
synthesizing Forth

Forth in the satellite industry

a report on work in progress

Klaus.Schleisiek at spacetech-i.com

Peculiarities of the space industry

Usually these are one-off projects.

Once deployed, satellites can not be repaired.

Development is usually done in four stages:

BB: Breadboard (get the functionality right)

EM: Engineering model (eventual form and function)

QM: Qualification model (heavily mistreated using qualified parts)

FM: Flight model (clean room assembled)

Qualified parts

These are the most important criteria:

Shock and vibration (during satellite launch)

Extreme temperature range

Radiation tolerance depending on the intended orbit:

Total dose (blurring the IC structures created by diffusion)

SEE: Single event effects due to heavy ions

Latchup due to heavy ions

FPGA design flow

Simplified ESA design flow for re-programmable FPGAs:
Definition phase

Top-down architectural design

PDR: Preliminary Design Review

Bottom-up RTL code creation

VHDL simulation and design verification

FPGA synthesis and place&route

Design validation on EM hardware

CDR: Critical Design Review

Design for radiation tolerance

QR / AR: Quality / Acceptance Review

Each warning generated by the design tools has to be
explained to beaurocrats in detail.

Design iterations

A test cycle in VHDL (modification, re-synthesis,
place&route, FPGA re-configuration) takes about
45 minutes.

Putting uCore into the FPGA, realizing "higher level"
functionality in software cuts a test cycle down to

15 seconds.

But:
uCore is not qualified for space use

Software qualification is much more expensive than VHDL

qualification, because we do not quite know "how" to do that ;)

=> Software can only be used during the BB and EM
phases :(

Consequences

Forth programming is restricted to design exploration.
For the QM and FM phases, uCore and Forth have to be "designed

out" and replaced by VHDL code.

=> Forth should be written with synthesizability in mind.

How do we have to write Forth to make it easily portable
to VHDL?

Forth / VHDL

Forth is a sequential language.

Parallelism must be mimicked using multi-tasking.

VHDL describes parallel processes, which all happen
"at the same time". Sequential behaviour must be
explicitly designed in if needed.

=> Forth should be written in a data flow style to ease

the process of porting it to equivalent VHDL code.

An example

1064 nm laser wavemeter:
An InGaAs line of 1024 pixels must be read out, low-pass filtered (noise

suppression) and differentiated to find the center of a gaussian shaped

interferometer "fringe" within 300 usec. Readout alone takes 200 usec.

0

5000

10000

15000

20000

25000

30000

35000

40000

1

3
2

6
3

9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

4
0
4

4
3
5

4
6
6

4
9
7

5
2
8

5
5
9

5
9
0

6
2
1

6
5
2

6
8
3

7
1
4

7
4
5

7
7
6

8
0
7

8
3
8

8
6
9

9
0
0

9
3
1

9
6
2

9
9
3

1st Forth approach

The 1024 AD-converted pixel values will be stored at SCAN
in Forth's data memory by a state machine.

: initial (--)
 0 Scan 1-
 Edge @ ?FOR 1 + ld >r - r> NEXT Crest @ +
 Edge @ ?FOR 1 + ld >r + r> NEXT drop
 first-pixel diff!
;
: filter (i -- i+1)
 dup >r dup diff@ >r first-pixel -
 Scan + ld Edge @ + ld Crest @ + ld Edge @ + @
 -rot + - + r> + r> 1+ tuck diff!
;
: differentiate (--)
 Diff #pixels erase initial
 first-pixel BEGIN filter dup last-pixel = UNTIL
 drop
;

synthesizable approach

Variable Lead

: filter (sum I -- sum') Lead @
 IF dup Edge @ u< IF pix@ - EXIT THEN
 Edge @ Crest @ + 1- over u< IF pix@ + EXIT THEN
 drop EXIT
 THEN
 Scan + 1- ld Edge @ - ld Crest @ - ld Edge @ - @
 -rot + - + +
;
: differentiate (--)
 Diff #pixels erase Lead on 0 #pixels 0
 DO I filter I window = IF Lead off THEN
 Lead @ 0= IF dup I first-pixel - diff! THEN
 LOOP drop
;

