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Abstract— FORTH  compatible  stack  processors  are  still 
subject to research and development. They also face new multi-
processing and multi-threading challenges. Most notoriously the 
multicore processor G144 from the inventor of FORTH Charles 
Moore. This paper outlines an alternative concept to generate a 
mutli-threaded  FORTH  compatible  stack  processor  by  using 
System Hyper Pipelining (SHP), which overcomes the limitations 
of classical  multi-threading methods  by adding thread stalling, 
bypassing  and  reordering  techniques  to  better  cope  with  the 
challenges  of  Symmetrical  Multi-Processing  and  Simultaneous 
Multi-Threading.  SHP  is  ideal  for  FPGAs  with  their  high 
number of registers and their flexible memory usage. The paper 
gives results for a FORTH compatible stack processor mapped 
on an FPGA.
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I.  INTRODUCTION

Charles  Moore,  the  inventor  of  FORTH  introduced  a 
multicore  array  chip  based  on  a  FORTH  compatible  stack 
processor in [1]. This design uses the traditional approach of 
generating a multicore chip based on an array-like orientation. 
This paper now proposes an alternative approach of generating 
a  multi-threaded  stack  processor  by  using  System  Hyper 
Pipelining, which is a successor of C-Slow Retiming.

C-Slow  Retiming  (CSR)  provides  C  copies  of  a  given 
design  by  inserting  registers  and  reusing  the  combinatorial 
logic  in  a  time  sliced  fashion.  CSR therefore  improves  the 
performance per area factor.  Leiserson et. al. introduced the 
concept of C-Slow Retiming (CSR) in [2]. In section II,  the 
System  Hyper  Pipelining  technology  is  shown  and  how  it 
differs  from  CSR.  Section  III  outlines  a  thread  controller 
which  copes  with  a  high  number  of  threads.  Section  IV 
outlines,  how  a  FORTH  based  stack  processor  can  benefit 
from  SHP.  A  system  is  proposed  in  section  V  before  the 
results are given in section VI.

II. CSR AND SHP TECHNOLOGY 

System  Hyper  Pipelining  (SHP)  has  been  introduced  by 
Strauch in [3]. This paper gives a 2-page introduction for the 
readers' convenience again. SHP is based on C-Slow Retiming 
(CSR). It  enhances CSR with thread stalling, bypassing and 

reordering techniques by replacing the original registers of the 
design with memories and by adding a thread controller (TC). 
In the remainder of this paper, the word “thread” (T) is used 
synonym for the execution of a program or algorithm.

Figure 1: a) Simplified single clock design. b) Applying CSR 
technique.

Figure 1a shows the basic structure of a sequential circuit 
with its inputs, outputs, combinatorial logic (CL) and original 
design  registers  (DR).  The  sequential  circuit  handles  one 
thread T(1). Figure 1b shows the CSR technique. The original 
logic is sliced into C (here C=3) sections. This results in C 
functionally independent  design copies T(C=1..3) which use 
the logic  in  a  time sliced fashion.  Each  thread  has  its  own 
thread ID (TID). For each design copy it now takes C “micro-
cycles”  to  achieve  the  same  result  as  in  one  cycle  (called 
“macro-cycle”)  of  the  original  design.  The  implemented 
registers are called “CSR Registers”, (CR) and are placed at 
different C-levels (CRn).

Figure 2: a) SHP-ed design with thread controller, memories 
and CRs. b) Advanced SHP.

Figure  2a  shows  the  modifications  of  a  CSR-ed  design 
towards  SHP.  Assuming  the  DRs  are  now  replaced  by  a 
memory (M). The incoming design states / threads are stored 
at the relevant address (write pointer) based on the TID. D is 
the number of threads which the memory can hold (memory 
depth). The outgoing thread can now be freely selected within 
D available threads (read pointer), except the threads already 
passing through the design logic. A CSR-ed design has usually 
many  shift  registers.  DRs  are  followed  by  a  series  of  CR 



registers. In the SHP-ed version, many memory data outputs 
are connected to CRs. In this case,  the shift registers  at the 
outputs can be replaced by registers at the read address inputs 
of  the  memories  (Figure  2b).  The  memory  is  sliced  into 
individual  sections  (M0,  M1,  M2)  and  each  section  has  a 
delayed read of the thread. The outputs can now be directly 
connected  to  the  relevant  combinatorial  logic  and  the  shift 
registers can be removed. The same trick can be applied on the 
shift register chains at the inputs of the memory.

