
Recognizers: Arguments and Design Decisions

M. Anton Ertl∗

TU Wien

Abstract

The Forth text interpreter processes words and
numbers. Currently the set of words can be ex-
tended by programmers, but not the recognized
numbers. User-defined recognizers allow to extend
the number-recognizer part, too. This paper shows
the benefits of recognizers and discusses counterar-
guments. It also discusses several design decisions:
Whether to define temporary words, or a set of in-
terpretation, compilation, and postponing actions;
and whether to hook the recognizers inside find or
in the text interpreter.

1 Introduction

A strength of Forth is its extensibility. You can
define new words to build an application-specific
language, and then program in that language (or
at least that’s a frequently-told tale). However, the
text interpreter conists of two parts: dealing with
dictionary words and dealing with numbers; and
while the former is extensible, the latter is not (in
standard programs).
A recognizer tries to recognize a class of strings

(e.g., numbers), and, if successful, provides the nec-
essary information for text-interpreting it in the rec-
ognized sense; e.g., push the value of the number
during interpretation or (for compilation) at run-
time.
In this paper, we first look at the benefits of in-

troducing recognizers (Section 2), then discuss some
counterarguments (Section 3. We also look at two
design decisions: Whether to let the recognizers de-
fine temporary words or or a set of interpretation,
compilation, and postponing actions (Section 4),
and where recognizers should hook in (Section 5).
Finally, we look at the history of recognizers (Sec-
tion 7).

2 Benefits and Uses

This section describes some benefits of implement-
ing recognizers, in particular some uses.

∗Correspondence Address: Institut für Computer-
sprachen, Technische Universität Wien, Argentinierstraße 8,
A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

2.1 Factoring of numbers

Gforth’s (integer) number parsing has been a hor-
rible mess. A long time ago I tried to refactor it to
be less horrible, but the result was not much bet-
ter; I particularly dislike the words with variable
stack effects due to the words handling both single-
cell and double-cell numbers. Other Forth systems
have similar horrors in this area. This failure is
probably due to my shying away from refactoring
the text interpreter itself.

Recognizers provide an easy way to solve the vari-
able stack-effect problem: Have one recognizer for
single-cell numbers and one for double-cell numbers.
Of course this kind of factoring is also possible with-
out support for user-defined recognizers, but the
implementation difference to also supporting user-
defined recognizers would be small.

That being said, the current implementation in
Gforth (by Bernd Paysan) uses one number recog-
nizer that calls the not-much-better-factored words,
but now that is easy to change.

2.2 Floating-point numbers

Standard floating-point numbers require a recog-
nizer for the FP numbers. Most Forth systems
initially just support the (integer) number recog-
nizer, and add the FP recognizer at a later point in
time (sometimes only after user intervention); they
typically use a hook for this that is used for this
particular purpose. User-defined recognizers are a
generalization of this principle.

2.3 Other literals

SwiftForth supports various non-standard ways
to write doubles, such as 2016-09-07, 9/7/2016,
7.9.2016, which is supposedly good for writing dates
or telephone numbers, but, as you can see from
these examples, where we get three different dou-
bles for the same date, the technique has significant
limitations. A full-blown recognizer for dates (or
three, one for each date syntax) will interpret the
correct fields as year, month, and day, depening on
the separator character, and also perform the con-
version into an appropriate format.

Ertl Recognizers

2.4 Parsing words

In the absence of user-defined recognizers, people
have written parsing words as a workaround, e.g.

char a \ made unnecessary by ’a’

[char] a \ made unnecessary by ’a’

’ word

[’] word

s" some string"

Some people have even claimed that the pars-
ing words are the Forth way to do such things, but
the fact that Forth originally had a (non-extensible)
number recognizer and no s" is counterevidence to
this claim.
s" has the problem of surprising behaviour in

some corner cases in many systems (e.g., due to
state-smartness [Ert98] or because the replace-
ment of state-smartness in some implementations
does not cover all corner cases, either).
’/[’] does not have corner-case problems, but

it has the problem that the frequent case of cut-
ting and pasting code between interpreted code and
compiled code requires changing the code.
By adding a recognizer for "some string", we

get rid of the corner cases. One unusual thing here
is that the recognized string can extend across a
white space; while recognizers get a parse-name-
parsed string as parameter, they can do their own
parsing. However, that parsing is always done
at text-interpret time, avoiding the problems of
state-smartness etc.
Likewise, we can add a recognizer that recognizes

’word and produces the xt of word, and it will work
like ’ word interpretively, and like [’] word while
compiling.

