

Abstract—The structure of a Forth program is described which

implements a language processor for an ALGOL-like programming
language with its context-free component belonging to the class
LL(1). It allows to check that a program in the given formal language
is syntactically correct as well as to convert a correct program into a
pseudo-code for a simple interpreter to interpret it and thus simulate
the program behavior in a certain environment. The ultimate goal of
this work is to build a tool for running experiments with programs in
the Yard language which formally describes the behavior of multi-
layer artificial neural networks on the principles of a machine with
dynamic architecture (MDA) and due to that has a number of specific
language constructs. The tool is assumed to run on a PC under MS
Windows and is based on the system VFX Forth for Windows IA32
which implements the Forth standard Forth 200x of November 2014
(the so called Forth 2014).

Keywords—formal languages, language processor, parser,
regular expressions, Forth.

I. INTRODUCTION

UTOMATED analysis of formal languages started in the
1960s. Various tools were developed for processing both
context free and context dependent formal languages to

be studied with computer machinery. To-day, data processing
technologies are widely used in translation systems for a
variety of computer devices with many applications to support
them. E.g., the Flex/Bison parsers ([1], [2], [3]) are often used
to quickly obtain a particular language processor from a
formal definition of a language. The tool ANTLR [4] is the
next step in developing language processors and is based on
principles close to those of this paper. However, these
mentioned tools constrain the type of the input formal
grammar, and the employed algorithm often requires
enormous memory for storing intermediate data. Moreover,
their usage requires understanding their special language for
representing a formal grammar of the considered
programming language and code generation of the recognized
program is out of scope of those useful tools.

This paper is aimed at developing a flexible and "pocket-
like" inexpensive tool based on the current Forth 2014
standard [5] for experimenting with new formal languages.
Usage of Forth provides the necessary flexibility and
unlimited freedom [6] in designing the respective definitions
while modern computing machinery eliminates a lot of
memory and speed limitations of early 1960s. The tool should
also allow for experiments with code generation for correct
programs and simulation of their execution on some hardware

S. N. Baranov for over 10 years was with Motorola ZAO, St. Petersburg,

Russia. He is now with the St. Petersburg Institute for Informatics and
Automation of the Russian Academy of Sciences, 14 linia 39, St. Petersburg,
199178, Russia (phone: 812-328-0887; fax: 812-328-4450; e-mail:
SergeyBaranov@gmail.com).

platform (code generation and simulation will be the scope of
future work based on the already obtained results).

Any ALGOL-like programming language may be
considered as a set of chains composed from the lexical units
of this language (the so called language lexems or terminals)
according to the rules of the language grammar which splits
into its context-free component and a number of context
dependent rules or constraints [7]. To use the proposed
technique, the context-free component of the language under
consideration should be specified in the formalism of regular
expressions [8], [9] built from the language terms (terminals,
non-terminals, and expressions in them) using three classical
operations: concatenation (sequencing), alternative choice
(branching), and recursion (cycling). Initial terms are language
lexems (terminals) directly recognizable in a program text,
non-terminals denoting language constructs built from
terminals, and an empty string denoting an absence of a
lexem. Context dependencies are specified informally, they
are checked through a mechanism of semantics – special
procedures invoked by the language processor in the process
of input text parsing and which exchange their data via a stack
or global variables.

The text in the given programming language to be
processed is contained in a simple text file considered as a
sequence of symbols (characters) in the 8 bit ASCII coding.
The following 4 classes of characters are distinguished:

1) 96 skip characters (space, tabulation and other "invisible"
symbols);

2) 10 digits – characters which represent decimal digits ,
from "0" to "9";

3) 119 letters – letters of the Latin (52) and Russian (66)
alphabets, both in the upper and lower case, as well as the
underscore symbol "_";

4) 31 special characters – "! ", "" ", "#", "$", "%", "&", " ' ",
"(", ") ", "* ", "+", ", ", "- ", ". ", "/ ", " : ", "; ", "<", "=", ">",
"?", "@", "[", "\ ", "] ", "^ ", "` ", "{ ", " | ", "} ", "~".

Thus a complete set of 96+10+119+31=256 8-bit character
codes is obtained.

The text under processing may contain comments (see
section IV) which are skipped and treated as a single space.

II. SAMPLE PROGRAMMING LANGUAGE

Further narrative will be illustrated with examples in the
OCC language – a subset of C for developing programs to run
on a special kind of hardware [10].

