
Special Words in Forth EuroForth 2017

Special Words in Forth
Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8063 1441
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
Over the last few years, I have become convinced that I do not understand the ANS Forth
description of compilation and how this situation came about. The Forth 2012 description of
compilation is the same as that of ANS. This paper describes the process of understanding
that leads to being able to make a few proposals to make use of a new description of
compilation. In essence, we are going to have to regard IMMEDIATE as a special case of
our new situation. The model also allows us to build words that would previously have had
to be state-smart.

Introduction
The Forth94 (ANS) and Forth 2012 standards talk about execution of a word in terms of
semantics. In the Oxford dictionary, we find the definition of semantics to be:
The branch of linguistics and logic concerned with meaning. The two main areas
are logical semantics, concerned with matters such as sense and reference and
presupposition and implication, and lexical semantics, concerned with the
analysis of word meanings and relations between them.
Wikipaedia says:
In programming language theory, semantics is the field concerned with the
rigorous mathematical study of the meaning of programming languages. It
does so by evaluating the meaning of syntactically legal strings defined by a
specific programming language, showing the computation involved.

In terms of undestanding Forth standards, these do not help much. In practice semantics
means action or behaviour. From the Forth 2012 standard:
compilation semantics: The behavior of a Forth definition when its name is encountered by
the text interpreter in compilation state.
execution semantics: The behavior of a Forth definition when it is executed.
interpretation semantics: The behavior of a Forth definition when its name is encountered
by the text interpreter in interpretation state.
In this paper we use semantics, behaviour and action interchangeably.

MPE’s VFX code generator was written in the late 1990s just as the Forth94 standard was
being adopted by most vendors. In particular, VFX took advantage of the then new word
COMPILE, to attach code generators for a range of words. It did this while preserving the
classic Forth interpreter loop, or so we thought.

Special Words in Forth EuroForth 2017

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate?
 if execute else compile, then
 then
;
The classical Forth interpreter loop has been used to describe the operation of Forth for over
three decades now. It has been a useful model for many people. People regularly claim that
they need to write a custom interpreter and that not all Forth systems permit this in a portable
manner. We will see that a minor change to the loop and its associated structures brings it in
line with Forth 2012 and expands the interpreter’s facilities to take advantage of the Forth
2012 description of Forth words’ action or behaviour or semantics.

Although this paper describes the interpreter in terms of the classic Forth interpreter loop, it
should not be assumed that other techniques for writing interpreters are excluded. Exactly the
same problems and solutions are present in techniques with different organisations including
recognisers.

Smart COMPILE,
VFX Forth and other Forths take advantage of COMPILE, (xt --) by attaching
optimisers to the words that they generate code for. For example, the word DUP has a word
C_DUP that generates code for DUP. The xt for C_DUP is attached to DUP. Then when
COMPILE, looks at DUP it executes C_DUP to generate the code for DUP.

Illustration 1: Classical Forth interpreter loop

Special Words in Forth EuroForth 2017

The smart COMPILE, introduces the idea that a word (identified by one primary xt) may
require one or more secondary xts. It has become common practice in desktop Forths for
dictionary headers to contain more than just link, name and flags. This trend is particularly
true in Forth systems that perform native code compilation (NCC).

The smart COMPILE, can completely separate the interpretation (execution of DUP) and
compilation actions of a word. This technique can also be used for other words such as IF,
with the deliberate intention that the interpretation and compilation actions of a word can be
separated. However, COMPILE, is then broken as far as current standards are concerned
because structure words such as IF produce or consume stack items, and string words parse
the input stream. There may/will also be corner cases to do with POSTPONE.

Standards issues
The use of the smart COMPILE, for optimisation is not contentious. However, it opens a box
that cannot and should not be closed. The Forth94 standard introduced a new way of talking
about Forth words. Words have a number of actions, including interpretation and compilation
actions. The only standard way to separate interpretation and compilation actions is,
paradoxically, to define them as being the same and then to use STATE to separate them
within the word. This is the state-smart nightmare that leads to bugs which are hard to find.

In the Forth94 and Forth 2012 world, very few words are defined as IMMEDIATE and there
is no standard way to ask the system if the xt of a word is of an IMMEDIATE word.