2.5 to

Parsing words are not just used for literals; to is
also a parsing word that has the same problems as
s" (except that the corner cases are ambiguous con-
ditions in the standard), and recognizers can also
be used to replace to. Gforth has a recogizer that
recognizes ->x , and that is equivalent to to x (for
locals, values etc.) and is x (for deferred words).

2.6 Dot-Notation Parser

One problem that Forth has had is the naming of
structure and object fields. Frequent field names are
next, count, val, left, right, but you normally
don’t want to define them more than once (and, in
the case of count, the name is already taken).
One workaround has been to include the struc-

ture name in the name, e.g. list-next, but
with inheritance of fields in object-oriented pro-
gramming, this does not work so well: e.g.,

you would have intlist-val for the val field,
but intlist-next would not be defined (instead,
list-next). Some object-oriented systems (in par-
ticular, objects.fs [Ert97]) work around this prob-
lem by putting the fields in class-specific wordlists
and changing the search order appropriately, but
that restricts field access to only the current object
(or at least the current class).
Therefore, a desired and missing feature in Forth

has been to change the search order for one word
only, in order to use the right field word (among a
number of such words with the same name) with-
out too much ado. One example of this desire is
the Prelude concept [Mah98]; another is the dot-
notation parser of ClassVfx OOP [MPE16, Section
29.11]. In the dot notation, if you have a type Point
with field x and an instance MyPoint of type Point,
you can access the field x either with MyPoint.x or
with MyPoint Point.x.
A dot-notation parser can be implemented as a

recognizer.

2.7 Postpone, ’, and [’]

In standard code, when you want to postpone a lit-
eral, you cannot do it directly, but have to find a
workaround. E.g., write 5 postpone literal in-
stead of postpone 5; that’s also true for literals
produced by parsing words: instead of postpone

s" bla", you have to write s" bla" postpone

sliteral.
And it’s also true for other things you do with

parsing words: when you want to postpone to

this, you cannot do it directly, but have to define

: to-this to this ;

and then postpone to-this.1

Recognizers (as proposed in the RfD) support
postponeing recognized strings. One benefit is that
this feature allows writing smaller and easier-to-
read code, but the main benefit is that it closes
the hole that made the workarounds necessary.
One recognizer approach (Section 4.1) also sup-

ports ticking recognized strings, so one could write
’15 instead of having to define

15 constant fifteen

first and then writing ’fifteen.

3 Counterarguments

There have been quite a number of negative reac-
tions to the proposal for user-defined recognizers.
They are generally not technical, but nevertheless,
let’s examine some of the arguments.

1If you think that this is a contrived problem, you are
wrong. This problem and this solution occur in objects.fs

[Ert97].

Ertl Recognizers

3.1 Recognizers are not needed

As Section 2 shows, there is a need, e.g., adding
a floating point recognizer or a dot-notation parser.
Currently systems add these things through system-
specific hooks; standardized recognizers would
make it possible to do such things portably, and
define and use them in portable libraries.
You may not see a need for all the features men-

tioned in Section 2, but if there is just one you need
and that your vendor does not provide, the recog-
nizers have paid off for you and for the vendor (who
does not have to develop and maintain the feature
himself).

3.2 People could misuse recognizers

People can already misuse a lot of things in Forth
(e.g., : 0 1 ;), but Forth is not a nanny language.
Forth design centers around responsible program-
mers, so while we will see some cases that most
will consider misuses, it is much more important
whether we will see some good uses. While not ev-
eryone will see all the uses mentioned above as good
uses, as long as there are some that are considered
good uses, it’s a good reason to standardize rec-
ognizers. After a period of experimentation, there
will be a rough consensus on what are good uses of
recognizers and what aren’t.