There are a number of lexems (terminals) in any
programming language, denoted in this paper with symbols in
single quotes (apostrophes). Though their particular
nomenclature may be different in different languages, one can
always divide it in 3 groups:

A Formal Language Processor Implemented in Forth
Sergey N. Baranov

A

1) lexems of the general mode (distinguished be angle
brackets "<" and ">") in their denotation):

• '<finish> ' – a special terminus lexem with no external
representation;

• '<float> ' – denotation of a floating point number in the
decimal system in accorance with the ANSI/IEEE 754-1985
standard in the format: <d><d>*.<d>*[{E|e}[+|-]<d><d>*] –
a number starts with a digit; there is always a period as a
delimiter between the mandatory integer and a possible
fraction in the significand; if present, the exponent begins
with the Latin character "E" or "e", which may be followed by
plus ("+") or minus ("- "), followed by at least one digit –
examples are 3.14 , 10.E-6 , 123.456e3 , 5.E+1 ;

• '<number> ' – denotation of an integer in binary, octal,
decimal (by default), or hexadecimal, the radix being denoted
by letters "B" or "b" (binary), "C" or "c" (octal), "D" or "d"
(decimal), and "H" or "h" (hexadecimal); in the latter case the
first six letters of the Latin alphabet A..F in any case are used
as digits after 0..9 (if the first significant digits is one of these
letters, then it should be preceded by the digit 0) – examples
are 101B, 111111B (binary), 777C, 100C (octal), 0, 125 ,
126D (decimal), 0ffH , 0AH, 0DH, 1000H (hexadecimal);

• '<operation> ' – an operation sign composed by one or
two special symbols: '- ', '#', '*' , '/ ', '/\' , '/= ', '\/ ', '̂ ', '~', '+',
'< ', '<=', '=' , '=<', '=>', '>', '>='; each of these 17 operations
(except for '~') is dyadic, two of them ('- ' and '+') are both
dyadic and monadic; and '~' is monadic; their order of
execution in compound expressions is determined by their
priorities (all monadic operations have the highest priority 10):

Opera-
tion

Name
Prio-
rity

Opera-

tion
Name

Prio-
rity

'~' Negation 10 '/= ' Not equal 5
'̂ ' Power 9 '<' Less than 5
'=<' Left shift 8 '<=' Less than or

equal
5

'=> ' Right shift 8 '=' Equal 5
'* ' Multiply 7 '>' Greater than 5
'/' Divide 7 '/\ ' And 4
'- ' Subtract 6 '#' Exclusive Or 3
'+' Add 6 '\/ ' Or 3

'>=' Greater
than or
equal

5

• '<start> ' – a special initial lexem with no external

representation;
• '<string> ' – a denotation of a character string in double

quotes ("), the string length – the number of contained
characters – may be from 0 (empty string) up to 80 (maximal
length); a double quote itself as a string character is denoted
by two double adjacent double quotes; examples are "abc" ,
"" (empty string), "a""bc" (a quote inside the string);

• '<tag> ' – an identifier; i.e., a sequence of letters
(including underscore) and digits beginning with a letter. the

total number of characterd not exceeding 80; examples are
abcd , x1 , _great ;

2) lexems – reserved words: 'auto ', 'break' , 'case ',
'char ', 'const ', 'continue ', 'default ', 'do ', 'double ',
'else ', 'enum', 'extern ', 'float ', 'for ', 'goto ', 'if ', 'int' ,
'long ', 'register ', 'return ', 'short ', 'signed' , 'static ',
'struct ', 'switch ', 'typedef ', 'union ', 'unsigned ', 'void ',
'volatile ', 'while ' – these lexems correspond to words
contained in their denotations;

3) indicants denoted by one two adjacent special characters:
'(' , ') ', ', ', '. ', ':= ', '; ', '[', '] ', '{ ', '} ' – brackets of three
kinds (round, square, and curly), assignation sign composed
by a colon and an equal sign, comma, period, and semicolon.

Each lexem, except for '<start> ' и '<finish> ', enjoy an
external representation in the source program text; some
lexems may have several representations (e.g., the lexem '<='
may be represented with an indicant "<=" and the word "le "),
and some may have an unlimited number of representations

(like '<number>' , '<string>' or '<tag>').
Three lexems of the general type are characterized with

additional parameters. The lexem '<float>' (denotation of
a floating point number) and '<number>' (denotation of an
integer) have the respective value as their parameters, while
'<operation>' (operation) has two additional parameters –
operation priority and its name (add, multiply, etc.)