Fcsr = Forig * C * r C with r ~ 0.93                     (1)
0 Hz <= Ft <= Forig * r C          (2)
Fshp = Σ Ft <=  Fcsr                       (3)

We  define  Forig  as  the  maximal  speed  of  the  original 
design.  The  maximal  speed  of  a  CSR-ed  design  can  be 
estimated by using Equation 1. Fcsr  is C times the original 
speed Forig reduced by a correction factor rC, which considers 
the  delay  inserted  on  the  critical  path  by  the  CRs.  r  is 
technology dependent. Based on empirical data, r is roughly 
0.93 for a Virtex-6 FPGA. Equation 2 says, that in an SHP-ed 
design, a single thread can now run at any speed (over a long 
period) between 0 Hz (stalled) and  Forig * r  C. The maximal 
speed  of  an  SHP-ed  design  Fshp  is  the  sum  of  all  active 
threads (Equation 3). Fshp cannot be greater than Fcsr.

Figure 3: SHP based performance per area improvement based 
on a Cortex M3 example.

Figure 3a shows a Cortex M3 (as it can be found in [4]) 
implementation  on  a  a  Virtex-6.  With  C=4  and  D=16,  the 
SHP-ed  version  (Figure  3b)  is  just  33%  larger  (occupied 
slices)  but  can  achieve  230%  more  performance  (overall 
330%)  compared  to  the  original  implementation.  In  other 
words, SHP improves the performance per area factor if the 
application can utilize this performance gain by using at least 
4 independent threads. 

Figure 4: Histogram of different scenarios (a-d) of running 
CSR and SHP.

Figure 4 shows the advantages of CSR and SHP over the 
original  design.  The  x-axis  shows  different  scenarios. 
Assuming a single CPU runs at 60MHz on an FPGA (Figure 
4a).  It  can  be  seen,  how  CSR  improves  the  system 
performance  of  the original  system implementation,  (Figure 
4b).  When  using  CSR,  the  system  performance  is  not 
necessarily limited by the critical path of the original design, 
but - for instance - by the switching limit of the FPGA (e.g.  
250MHz) or the external memory access instead. 

There  are  two key observations  when SHP is  used  on  a 
design.  First,  for  executing  multiple  programs  on  multiple 
CPUs (symmetrical multi-processing (SMP)) or for executing 
multiple  threads  on  a  CPU  (simultaneous  multi-threading 
(SMT)),  SHP  allows  a  more  efficient  usage  of  the  system 
resources.  It  adds  the  possibility  to  dynamically  scale  the 
system performance over a minimum (C, Figure 4b),  and a 
maximum (D, Figure 4d) set of design copies,  whereas  any 
solution  in-between  can  be  realized  (Figure  4c).  This  load 
balancing is handled by a thread controller (TC).

Secondly, threads don't interact with each other. There is no 
register  dependency  between  the  individual  threads.  The 
runtime of each thread is therefore deterministic. The variable 
latency that the execution per thread may experience due to 
different behavior in if-branches for instance is not an issue, 
because all threads work independent of each other. 

III. THE THREAD CONTROLLER

Figure 5: Thread Controller Mechanism.

A TC is  used,  which  is  controlled  by  a  special  function 
register  set  TCRS  (Thread  Controller  Register  Set).  It  is 
accessible by all active threads (T). Each thread has its own 
thread register (TR). Figure 5 shows how the Thread ID (TID) 
is provided for the SHP memories. When a thread is executed, 
its TID passes through the ID-Queue (IDQ).  It  is  reinserted 
into the IDQ or into the ID-FIFO, if the relevant bit in the TR 
shows that the thread is still active and not on hold or killed. 
When less than C threads are valid, active threads need to be 
re-executed, but the valid bit V of the IDQ indicates, that its 
state copies should not be stored. When more than C threads 
are executed or an additional thread is inserted, then the TID is 
parked in the ID-FIFO. 

Threads can be added to the active thread list  by writing 
their program start address to the “Activate” register. This sets 
the thread-specific active A bit in the TR. Threads can be hold 
by setting the hold H bit or killed by clearing the active A bit 
in the TR. When the thread priority bit P is set in the TR, then 



a thread execution has a higher priority than the threads stored 
in the ID-FIDO or threads resulting from an interrupt or the 
CPU. It is therefore directly re-inserted into the IDQ again and 
not stored into the ID-FIFO. 

