, “AT91SAM ARM based Flashed MCU”,
Available online: http://www.atmel.com/Images/doc11057.pdf

[5] T. Schneider, I. Von Maurich, and T. Guneysu, “Efficient
implementation of cryptographic primitives on the GA144
multi-core architecture”, 24th Intern. Conf. on
Application-Specific Systems, Architectures and
Processors (ASAO), IEEE 2013, 5-7 June 2013,
Washington, pp 67-74.

[6] MPE Microprocessor Engineering, “Comet Landing – a
triumph for Forth in Hardware and Forth in Software”,
Press Release, 13th November 2014, Southampton, UK

[7] T. Strauch, “Using C-Slow Retiming in Safety Critical
and Low Power Applications”, First Intern. Workshop on
FPGAs in Aerospace Applications, FASA 2014, 5th
September 2014, Munich, Germany, pp. Tpd.

[8] OpenMP, “The OpenMP API Specification for Parallel
Programming”, Available online: www.openmp.org

[9] Opencores, Stockholm, Sweden, 2007, Available online:
www.opencores.org/projects

[10] Edaptix, CoreMultiplier, Munich, Germany, Available
online: www.edaptix.com/coremultiplier.htm

[11] FTDI, Avalable online: www.ftdichip.org

http://www.edaptix.com/coremultiplier.htm
http://www.openmp.org/
http://www.opencores.org/projects