The following non-terminals are distinguished in the
language description to denote particular language structures:
abstr_decl , abstr_decl1 , compound , declaration ,
declarator , declarator1 , enumm, expression ,
formula , init , operand , param , paramlist , pointer ,
program , specif , statement , struct_decl . The non-
terminal named program is usually the initial non-terminal
which any syntactically correct text is generated from. The
following semantics whose names begin with "$" occur in the
grammar rules to take into account non-formal context
dependencies: $array1 , $array2 , $arrow , $aster , $brk ,
$call1 , $call2 , $call3 , $case1 , $case2 , $char ,
$comp1, $comp2, $cond , $cond1 , $cond2 , $cont , $decl ,
$default , $do1 , $do2 , $dot , $else , $expr , $field ,
$finish , $for1 , $for2 , $for3 , $for4 , $for5 , $goto ,
$ident , $if , $incr1 , $incr2 , $init , $label , $mem,
$null , $number , $op1 , $op2 , $opcode1 , $opcode2 ,
$operand , $qual , $r et1, $ret2 , $start , $stmnt ,
$string , $sw1, $sw2, $sw3, $tag , $then , $type , $wl1 ,
$wl2 . Each semantic usually denotes a certain procedure
which is executes if in the process of input text parsing the
current recognized lexem follows this semantic the in a
grammar rule, the semantic enjoying access to all lexem
parameters.

Grammar rules are formulated in the following way:

Non-terminal : Regular_expression .

Non-terminal being one of the non-terminal denotations
enlisted above, and being specified in accordance with the
following syntax of the Naur-Backus formalism:

Regular expression ::= {
Empty | Lexem | Non-terminal

| Semantic |
Basic elements (1)

Regular_expression
Regular_expression | Concatenation (2)

Regular_expression ';'
Regular_expression |

Alternatives (3)

Regular_expression '*'
Regular_expression | Recursion (4)

'(' Regular_expression ')' }.
Expression in

brackets (5)
 Alternatives are enumerated in curly brackets separated with a
vertical bar. In the section marked (1) basic elements of a
regular expression are enumerated: Empty (an empty
expression denoting absence of anything), Lexem, Non-

terminal , and Semantic . Section (2) represents a
concatenation which has no particular denotation, section (3)
is for alternative choice with a semicolon as the operation
sign, section (4) stands for recursion with an asterisk as its
operation sign, and the last section (5) allows to embrace a
regular expression in round brackets and thus to consider it as
one operand in operations of concatenation, alternative choice,
and recursion.

For better visibility of an alternative choice between a
regular expression А and an empty alternative: (А ;) is
denoted as А in square brackets: [A] (pronounced as
"possible А") , as well as for a recursions with an empty left or
right operand * А and А* are denoted as *(А) and (А)*
respectively, while a recursion with both non-empty operands
А* В is denoted as (А)*(В) .

With the above denotations a grammar of the OCC
language may be specified through the following regular
expressions:

abstr_decl : pointer [abstr_decl1] ;
 abstr_decl1 .
abstr_decl1 : ('(' abstr_decl ')')*(
 '[' [formula] ']' ;
 '(' [paramlist] ')') .
compound : $comp1 '{' *(declaration $decl)
 *(statement $stmnt) $comp2 '}' .
declaration : (specif)* (declarator
 [$init ':=' init])*(',') ';' .
declarator : [pointer] declarator1 .
declarator1 : ($tag '<tag>' ;
 $tag '<label>' ; '(' declarator
 ')')*(('[' [formula] ']')* ;
 '(' (($tag '<tag>')*(',') ;
 paramlist ;
) ')') .
enumm : '<tag>' [':=' expression] .
expression : (formula)*(',') .
formula : (*($opcode1 '<operation>')
 operand $operand)*(
 $opcode2 ':=' ; $opcode2 '<operation>') .
init : formula ; '{' (formula ; '.' '.' '.'
)*(',') '}' .
operand : (($incr1 '<increment>'
 $tag ('<tag>' ; '<label>') ;
 $tag '<tag>' ($incr2 '<increment>' ;
 ($array1 '[' formula $array2 ']')* ;
 $call1 '(' [expression $call2]

