
Security

M. Anton Ertl, TU Wien

Problem

• Attacks on computer systems

• “Hackers”

• Nation-level attackers

Problem for Forth?

• We do embedded systems

Input limited, therefore not attackable

• Example: TV Set with 10 Buttons

Therac-25

Remote control

Teletext

DVB-C/S/T

Smart TV (Internet/WLAN)

• StuxNet

• Internet of Things

Possible Attacks

• Arbitrary Code Execution

• usually enabled by a buffer overflow vulnerability

Stack

Buffer RA

• Dangling pointer

• Other attacks

read buffer overflow (Heartbleed)

SQL injection

...

Buffer overflows in Forth?

• Length of access explicit

move (c-addr1 c-addr2 u --)

but: two lengths involved

Mistakes possible

• Memory accesses with ! c! etc.

• xc!+? instead of xc!+

Separate return stack: does it protect?

create buf 20 allot
create foo my-class new ,
buf 50 my-file read-line
foo @ my-method

buf
code field

data
field
foo

code field

buf
code field

data
field
foo

code field

my-class
xt

code field

native
code

vor read-line nach read-line

native
code

Does non-executable data help?

• NX DEP WˆX ...

• Return-Oriented Programming

libc native codereturn stack

mov eax, [esp]
add esp,4

ret
...

mov [eax], ...
ret
...

Now what?

• Code audit

• Secure programming language

No access beyond buffer boundaries

And in Forth?

• Divide the program

• A part in full Forth

Needs audit against Buffer overflows

• A part in a secure Dialect

More cumbersome to program

simpler audit

Not secure against malicious programmer

for more you would need more type checking

... move ! ...

secure

... move* !* ...

insecure

... ! !* ...

Secure Dialect

• Buffer descriptors: start, end

• Pass and check against buffer descriptor on every write access

• Have checking variants of all writing words

• move* (from to count buf --)

!* (x addr buf --)

read-file* (c-addr u file-id buf -- u2 ior)

• Variables?

Use value

variable* !! @@

Protect against mistakes

• Stack arrangement mistakes

Magic number in descriptor

“encrypt” descriptor

$a9b8c7d6e5f4 <key>

xor

magic number
start xor key
end xor key

Dangling Pointers

• buf @ free-buf 5 a 24 + buf @ !*

• garbage collection instead of free

• or overwrite descriptor on free

Conclusion

• Buffer overflows ⇒ arbitrary code execution

• Secure Forth dialect for defense

each writing word takes buffer descriptor

• No typechecking,

but magic number and/or descriptor “encryption”

to protect against mistakes