To cope with fork-join queueing, the following mechanism 
is implemented. A set of Ts an be started from a single main 
thread  (MT)  by  successively  writing  the  individual  start 
addresses of the Ts to be started to the TCRS called “Activate 
and Count” (AC). By doing that, the number of Ts called (CT) 
by the MT is stored in the AC register.  Optionally the MT 
stalls itself after that process. Each CT saves the MT's SID in 
the  “forked  thread  register”  (FT).  When  a  CT  is  killed,  it 
checks  the  FT  and  decrements  the  AC of  the  MT.  If  this 
number gets 0, the MT stalling bit is cleared by default and the 
MT continues. Alternatively the MT can read it's AC register 
to continue execution.

The  TCRS  can  be  programmed  to  set  a  group  of 
consecutive  threads  into  dynamic  length  instruction  word 
(DLIW) mode. By doing that, a given number of threads are 
executed in parallel. The concept is similar to the very long 
instruction  word  (VLIW)  concept,  except  the  fact  that  the 
number  of  threads  running  in  parallel  can  be  dynamically 
defined (but must be lesser or equal to D). 

Figure 7: Grouping threads to run dynamic length instruction 
words.

Figure 7 shows an example. The threads with the TID 2,3 
and 4 are running as a group using DLIW. Thread 9 is listed to 
show that alternative threads can still be actively running. The 
first thread in the DLIW (TID 2) starts the parallel execution 
when the number of subsequent threads (here 2) is written into 
its  DLIW  register.  Branch  instructions  (words)  are  only 
consider  by the  initial  thread  (here  TID  = 2),  the  program 
counter of the subsequent threads are always derived from its 
trailing thread (by adding the value of 2 for instance).

This outlined TC has a low complexity (see result section). 
It can stall and bypass individual threads and it is capable of 
handling  fork-join  queues.  By  default,  a  thread  runs 
completely independent of the other threads when its priority 
thread is set and when only less or equal number of C threads  
have  the  priority  bit  set.  It  can  also  group  threads  to  run 
dynamic  length  instruction  words.  The  DLIW  method  is 
accompanied by the message passing implementation, which 
is outlined in the sequel of this paper.

IV. BENEFITS OF A MULTI-THREADED STACK PROCESSOR 

A. … compared to its single core implementation

This sections lists  some of the benefits  of  an SHP based 

multi-threaded stack processor. First, it is compared to a single 
core implementation. It is assumed, that the application can be 
partitioned  into  individual  threads  to  a  certain  degree.  This 
certainly has its limit (Amdahl's Law), but applications in the 
field of automation and controlling for instance can usually be 
partitioned into individual tasks, whereas most of them can be 
executed in parallel.

The key benefit of SHP when applied on a single core is the 
increase  of  the performance-per-area (PpA) factor.  This has 
been shown in [3] based on FPGAs and it is demonstrated in 
the result  section of this paper again.  The performance of a 
system is already increased when a second thread can be used. 
All threads of an SHP-ed processor can share the same data. 
The time sliced access to the program memory increases the 
memory  bandwidth  and  reduces  potential  memory-wall 
problems.

B. … compared to a multicore implementation

Charles  Moore  has  introduced  a  multicore  array  stack 
processor GA144 [1]. A functional identical SHP-ed version 
can be realized on a smaller die size due to the increased ppa 
factor.  Alternatively more performance could be realized on 
the same area when SHP is used. 

The  GA144  was  used  by  Schneider  et  al.  in  a  research 
project  [5].  In  their  work,  an  application is  partitioned into 
individual tasks, whereas each task is assigned to an individual 
core on the GA144. It is easy to understand, that in this case, 
tasks have to stall sometimes, because they need to wait on 
data from other tasks to be processed. It has been outlined in 
section II of this paper, that SHP allows the dynamic scaling 
of individual threads on an SHP-ed processor. If a task can be 
stalled  (because  it  is  waiting  for  data  from other  tasks  for 
instance),  then  its  associated  thread  can  be  stalled  and 
therefore frees performance for other threads. A task on the 
SHP-ed  processor  array  does  not  necessary  consume 
performance nor logic area when stalled.

On an SHP-ed based processor array, multiple threads (D) 
on each element can share the same memory. On a traditional 
multicore  array  (GA144),  data  has  to  be  transferred  to  the 
individual core/thread.