3.3 Recognizers are an attempt to

make Forth more like C

C does not have a way to extend literals in a user-
defined way, so, in a way, recognizers make Forth
less like C. One could use recognizers to recognize
some C lexical or small syntactic elements, and one
can see the dot-notation recognizer as going in that
direction. But note that people have been doing
that even without standardized recognizers (in a
non-standard way); also note that various people,
including Chuck Moore, Julian Noble, and Andrew
Haley have implemented infix notation or infix pro-
gramming languages in Forth (something that rec-
ognizers do not facilitate), so if a Forth programmer
is determined to go there, leaving recognizers away
won’t stop him.

3.4 Use parsing words! It’s more

Forth-like

Technically, parsing words cause problems: Either
when trying to cut-and-paste between interpreta-
tion and compilation, such as ’/[’], or in corner
cases, such as s". Recognizers avoid these prob-
lems and are therefore preferable. Indeed, one of
the big advantages of recognizers is that they pro-
vide a long-term perspective for eliminating these

problems.

As for Forth-like, recognizers for integers (singles
and doubles) were part of Forth from the start. And
simple ways to allow inputting dates and telephone
numbers were part of the number recognizers of
Forth, Inc. The only thing that was missing was
the possibility to add user-defined recognizers; the
use of parsing words, such as s", is a workaround
for this shortcoming, not a virtue.

4 Implementing a recognizer

This section looks at different implementation ap-
proaches for defining a recognizer. The outside
interface of these implementation approaches can
be made compatible, so these implementation tech-
niques can both be used in the same system if de-
sired.

4.1 Temporary words

A recognized string should behave like a word, so
one way to implement a recognizer is to actually let
it define a word when recognizing a string; e.g., for
a string 123, there is a temporary definition (not in
any wordlist, name not important):

123 constant #123

and the xt of this word is executed in interpretation
state, or compile,d in compile state, like a regular
word. It can also be postponed or ticked.

However, one problem is that, in some of these
uses, the word must be preserved and cannot be
just temporary. After executeing the word, we
no longer need it and can reclaim the memory it
uses; for compile,, it depends on how that is imple-
mented. The classic threaded-code implementation
(just ,) would require that the word is preserved;
however, many modern compilers have an intelli-
gent compile, that compiles constants to literals,
without reference to the compiled word, and there-
fore there is no need to preserve the word in that
case. For postpone and ticking, the word must gen-
erally be preserved.

These words can be created in a separate section
[Ert16], with the space reclaimed if the word does
not need to be preserved.

There remains the problem of knowing whether
the word needs to be preserved when the word is
compile,d. The defining word could leave a flag in
the defined word (or maybe a global flag) that in-
dicates whether the word leaves a reference to itself
when it is compile,d.

As a simple example, the core of a recognizer for
unsigned single numbers looks as follows:

Ertl Recognizers

: (single-rec) (c-addr u -- nt)

0. 2swap >number 0= if \ it is a number

2drop noname constant lastxt exit then

2drop drop r:fail ;

>Number is used to check and convert the string,
and if successful (0 unconverted characters), an un-
named constant is created and it’s name token (nt)
is returned; if unsuccessful, it returns a failure indi-
cator (r:fail).
There is also a need to switch sections and

perform other management tasks; these are al-
ways the same, so they are factored into a word
rec2-wrapper (c-addr u xt -- nt), and the
full recognizer is:

: single-recognizer (c-addr u -- nt|0)

[’] (single-rec) rec2-wrapper ;

and this recognizer is added to the recognizer stack
in the second position with:

get-recognizers

’ single-recognizer -rot 1+ set-recognizers

4.2 RfD approach

The temporary word approach is relatively easy to
understand and write, but it puts quite a number
of demands on the system: The system needs to
support another section2, it must be able to cre-
ate words in the middle of another word, possibly
nameless or with their name coming from the stack,
and ideally it should inline the code for that word
when compile,ing it.
While most modern systems have these features

or can add them without too much trouble, for
standardization we may prefer an approach that
puts fewer demands on systems and that does
not require standardizing all the features that the
temporary-word approach requires. The Recognizer
RfD [Tru15] proposes such an approach.
Let’s look at our example of a recognizer for un-

signed single numbers again.