In terms of the classical loop shown above, the only place at which non-default compilation
semantics can be attached is COMPILE, and the system immediately becomes contentious,
not least because some people insist that IF must be IMMEDIATE without stating any
evidence for this. Another way to look at the problem is to state that the language of the
standard does not match any Forth implementations except cmForth and Gforth. Chuck
Moore’s cmForth is as idiosyncratic as all Chuck Moore’s other tools and was obsolete at the
time of the ANS standard. Gforth’s original design target was to be a model implementation
of the Forth94 standard, i.e. the standard is correct. In my opinion this design target has lead
to complexity. Correcting the disconnect between the current standard and real Forths while
maintaining simplicity is the function of this paper.

Special Words in Forth EuroForth 2017

A way forward

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate? if
 execute
 else
 ndcs?
 if ndcs, else compile, then
 then
;
The picture illustrates a Forth interpreter/compiler loop that has been modified to cope with
separated interpretation and compilation actions.

We also need a small number of new words that enable the loop to be constructed portably:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
NDCS? Xt -- flag ; return true if the word has non-default compilation semantics
NDCS, i*x xt -- j*x ; like COMPILE, but may parse.

In order to finish up, we need to understand what the word labelled NDCS, actually does. It
finds the word that performs the non-default compilation semantics and then EXECUTEs it.

Illustration 2: Allowing for the Forth94 and Forth 2012 standards

Special Words in Forth EuroForth 2017

The next picture shows the loop using the definition of IMMEDIATE words as having the
same interpretation and compilation semantics.

The significant change is the introduction of a dictionary header flag, NDCS, which indicates
that a word has non-default compilation semantics.

Replace IMMEDIATE with NDCS

The two boxes “Find xt” and “EXECUTE” were called NDCS, in the previous diagram. Here
they are exposed to show that non-default compilation semantics are found in a system-
specific manner.

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup ndcs?
 if find-ndcs-xt execute else compile, then
 then
;

The immediate flag has disappeared because all immediate words have non-default
compilation semantics. They are immediate if the NDCS xt is the same as the for
interpretation xt. The definition of immediate is more complicated in standards-speak, but
comes to the same thing. An alternative implementation strategy may be to keep a separate

Illustration 3: The IMMEDIATE flag becomes the NDCS flag

Special Words in Forth EuroForth 2017

immediate flag, but we should not hide the basic idea that immediate words have non-default
compilation semantics.

Several modern Forth systems have interpreter loops that would be easy to convert to the new
requirements. Coming back to our three new words:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
NDCS? Xt -- flag ; return true if the word has non-default compilation semantics
NDCS, i*x xt -- j*x ; like COMPILE, but may parse. Used by words such as IF.

We can see that the conventional immediate flag in a word’s header becomes the NDCS flag,
set for all words that have non-default compilation semantics. Comparison of the
interpretation xt and the NDCS xt gives us a basis for the word IMMEDIATE? The word
NDCS, just hides the system-specific action of obtaining the NDCS action from an xt.

Using NDCS words
The NDCS words and the notation below allow us to construct NDCS words, both for system
use and for general use. It is worth considering whether a library or an application may want
to construct NDCS words. The most common case that we see is when an application needs a
“Domain Specific Language” (DSL) which is Forth-based. Such a DSL may wish to provide
interpreted as well as compiled versions of IF … ELSE … THEN and DO … LOOP.

In the past this type of notation has been shunned because it required state-smart words.
Words that use NDCS correctly in two portions that do not test STATE are not state-smart.
Therefore the reasons to avoid such notations only have to do with programming taste and
overcoming the limitations of 20+ years of dogma. The dogma arose because we did not have
the structures to separate interpretation and compilation actions, even though the Forth94 and
Forth 2012 standards described compilation in those terms. Once we have Forth words to
implement such ideas, we can move forward.

Here’s a potential way of building NDCS words. They illustrate a conventional IF … THEN
pair. The word NDCS: modifies the previous word to have the following non-default
compilation semantics – it defines a nameless word and sets system-specific flags and data.

: IF \ C: -- orig ; Run: x --
\ This is the traditional interpretation behaviour
 NoInterp ;
ndcs: (-- orig) s_?br>, ; \ conditional forward branch

: THEN \ C: orig -- ; Run: --
\ This is the traditional interpretation behaviour
 NoInterp ;
ndcs: (orig --) s_res_br>, ; \ resolve forward branch

To produce an interpreted version, the interpretation behaviour is simply replaced by the new
version. The next example shows how a contentious notation such as S” and friends becomes
non-contentious.