 $call3 ')' ; $ident) ;
 $op1 '(' expression $op2 ')')
 [($dot '.' ; $arrow '->') $field (
 '<tag>' ; '<label>')] ;
 $tag '<label>' ;
 $number '<number>' ; $char '<char>' ;
 $string '<string>'
)*($cond1 '?' expression $cond2 ':') .
param : specif (declarator ;
 '[' [formula] ']') .
paramlist : (param ; '.' '.' '.')*(',') .
pointer : ($aster '<operation>'
 *($qual 'const' ;
 $qual 'volatile'))* .
program : $start '<start>'
 ((specif)*(';' ;
 declarator [compound]
 (';' ;
 ':=' init *(',' declarator
 [':=' init]) ';' ;
 ',' (declarator [':=' init]
)*(',') ';'
 *(declaration) compound
)) ;
 declarator *(declaration) compound
)* $finish '<finish>' .
specif : ($mem 'auto' ; $mem 'register' ;
 $mem 'static' ;
 $mem 'extern' ; $mem 'typedef' ;
 $type 'void' ; $type 'char' ;
 $type 'short' ;
 $type 'int' ; $type 'long' ;
 $type 'float' ;
 $type 'double' ; $type 'signed' ;
 $type 'unsigned' ;
 ('struct' ; 'union') ['<tag>'] ['{' (
 struct_decl)*
 '}'] ; 'enum' ('<tag>' ['{' (enumm
)*(',') '}'] ;
 '{' (enumm)*(',') '}') ;
 $qual 'const' ; $qual 'volatile')* .
statement : *($label '<label>' ':' ;
 $case1 'case' expression
 $case2 ':' ; $default 'default' ':')
 (compound ;
 'if' $cond '(' expression $then ')'
 statement
 [$else 'else' statement] $if ;
 'switch' $sw1 '(' expression $sw2 ')'
 statement $sw3 ;
 'while' $cond '(' expression $wl1 ')'
 statement $wl2 ;
 $do1 'do' statement 'while' $cond '('
 expression ')' $do2 ;
 'for' $for1 '(' [expression]
 $for2 ';' [expression]
 $for3 ';' [expression] $for4 ')'
 statement $for5 ;('goto' $goto
'<tag>' ; $cont 'continue' ; $brk 'break' ;
 $ret1 'return' [expression] $ret2 ;
 expression $expr ; $null) ';') .
struct_decl : specif (declarator [':'
 expression])*(',') ';' .

The initial non-terminal in this grammar is program.

This grammar representation is nothing more than a linear
record of a syntactic graph of this language for recognizing

correctly constructed chains composed from its lexems, and it
may be considered as a text in Forth (that's why its elements
are separated with spaces) which in its turn may represent a
Forth program if the respective word definitions are provided.
Therefore, the development of a language processor which
recognizes this programming language consists in
development of these word definitions.

III. LANGUAGE PROCESSOR STRUCTURE

The language processor works as follows.
1. An instrumental Forth system compliant with the Forth

2014 standard (e.g., VFX Forth for Windows IA32 [11] or
gFORTH for Windows [12]) is launched on a working PC
under MS Windows, and the respective Forth text with
word definitions is compiled.

2. After successful compilation of this Forth text which
establishes the necessary context, another Forth text with
the language grammar is compiled which thus is
transformed into a parser program. Successful compilation
of the grammar is terminated with the message "Lexical

Analyzer successfully compiled! " from the
instrumental Forth system.

3. Upon successful completion of the step 2, the source text
in the programming language is submitted as input to the
parser for analysis and upon successful completion of
parsing a pseudo-code of the submitted program is built in
an output file for subsequent execution. If a syntax error in
the input text were found or any exception occurred (like
file system error, buffer overflow etc.) then a respective
error message is produces and the parser terminates
processing.

The language processor has two major components: the
lexical analyzer (scanner) and the syntactic analyzer (parser),
each of them may be considered as a separate software
product.

In the current version, the scanner consists of 62 Forth
definitions with the total size of 368 LOCs (source lines of
code in Forth, excluding empty lines and lines with comments
only) and the parser has 73 definitions of the total size 431
LOCs; thus the total size of the scanner and parser is 799
LOCs including the OCC grammar of 135 LOCs. The
grammar graph of the OCC language in its internal
representation occupies 1391 cells (machine words).