C. … when used in a safety critical environment

FORTH compatible stack processors can be used in a safety 
critical environment. Most notoriously is the controlling of the 
Philae  landing  process,  using  FORTH  and  a  radiation 
hardened processor [6].  A C-slow retimed processor  can be 
used to generate a time redundant system, as outlined in [7]. It 
enables the detection of single event upsets (SEUs) and allows 
an on-the-fly recovery. The same technique can be applied on 
almost the same area on an SHP-ed stack processor. 

As  an  alternative  concept  to  detect  malfunctions  of  an 
application  running  on  a  stack  processor  is  the  usage  of 
different software tasks, which are aiming to deliver the same 
results. If  the results differ, at least one task did not execute 
the code as expected. The “free” additional threads that come 



with SHP and its increased PpA factor enable the execution of 
redundant tasks on almost the same die size without loosing a 
reasonable amount of system performance.

D. … and what turned out to be not very beneficial

The  idea  of  combining  a  FORTH  compatible  SHP-ed 
processor with OpenMP [8] was not very successful. Although 
some OpenMP concepts can be used in the FORTH language, 
the  restriction  comes  from  the  write/read  policies  of 
private/shared  variables  used  by  individual  tasks.  Still,  the 
programmer  can  use  the  TCRS  to  benefit  from  the 
implemented fork-join mechanism.

Another  intriguing  idea  when  working  with  an  SHP-ed 
FORTH processor is that each thread can access the stack of 
alternative threads. It turned out that the resulting logic is too 
complex and therefore inefficient.  Alternatively,  threads can 
be synchronized using the TC's DLIW technique as well as the 
message passing method, which is outlined in the next section.

V. THE PROPOSED SYSTEM

Figure 8: Overview of the Proposed System.

A. Overview

Figure 8 gives an overview of the proposed system. It  is 
based on the diploma-thesis of G. Hohner, which is released 
on  the  OpenCores  webpage  [9].  A  FORTH  compatible 
program can  be  compiled  by the  original  client  (compiler). 
The program is then downloaded through an USB interface to 
a 12-bank wide SDRAM block. The original stack processor is 
enhanced by the SHP technology. A thread controller is added 
which  can  be  programmed  by  the  processor  using  special 
function  registers  (SFR).  There  are  also  some  standard 
peripherals  like  GPIO,  UART  and  Timer.  The  design  is 
mapped on an  FPGA. An external  SRAM provides  enough 
memory for data access.

B. The FORTH Stack Processor and its SHP-ed Version

The CPU is a FORTH compatible stack processor with 6 
stages  and  two 32-bit  wide  stacks.  It  supports  all  common 
FORTH commands (see [9] for more details).

The CPU is slightly optimized so that it can be used for an 
automatic transformation process towards an SHP-ed version, 
which is done by a tool called CoreMultiplier [10]. Based on 
empirical data of other CPUs of comparable complexity, the 
parameter  C  was  set  to  4,  which  results  in  a  good 
performance-versus-area (occupied slices) trade-off.  In  other 
words, 3 (C-1) registers are automatically inserted into each 

path in the CPU by a timing driven algorithm (, whereas some 
of the registers are merged into their adjacent memory blocks 
again, see section II). The parameter D was initially set to 16. 
Less than 16 threads do not reduce the number of occupied 
memory resources. Due to the high registers count of the CPU, 
D was then reduced to 8 so that the stacks can share FPGA 
memory resources. 

The  CPU  accesses  an  external  SRAM  using  an  SHP-ed 
SRAM controller  for  data transfer  and a external  SDRAMs 
using an SHP-ed  SDRAM controller  for  the  program code. 
The external SDRAM is based on 16-bit wide devices so that a 
pair  generates  a  32-bit  wide  interface.  Three  individual 
SDRAM  pairs  build  an  SDRAM  list  with  12  banks.  This 
allows  individual  threads  to  access  individual  banks.  Each 
thread can access the complete SRAM range and the complete 
SDRAM range as program memory.

C. The Message Passing Extension

Before  SHP  was  applied  on  the  original  design,  one 
additional coprocessor register COR is added. A new FORTH 
instruction CTC (copy to coprocessor) writes the stack value 
into  COR.  An  additional  instruction  CFC  (copy  from 
coprocessor) writes the COR value back onto the stack. The 
SHP-ed version was then modified so that each thread writes 
the stack's value into the COR of the thread with the next TID. 
This adjacent thread can then read this value one cycle later by 
using the CFC word. This mechanism is very helpful when the 
DLIW method is used and a message needs to be passed to 
another thread.