: comp-lit postpone literal ;

’ noop \ interpretation

’ comp-lit \ compilation

’ comp-lit \ part of postponing

recognizer: r:single

: single-rec (c-addr u -- u2 rec | r:fail)

0. 2swap >number 0= if \ it is a number

2drop r:single exit then

2drop drop r:fail ;

2If only interpretation and compilation of recognizers is
supported, and compilation of the word created by the rec-
ognizer does not leave a reference to that word, then a buffer
for one word instead of a full section is sufficient.

get-recognizers

’ single-rec -rot 1+ set-recognizers

The recognizer single-rec3 looks very similar
to (single-rec) in the temporary word approach,
but instead of putting the number in a newly-
created word and returning that, the number is left
on the stack and in addition r:single is pushed.

R:single is a word defined with recognizer: as
a handle for the three actions, and the text inter-
preter (and postpone) access the actions they need
through r:single:

• When interpreting, just leave u2 on the stack
by executeing noop.

• When compiling, compile u2 as a literal by
executeing comp-lit.

• When postponing, the final compile also hap-
pens with the compilation action, but one level
later, so the compilation action comp-lit is
compile,d. That requires that the data is
transfered from the time when the recognizer
runs to the time when the compilation ac-
tion runs; to achieve that, the postponing part
comp-lit is executed before compile,ing the
compilation action.

For literals, the usual pattern of the actions
is noop for interpretation and the appropriate
literal variant for both compilation and postpon-
ing.

The option for deviating from this pattern is use-
ful for other applications of recognizers, such as re-
placing to.

The RfD does not specify the representation of
r:single. In the current version of Gforth, this is
implemented in a way that is compatible with the
temporary-word approach: r:single returns the nt
of a word, and you can get the interpretation action
with name>interpret; you get the compilation ac-
tion with name>compile; and there is also a field
>vtlit, for the postpone-part action.

5 Recognizers where?

Recognizers can recognize words as well as numbers,
so where should they hook in? There are at least
three answers:

5.1 In find

(or its modern replacement, e.g., find-name). The
benefits of this approach are:

3Matthias Trute would call it rec:single, but I find the
presence of both ”r:...” and ”rec:...” confusing.

Ertl Recognizers

• It’s a very natural fit for the temporary-word
approach: Find returns a word, and so do
temporary-word-creating recognizers.

• Find already has a way to add or remove things
to be recognized: the search order. So rec-
ognizers could be added or removed from the
search order, like wordlists, avoiding an addi-
tional mechanism. However existing code deal-
ing with the search order may not be designed
to deal with various recognizers on the search
order.

The disadvantages are:

• Existing users of find (e.g., cross-compilers)
would be surprised by find recognizing num-
bers, and the user’s own number handling
would be shadowed. That could be worked
around by changing the search order appropri-
ately when calling such users.

• For the RfD approach, the fit is not so great. In
particular, we would now have a find that can
generate additional values in addition to the xt
(or nt for find-name) that it should produce.
In many cases that is probably not a problem,
but in some cases, it would be.

• Also, depending on the way words like
r:single are implemented, and the actual
find replacement that we want to hook in,
there may be a mismatch; viewed differently,
the implementation options for recognizer:

would be restricted (but that is not necessarily
a disadvantage).

5.2 In the text interpreter

The classical text interpreter first tries find and
then tries numbers. In the current Gforth im-
plementation, and in the text interpreter example
given in the RfD, the find and number-handling
parts are replaced by a recognizer-handling part.
The search order search is performed by a word rec-
ognizer in the recognizer stack.
The advantages and disadvantages are the con-

verse of those for the find-hooking approach:
Advantages: find users are unaffected, and the

implementation of recognizers has fewer restric-
tions.
Disadvantages: We need the recognizer stack in

addition to the search order (but don’t need to
worry about existing programs doing bad things to
it).

5.3 As text interpreter hook

Instead of replacing the text interpreter the recog-
nizer handling is added as a hook to the existing

text interpreter. This would make the text inter-
preter more complex and reduce the options avail-
able to the programmer, so it offers only disadvan-
tages, except that some consider it advantageous to
reduce the options available to the programmer.

6 Other design decisions

There are some other design decisions where the
right decision is not obvious, in particular: How to
deal with recognizer stacks; whether to use r:fail,
0, or an exception as a failure indication. These and
other design decisions are discussed at length in the
RfD, which is recommended reading [Tru15].