For scanner and parser testing, the respective test wrappers
and test suites were developed. Exceptions which occur when
running these programs are processed through the Forth
interruption mechanism of CATCH-THROW, where the word
CATCH receives an address of the message string formed by
the scanner or parser when the exception is recognized and
passed by THROW. Exceptions recognized while compiling
these two components terminate compilation through the word
ABORT" with a respective error message.

IV. LEXICAL ANALYZER

The lexical analyzer (scanner) converts the input source text
into a sequence of numeric values denoting lexems (terminals)

of the programming language, recognized in the input text in
the order of their occurrences in this text. The scanner is
implemented as two co-programs: the low-level GetChar and
the upper-level GetLex . The former sequentially consumes
and filters characters from the input text skipping all irrelevant
characters and returning the next significant character upon a
request, while the latter forms the next lexem from characters
obtained at the low level. Both co-programs work with
"looking ahead" at 1 element – a character in case of GetChar
and a lexem in case of GetLex . Results of each invocation of
these co-programs are returned in a respective pair of
variables: {CurrChar , NextChar } in case of GetChar , and
{ CurrLex , NextLex } in case of GetLex . The first variable in
the pair contains the value (character or lexem) returned upon
the given request to respective co-program, and the second
variable in the pair contains the value to be returned upon the
next request addressed to this co-program.

A list of lexems is specified by the defining word
LexClasses created to build definitions of all lexems in the

word list Lexems. A lexem is represented with its execution
token which never executed during compilation of the lexical
analyzer, while during parsing this code checks whether the
current value of the variable CurrLex is the execution token
of this lexem and if this is the case, the current lexem is
"accepted" and the parser proceeds to considering the next
lexem from its input stream; otherwise, this lexem signals the
parser about its failure to accept the current lexem.

Along with lexems, the scanner recognizes two kinds of
comments in the input: a) from two adjacent slashes ("// ") up
to the end of line; and b) from a slash and an asterisk ("/* ")
up to an asterisk and a slash ("*/ "), as is common in many C
realizations, unless these two character combinations marking
the beginning of a comment are not inside a string denotation.
At the formal level, a comment is treated as a space character.

The initial value of the variable NextChar is a space, and
that of the variable NextLex is the lexem '<start>' . Upon
reaching the end of the input file, the co-program GetChar
returns a special character <eof> with no external
representation and denoting the end-of-file. From that moment
this character is returned by GetChar in response to all further
requests for the next character. When consumed by the co-
program GetLex this character transforms in a special lexem
'<finish>' returned by GetLex in response to all further
requests for the next lexem.

A test wrapper for the scanner provides three kinds of
testing: getting text lines from the input file, getting characters
from the input file, and getting lexems. They are specified by

test words TestGetLine" , TestGetChar" , and
TestGetLex" which get the name of the input file from the
input stream and subsequently extract lines, characters, and
lexems from it until the input file is exhausted. The word
Test" is an extension of TestGetLex" – it establishes an
interrupt handler through CATCH and executes TestGetLex"
in this context.

: Test" ("<chars>name<quote>"--)
 -1 ?Echo !

 ['] TestGetLex" CATCH ?DUP
 IF
 CR ." Exception: " COUNT TYPE
 CR CloseInFile
 THEN ;

Fig. 1 displays excerpts from a log of running GetLex in
the test wrapper LA_TestWrapper which demonstrates the
work of the scanner. Excerpts are separated by dotted lines.

include
c:\yard\LA_TestWrapper.fth
Including
c:\yard\LA_TestWrapper.fth
Including C:\yard\LA34.fth
ok
Test" c:\yard\words31.txt
Yard version:
C:\yard\LA34.fth
Test run on 30.06.2017 at
11:21:30
001 // Identifiers<eol>
002 abcd x1 _great<eol>
'<START>'
'<TAG>' repr=abcd
'<TAG>' repr=x1
003 <eol>
004 // Integers<eol>
005 0 101B 111111B /*
Binary */<eol>
'<TAG>' repr=_great
'<NUMBER>' repr=0 value=0
'<NUMBER>' repr=101B
value=5
006 777C 100C /* Octal
*/<eol>
'<NUMBER>' repr=111111B
value=63
'<NUMBER>' repr=777C
value=511
007 125 126D /* Decimal
*/<eol>
'<NUMBER>' repr=100C
value=64
'<NUMBER>' repr=125
value=125
008 0ffH 0AH 0DH 1000H /*
Hexadecimal */<eol>
'<NUMBER>' repr=126D
value=126
............................