D. The FPGA Board

Figure 9: FPGA Board with unique SDRAM access structure.

The  proposed  system  is  mapped  on  a  Spartan  6  LX25 
FPGA  board  with  a  unique  SDRAM  access  structure  (see 
Figure  9).  It  allows  the  individual  threads  on  the  CPU  to 
access  up  to  12  individual  SDRAM  banks.  Without  that 
infrastructure,  the  memory  bandwidth  would  be  a  major 
bottleneck (memory wall).

E. The Software Compiler and Client 

The FORTH compiler and the client are taken over from the 
original  source  [9],  which  is  written  in  Java.  The  two 



additional  instructions  (CTC  and  CFC)  are  added  to  the 
compiler  code.  The  communication  with  the  board  was 
enhanced for HS-USB using an FTDI [11] DLL and an FTDI 
USB chip. 

VI. RESULTS

In this section, the original design variations are compared 
to  the  system  hyper  pipelined  version  of  its  single  core 
implementation.  The  original  work  includes  a  feature  to 
automatically  generate  a  multicore  solution  by modifying  a 
parameter called “core”. By increasing the core parameter, the 
number of CPUs and CPU stacks increases accordingly. 

Table 1. Comparing Performance per Area of the Original Design 
and the SHP-ed Version.

unit original, core = SHP, C = 4, 
D = 81 2 3 4

occS 1377 1865 2380 3143 1927

Perf. MHz 45,44 45,44 45,44 45,44 159,12

PpA kHz/occS 32,99 24,36 19,09 14,45 82,57

ΔPpA % 100 73,83 57,86 43,81 250,23

Table  1  compares  the  results  for  the  different 
implementations mapped on a  Spartan  6  LX25 FPGA. The 
occupied slices (occS) of the original design with increasing 
core  factor  (1,  …,  4)  is  shown.  The  performance  remains 
stable for all 4 core variations at 45,44 MHz. This decreases 
the  performance-per-area  factor  (PpA) due  to  the  increased 
number  of  occS.  The  SHP-ed  achieves  a  performance  of 
159,12 MHz on 1927 occS, which results in a PpA of 82,57 
kHz/occS.  This  is  a  PpA increase  of  250% compared  to  a 
single  core  implementation  of  the  original  core.  The  occS 
number of the SHP-ed version includes the design of the TC, 
which consumes just 226 slices of the FPGA.

Further performance tests are not conducted, because they 
heavily depend on how the algorithm can be partitioned into 
multiple  independent  threads.  The  runtime  of  the  original 
program  and  the  runtime  enhancements  when  using  the 
multithreaded SHP-ed version can easily be derived from the 
numbers given in Table 1.

VII. CONCLUSION

This  paper  showed  how  C-Slow  Retiming  (CSR)  and 
parallel  programming  can  be  combined  to  a  new  method 
called System Hyper Pipelining (SHP). SHP benefits from the 
higher  performance  per  area  (PpA)  factor,  which  can  be 
achieved  when  using  CSR.  Additionally,  SHP  offers  also 
flexible  thread  stalling,  bypassing  and  reordering  features 
which  are  used  by  multi-threading  methods  to  improve  the 
system performance.

SHP is applied on a FORTH compatible stack processor. 
This  stringent  transformation  process  can  be  automatically 

accomplished within seconds and results in a multi-threaded 
version of the stack processor. Fig. 4 shows, how the increased 
system performance can be distributed among multiple design 
copies by using a thread controller. Individual threads can run 
at different speeds and can even be completely stalled without 
consuming relevant power anymore. The paper shows how a 
thread controller enables fork-join operations by accessing its 
special  function registers.  Also very large instruction words 
(VLIW) can be executed by running consecutive threads. In 
the  proposed  system  the  VLIW  can  also  have  a  dynamic 
length. 

The system is mapped on an FPGA. The increased system 
performance  though  requires  an  enhanced  memory  access 
method  to  reduce  the  potential  memory  bottleneck.  A 
hardware solution with 12 SDRAM banks is proposed.  The 
time shared memory access works in-line with the time-shared 
mechanism used to duplicate the functionality of the FORTH 
compatible stack processor.
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