7 History

System-specific hooks in the text interpreter have
existed for a long time.
In 2003, Josh Fuller used recognizer in the sense

used here, and proposed doing things like recog-
nizing dates and (something like) dot notation by
adding new recognizers4; the ensuing discussion
points out that many systems have mechanisms for
adding new recognizers. In that discussion, Jonah
Thomas considered ways to deal with multiple rec-
ognizers, but not how to deal with interpretation,
compilation, etc. in that context.

In 2007, in a discussion about number parsing
hooks, I sketched some ideas about recognizers
news:<2007Aug4.093801@mips.complang.tuwien.ac.at>

news:<2007Aug4.161609@mips.complang.tuwien.ac.at>.
I did not pursue this idea further at the
time, but Matthias Trute picked it up
and proposed using it for a dot-parser
<0dgjs6-h4e.ln1@wolf.stein.zeit>, and imple-
mented them in amForth [Tru11]. Subsequently,
they were also implemented in Win32Forth,
Bernd Paysan implemented them in Gforth
[Pay12a, Pay12b], and Matthias Trute made a
Forth 200x RfD [Tru15] proposing standardization.

8 Conclusion

User-defined recognizers generalize the Forth num-
ber recognizer and various system-specific hooks in
the text interpreter. They allow to replace parsing
words and their problems (e.g., state-smartness),
write a dot-notation parser, and have other bene-
fits. While a number of people have argued against
user-defined recognizers, I have not seen a technical
argument against them yet.
For implementing a recognizer, we look at two op-

tions: Creating a temporary word is a little easier

4http://compgroups.net/comp.lang.forth/additional-recognizers/734676

http://al.howardknight.net/msgid.cgi?ID=147274391200
http://al.howardknight.net/msgid.cgi?ID=147274476500
http://al.howardknight.net/msgid.cgi?ID=147274659900
http://compgroups.net/comp.lang.forth/additional-recognizers/734676

Ertl Recognizers

to understand, and you get correct postpone be-
haviour for free, but it requires more infrastructure
from the system, in particular support for a section
for these temporary words and knowledge about
whether compile, produces a reference to the tem-
porary word. The other option, defining interpre-
tation, compilation, and postponing behaviour is a
little harder to understand, but not much longer,
and it requires less infrastructure from the system.
The latter approach has been proposed for stan-
dardization and is preferable for this purpose.
Another design decision is whether to hook into

find or into the text interpreter. While hooking
into find has some advantages, the advantages of
hooking into the text interpreter, in particular with
respect to backwards compatibility, outweigh them.

References

[Ert97] M. Anton Ertl. Yet another Forth objects
package. Forth Dimensions, 19(2):37–43,
1997. 2.6, 1

[Ert98] M. Anton Ertl. State-smartness — why
it is evil and how to exorcise it. In Euro-
Forth’98 Conference Proceedings, Schloß
Dagstuhl, 1998. 2.4

[Ert16] M. Anton Ertl. Sections. In 32nd Euro-
Forth Conference, pages 55–56, 2016. 4.1

[Mah98] Manfred Mahlow. Prelude and finale: Im-
plicit context switching based on pre- and
post-executed words. In 14th EuroForth,
1998. 2.6

[MPE16] MPE. VFX Forth for x86/x86 64 Linux,
4.72 edition, 2016. 2.6

[Pay12a] Bernd Paysan. Recognizer. Vierte Di-
mension, 28(2):37–38, 2012. 7

[Pay12b] Bernd Paysan. Recognizers. In 28th Eu-
roForth Conference, pages 108–110, 2012.
7

[Tru11] Matthias Trute. Recognizer — inter-
preter dynamisch verändern. Vierte Di-
mension, 27(2):14–16, 2011. 7

[Tru15] Matthias Trute. Forth recognizer — re-
quest for discussion. 3rd RfD, Forth200x,
2015. 4.2, 6, 7

	Introduction
	Benefits and Uses
	Factoring of numbers
	Floating-point numbers
	Other literals
	Parsing words
	to
	Dot-Notation Parser
	Postpone, ', and [']

	Counterarguments
	Recognizers are not needed
	People could misuse recognizers
	Recognizers are an attempt to make Forth more like C
	Use parsing words! It's more Forth-like

	Implementing a recognizer
	Temporary words
	RfD approach

	Recognizers where?
	In find
	In the text interpreter
	As text interpreter hook

	Other design decisions
	History
	Conclusion