..........................
014 static struct switch
typedef union<eol>
'SIGNED' repr=signed
'STATIC' repr=static
'STRUCT' repr=struct
'SWITCH' repr=switch
'TYPEDEF' repr=typedef
015 unsigned void volatile
while <eol>
'UNION' repr=union
'UNSIGNED' repr=unsigned
..........................
020 ~ not ^ ** * / + - = < >
xor /\ & \/ | or >= /= <=
=> =< shl shr le ge <eol>
'WHILE' repr=while
'<OPERATION>' repr=~ op=~
prio=10
............................
025 <eol>
026 // Strings<eol>
027 "abc"<eol>
'--' repr=-
028 "" /* Empty string
*/<eol>
'<STRING>' repr=abc
length=3
029 """abc" "a""bc" "abc"""
/* Quote in various places
*/<eol>
'<STRING>' repr= length=0
'<STRING>' repr="abc
length=4
'<STRING>' repr=a"bc
length=4
030 <eol><eof>
'<STRING>' repr=abc"
length=4
'<FINISH>'
 ok

Fig. 1. A log of a scanner test run

Three digit numbers in the beginning of a line are the input
text line numbers; the text lines are included in the log as they
are read-in by the co-program GetChar . There are 30 such
lines in this example. Each line terminates with the symbol
<eol> which marks its end-of-line, while the symbol <eof>
marks the end of the input file.

The log contains denotations of the recognized lexems
followed be their external representation in the input file (after
the key word "repr= ") and additional parameters of this
lexem if any with appropriate key words.

V. SYNTACTIC ANALYZER

The syntactic analyzer (parser) is built on-top of the lexical
analyzer. Its main (starting) word is OCC" which obtains the
name of the input file with the program text to be analyzed
and checks whether this text complies with the grammar of the
programming language OCC. As with the scanner, the test
wrapper of the parser contains the word Test" which
establishes an interrupt handler and initiates execution of the

main parser word in this context.
The parser main word is created through the defining word

Grammar. It starts grammar definition of the considered
programming language in form of a series of generating rules
for its non-terminals. The grammar ends with the closing word
EndGrammar which identifies the initial non-terminal:

: Grammar ("<spaces>name"--123)
 CREATE ALIGN HERE (pfa)
 DUP GrammarGraph ! \ Grammar graph start
 ['] (CallNT) , 0 , HERE CELL+ CELL+ ,
 ['] (Success) , ['] (Fail) ,
.....................................
: EndGrammar ("<spaces>name" addr 123 --)
 (pfa) ' (pfa xt-inital) >BODY @
 SWAP CELL+ ! 0 ,
 CR ." Lexical Analyzer successfully
compiled!" ;

The Forth interpreter of the underlying Forth system
ensures execution of the source grammar text as a text in Forth
resulting in construction of a grammar graph for the given
formal language which consists of elements of several kinds.
The parser main word created by the defining word Grammar
provides traversal of this graph controlled by the variable Pnt ,
pointing to its next element. The return stack Return with
operations Push and Pop and the queue SemanticsQueue of
semantics whose execution is delayed till accepting the current
terminal, are used as auxiliary data structures. Executable
codes are denoted with words in brackets. In total, 9 kinds of
elements are provisioned for a grammar graph:

1. Jump at the address addr – 2 cells: (Jump)|addr
: (Jump) Pnt @ @ Pnt ! ;

2. Call of a non-terminal at the address addr – 3 cells:
(CallNT)| addr |failaddr

: (CallNT) Pnt @ Return Push (Jump) ;

3. Starting a non-terminal xt – 2 cells: (StartNT)| xt
: (StartNT) CELL Pnt +! ;

if zero is specified instead of xt then this is an auxiliary non-
terminal created automatically with no name.