Special Words in Forth EuroForth 2017

: S" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
\ Describe a string. Text is taken up to the next double-quote
\ character. The address and length of the string are
\ returned.
 [char] " parse >syspad
;
ndcs: (--) postpone (s") ", ;

Words we need to consider
: set-compiler \ xt --
\ Set xt as the compiler (by COMPILE,) of the last
\ definition. The word whose xt is given receives
\ the of the word it is to compile (xt --).
\ Used to define optimisers.

: comp: \ xt --
\ Starts a nameless word whose xt becomes the compiler
\ for the last definition.

: set-ndcs \ xt --
\ Set xt as the NDCS action of the last definition.
\ The word whose xt is given to SET-NDCS has the stack
\ action: i*x –- j*x

: ndcs: \ i*x xt -- j*x
\ Starts a nameless word whose xt becomes the NDCS
\ action for the last definition.

: IMMEDIATE \ --
\ Mark the last defined word as immediate by
\ setting the NDCS flag making the NDCS xt the same
\ as the interpretation xt.

: IMMEDIATE? \ Xt -- flag
\ Return true if the word is immediate.

: NDCS? \ Xt -- flag
\ Return true if the word has non-default compilation
\ semantics.

: NDCS, \ i*x xt –- j*x
\ Like COMPILE, but may parse. Used to perform the action
\ at compile time of NDCS words such as IF.

: SEARCH-NAME \ c-addr len -- ior | xt 0
\ Perform the SEARCH-WORDLIST operation on all wordlists
\ within the current search order. On failure, just an ior
\ (say -13) is returned. On success, the word’s xt and 0
\ are returned.

During a review on the Forth200x mailing list, nobody liked the acronym NDCS for these
words. The phrase “special complation semantics” was much preferred instead. I have left
NDCS in the paper because Forth 2012 refers to “non-default compilation semantics”
throughout. When the standard uses the new phrase, then the words above can change names.

Special Words in Forth EuroForth 2017

Consequences for compilation
We can now define what happens during compilation of a Forth word, i.e. what happens
when a source token has been recognised/found and the system is in compilation state.

1. The word has an NDCS flag and an NDCS-specific action has been defined for it.
The NDCS specific action is executed. These could be the compile-time actions of
IF or S”.

2. The word has an NDCS flag but no NDCS-specific action has been defined for it. In
this case the word’s original xt is executed, corresponding directly to the current
definition of an immediate word.

3. The word is normal and a code generator has been specified. The code generator is
executed to lay down the required code.

4. The word is normal and no code generator exists. We just lay a Forth call to this
word.

Cases 1 and 2 form the action of NDCS, in this paper. Cases 3 and 4 form the action of
COMPILE, in the standard.

The test for an NDCS xt is optional. If a system can guarantee that all NDCS words have a
separate xt for the NDCS portion, case 2 never happens and the check can be omitted.
Similarly, systems without code generators can omit case 3.

Embedded and minimal systems
If we treat the NDCS flag as equivalent to the old immediate flag, then a minimal system can
just provide cases 2 and 4 above. If such systems wish to provide both compilation and
interpretation actions for words such as S” they can fall back to state-smart words, probably
as they have always done.

Illustration 4: Forth compilation

Special Words in Forth EuroForth 2017

Conclusions
The Forth94 standard (ANS) introduced the idea of “non-default compilation semantics”
(NDCS) to the Forth world. However, the standard provided no facilities for dealing with
NDCS words. NDCS makes immediate words a special case of NDCS. Simple changes to the
Forth interpreter allow us to deal with and specify NDCS words. The classical Forth
interpreter loop picture (Figure 1) needs a small change (Figure 3), and we need to introduce
the words NDCS? and NDCS, to complete the picture.

Correct use of NDCS words also allows us to implement words such as S” without them
being state-smart. This in turn permits us to define notations that have been deprecated for
the last 20 years or so.

In implementing NDCS behaviour we find that immediate words are just a special case of
NDCS. We can usefully remove the immediate flag and replace it with an NDCS flag.

It would be of benefit if we can find a name other than NDCS to describe “non-default
compilation semantics”.

Acknowledgements
Anton Ertl has tested my understanding of Forth standards for many years.

My belief that all standards contain bugs has sustained me over many years.

Anton Ertl, Bernd Paysan, Graham Smith and Gerald Wodni provided valuable comments on
early drafts of the paper.

	Introduction
	Smart COMPILE,
	Standards issues
	A way forward
	Replace IMMEDIATE with NDCS
	Using NDCS words
	Words we need to consider
	Consequences for compilation
	Embedded and minimal systems
	Conclusions
	Acknowledgements