4. Successful completion of a non-terminal – 1 cell:
(ExitNT)

: (ExitNT) Return Pop CELL+ CELL+ Pnt ! ;
5. Unsuccessful completion of a non-terminal – 1 cell:

(FailNT)
: (FailNT) Return Pop CELL+ Pnt ! (Jump) ;

6. Passing a semantic xt – 2 cells: (Semantic)| xt
: (Semantic) Pnt @
 SemanticsQueue Push CELL Pnt +! ;

7. Passing a lexem xt – 3 cells: (Lexem)|xt |failaddr
: (Lexem) CurrLex @ pnt @ @ =
 IF \ accept the current lexem:
 Pnt @ CELL+ CELL+ Pnt !
 ELSE \ reject the current lexem:
 CELL Pnt +! (Jump) THEN ;

8. Successful completion of parsing – 1 cell: (Success)
: (Success) (--) CR ." Success!" 1 THROW ;

9. Unsuccessful completion of parsing – 1 cell: (Fail)
: (Fail) (--) CR ." Compilation Failed!"

........... \ Form a message in MessageBuf
 MessageBuf THROW ;

the scanner reports through MessageBuf which lexem was
the current one and what other lexems were checked for it in
form of the message: "Lexem < name> is unexpected;

possible options are: < list of lexem names>".
The above list of 9 element kinds is complete for the

following reasons. Elements (Success) and (Fail) are
necessary because these are all possible outcomes of the
parsing process (excluding its abnormal terminations through
ABORT or exceptions). Elements (CallNT) , (Semantic) ,
and (Lexem) are inevitable as they match all grammar basic
elements. Execution of a non-terminal may terminate either
successfully or with a failure; therefore, two different exits
(ExitNT) and (FailNT) should be provisioned as well. And
finally, (StartNT) and (Jump) are needed to start a non-
terminal body and to jump around it in a linear code of a
grammar graph. Thus, totally 2+3+2+2=9 different kinds of
elements are needed and this seems to be a sufficient
minimum (as the number of Muses1 is).

An initial value – the address of a five cell element
"invoking the initial non-terminal"

(CallNT)| addr |failaddr|(Success)|(Fail)

of the given grammar is assigned to the variable Pnt , addr
being the starting address of a series of elements for the initial
non-terminal of the grammar, and failaddr being the
address of the next cell but one which contains a reference to
the code (Fail) while the previous cell contains a reference
to the code (Success) (see items 8 and 9 above which occur
in the grammar graph only once in this five cell element).

The parser provides an option to print-out the grammar
graph with by the word .DisplayCode – see Fig. 2 below.
Similar to Fig. 1, excerpts from the OCC grammar graph
representing its beginning and end are separated by a dotted
line. One can see that the whole graph occupies only
5564/4=1391 cells.

VI. CONCLUSION

The described implementation of a scanner and a parser in
Forth turned out to be quite flexible and powerful. Its main
part was borrowed from earlier author's development [10] and
ported from Forth-83 to the Forth 2014 standard [5] with
minor changes. However, it required reworking and
redeveloping the grammar interpreter in order to avoid direct
references to the internal structure of the definitions prohibited
by Forth 2014. The tool runs on a PC under MS Windows and
was developed using the system VFX Forth [11] which
supports Forth 2014.

Another problem yet to be solved with the proposed
analyzer is checking the input grammar for its correctness; i.e.,
that it really belongs to the class LL(1) and contains no
undesirable recursions. This problem was successfully
overcome in [13], so the tool may reuse the found solution.

1 ̒ The thrice three Muses mourning for the death
Of Learning late deceas'd in beggaryʼ
That is some satire, keen and critical. (W. Shakespeare, "A Midsummer
Night's Dream", Act 5, Scene 1, 52-54).

GrammarGraph @ .DisplayCode
0000 (CALLNT) 2848 0016
0012 (SUCCESS)
0016 (FAIL)
0020 (STARTNT) ABSTR_DECL
0028 (CALLNT) 2700 0060
0040 (CALLNT) 0080 0052
0052 (JUMP) 0072
0060 (CALLNT) 0080 0076
0072 (EXITNT)
0076 (FAILNT)
0080 (STARTNT) ABSTR_DECL1
0088 (JUMP) 0148
0096 (STARTNT) Noname
0104 (LEXEM) '(' 0144
0116 (CALLNT) 0020 0144
0128 (LEXEM) ')' 0144
0140 (EXITNT)
0144 (FAILNT)
0148 (CALLNT) 0096 0264
0160 (LEXEM) '[' 0204
0172 (CALLNT) 1216 0184
0184 (LEXEM) ']' 0204
0196 (JUMP) 0240
0204 (LEXEM) '(' 0260
0216 (CALLNT) 2560 0228
0228 (LEXEM) ')' 0260
0240 (CALLNT) 0096 0260
0252 (JUMP) 0160
0260 (EXITNT)
0264 (FAILNT)
0268 (STARTNT) COMPOUND
0276 (SEMANTIC) $COMP1
0284 (LEXEM) '{' 0376
0296 (CALLNT) 0380 0324
0308 (SEMANTIC) $DECL
0316 (JUMP) 0296
0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
0344 (JUMP) 0324
0352 (SEMANTIC) $COMP2
0360 (LEXEM) '}' 0376
0372 (EXITNT)
0376 (FAILNT)
0380 (STARTNT) DECLARATION

0388 (JUMP) 0424
0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
0344 (JUMP) 0324
0352 (SEMANTIC) $COMP2
0360 (LEXEM) '}' 0376
0372 (EXITNT)
0376 (FAILNT)
0380 (STARTNT) DECLARATION
0388 (JUMP) 0424
0396 (STARTNT) Noname
0404 (CALLNT) 3440 0420
0416 (EXITNT)
0420 (FAILNT)
0424 (CALLNT) 0396 0584
0436 (CALLNT) 0396 0456
0448 (JUMP) 0436
0456 (JUMP) 0524
0464 (STARTNT) Noname
0472 (CALLNT) 0588 0520
0484 (SEMANTIC) $INIT
0492 (LEXEM) ':=' 0516
0504 (CALLNT) 1384 0516
0516 (EXITNT)
0520 (FAILNT)
0524 (CALLNT) 0464 0584
0536 (LEXEM) ',' 0568
0548 (CALLNT) 0464 0568
............................
5424 (STARTNT) STRUCT_DECL
5432 (CALLNT) 3440 5564
5444 (JUMP) 5504
5452 (STARTNT) Noname
5460 (CALLNT) 0588 5500
5472 (LEXEM) ':' 5496
5484 (CALLNT) 1120 5496
5496 (EXITNT)
5500 (FAILNT)
5504 (CALLNT) 5452 5564
5516 (LEXEM) ',' 5548
5528 (CALLNT) 5452 5548
5540 (JUMP) 5516
5548 (LEXEM) ';' 5564
5560 (EXITNT)
5564 (FAILNT) ok

Fig. 2. The beginning and the end of the OCC grammar graph

Future work will consist in developing a pseudo-code
generator and an its interpreter to simulate execution of
programs in the considered programming language.

REFERENCES
[1] M. E. Lesk, E. Schmidt, "Lex – A Lexical Analyzer Generator", web:

http://dinosaur.compilertools.net/lex/ (2017).
[2] "Win flex-bison", web: http://sourceforge.net/projects/winflexbison/

(2017).
[3] "GNU Bison", web: http://www.gnu.org/software/bison/ (2017).
[4] Terence Parr, "ANTLR (ANother Tool for Language Recognition)",

web: http://www.antlr.org/ (2017).
[5] "Forth 200x", web: http://www.forth200x.org/forth200x.html (2016)
[6] L. Brodie, Thinking Forth. Punchy Pub, 2004.
[7] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques and

Tools. Addison-Wesley (1986).
[8] Jeffrey E.F. Friedl, Mastering regular expressions. O'Reilly Media, Inc.,

2002.
[9] B. K. Martynenko, "Regular Languages and CF Grammars". In

Computer Tools in Education. 1, pp.14–20, 2012. (In Russian).
[10] S. Baranov, Ch. Lavarenne, Open C Compiler in Forth. In:

EuroForth’95, 27-29 Oct. Schloss Dagstuhl, 1995.
[11] "VFX Forth for Windows. User manual. Manual revision 4.70, 19

August 2014". – Southampton: MPE Ltd, 2014. – 429 p., web:
http://www.mpeforth.com/ (2014)

[12] "gForth", web: https://www.gnu.org/software/gforth/ (2017)
[13] S.N. Baranov, L.N. Fedorchenko, "Equivalent Transformations and

Regularization in Context-Free Grammars" Cybernetics and Information
Technologies. Bulgarian Academy of Sciences, Sofia. 2014. Volume 14,
no 4, p.30-45. web: http://www.degruyter.com/view/j/cait.2014.14.issue-
4/cait-2014-0003/cait-2014-0003.xml (2017)

