A Formal Language Processor Implemented in Forth

Sergey N. Baranc

platform (code generation and simulation will be s8tope of

Abstract—The structure of a Forth program is described whicfuture work based on the already obtained results).

implements a language processor for an ALGOL-likegamming
language with its context-free component belongiagthe class
LL(2). It allows to check that a program in the givformal language
is syntactically correct as well as to converbarect program into a
pseudo-code for a simple interpreter to intergreind thus simulate
the program behavior in a certain environment. Ultienate goal of
this work is to build a tool for running experimsmith programs in
the Yard language which formally describes the bigleof multi-
layer artificial neural networks on the principlea machine with
dynamic architecture (MDA) and due to that has mler of specific
language constructs. The tool is assumed to rua B€ under MS
Windows and is based on the system VFX Forth fondiivs 1A32
which implements the Forth standard Forth 200xNa¥ember 2014
(the so called Forth 2014).

Keywords—formal languages,
regular expressions, Forth.

language processor,

. INTRODUCTION

parsenon-terminals denoting

Any ALGOL-like programming language may be
considered as a set of chains composed from thealexnits
of this language (the so called language lexenteroninals)
according to the rules of the language grammar kvisjgits
into its context-free component and a number oftexdn
dependent rules or constraints [7]. To use the gueg
technique, the context-free component of the lagguander
consideration should be specified in the formalsmegular
expressions [8], [9] built from the language terftesminals,
non-terminals, and expressions in them) using tltassical
operations: concatenation (sequencing), alternatieice
(branching), and recursion (cycling). Initial terare language
lexems (terminals) directly recognizable in a peogrtext,
language constructs builomfr
terminals, and an empty string denoting an absefca
lexem. Context dependencies are specified infdyntiey
are checked through a mechanism of semantics —iaspec

UTOMATED analysis of formal languages started ia thprocedures invoked by the language processor irptbeess

1960s. Various tools were developed for procesbith

of input text parsing and which exchange their dégiea stack

context free and context dependent formal languages or global variables.

be studied with computer machinery. To-day, datec@ssing
technologies are widely used in translation systdorsa
variety of computer devices with many applicatitmsupport
them. E.g., the Flex/Bison parsers ([1], [2], [8fF often used
to quickly obtain a particular language processmmf a
formal definition of a language. The tool ANTLR [# the
next step in developing language processors améded on
principles close to those of this paper. Howevdresé
mentioned tools constrain the type of the inputmialr
grammar, and the employed algorithm often
enormous memory for storing intermediate data. [dose,

The text in the given programming language to be
processed is contained in a simple text file carseid as a
sequence of symbols (characters) in the 8 bit A®0ting.
The following 4 classes of characters are dististyen:

1) 96 skip characters (space, tabulation and dtheisible"
symbols);

2) 10 digits — characters which represent decinigitsd,
from "0" to "9";

3) 119 letters — letters of the Latin (52) and Rarsg66)

requiresiphabets, both in the upper and lower case, ak asethe

underscore symbol *;

their usage requires understanding their specigjuage for 4) 31 special characters "' """ "#" "$" "of, "&" " "
representing a formal grammar of the considereg » mywm wan g e e e e g
programming language and code generation of thegrézed Mo M@, [N, M\,] A e

program is out of scope of those useful tools.

This paper is aimed at developing a flexible andcket-
like" inexpensive tool based on the current Fortbl®
standard [5] for experimenting with new formal laages.

Usage of Forth provides the necessary flexibilitpda

unlimited freedom [6] in designing the respectiwafinitions

Thus a complete set of 96+10+119+31=256 8-bitaittar
codes is obtained.

The text under processing may contain comments (see
section 1V) which are skipped and treated as deisgace.

Il. SAMPLE PROGRAMMING LANGUAGE

while modern computing machinery eliminates a Idt o

memory and speed limitations of early 1960s. Tl $bould
also allow for experiments with code generation dorrect
programs and simulation of their execution on straelware

S. N. Baranov for over 10 years was with MotoroR(¥,. St. Petersburg,
Russia. He is now with the St. Petersburg Institiste Informatics and
Automation of the Russian Academy of Sciences,rid B9, St. Petersburg,
199178, Russia (phone: 812-328-0887; fax: 81248%; e-mail:
SergeyBaranov@gmail.com).

Further narrative will be illustrated with examples the
OCC language — a subset of C for developing progranmun
on a special kind of hardware [10].

There are a number of lexems (terminals) in any
programming language, denoted in this paper withim}s in
single quotes (apostrophes). Though their particula
nomenclature may be different in different langusagme can
always divide it in 3 groups:

1) lexems of the general mode (distinguished beleangotal number of characterd not exceeding 80; examjplre

brackets £" and '>") in their denotation): abcd, x1, _great ;

» <finish> ' — a special terminus lexem with no external 2)lexems — reserved words:auto ', 'break' , '‘case’,
representation; '‘char ', 'const ', ‘continue ', 'default ', 'do', 'double ',

» <float> ' - denotation of a floating point number in theelse ', 'enum’, ‘'extern ', float ', for ', 'goto ', if ', int'
decimal system in accorance with the ANSI/IEEE 1985 ‘long ', register ', ‘'return ', 'short ', 'signed’ , 'static ',
standard in the format: <d><d>*.<d>*[{E[e}{+|-]<d®k*] — ‘struct ', ‘switch ', typedef ', 'union ', unsigned ', 'void ',

a number starts with a digit; there is always aquemas a ‘yolatle ', while ' — these lexems correspond to words

delimiter between the mandatory integer and a plEssi contained in their denotations:

fraction in the significand; if present, the expohbegins 3)indicants denoted by one two adjacent speciatattters:
with the Latin charactere" or "e", which may be followed by ¢,y L=y T, 1 {0 b — brackets of three
plus (+") or minus ("), followed by at least one digit — kinds (round, square, and curly), assignation sigmposed
examples ar@.14 , 10.E-6 , 123.456e3 ,5.E+1 ; by a colon and an equal sign, comma, period, amicséon.

* '<number>' — denotation of an integer in binary, octal, Each lexem, except fotstart> ' u '<finish> ', enjoy an
decimal (by default), or hexadecimal, the radixngedlenoted external representation in the source program temtne
by letters B" or "b" (binary), 'C' or "c" (octal), 'D" or "d" |exems may have several representations (e.glexieen <='
(decimal), and H' or "h" (hexadecimal); in the latter case themay be represented with an indicant™ and the word I& "),
first six letters of the Latin alphabat.F in any case are usedand some may have an unlimited number of represemsa
as digits aftero..9 (if the first significant digits is one of these(”ke '<pumber>' , '<string>' or '<tag>').
letters, then it should be preceded by the dijit examples Three lexems of the general type are charactenitl
are 101B, 111111B (binary), 777C, 100C (octal), 0, 125, additional parameters. The lexesfloat>' (denotation of
126D (decimal) 0ffH , 0OAH, ODH 1000H (hexadecimal); a floating point number) angnumber>' (denotation of an

* '<operation> '— an operation sign composed by one Oihteger) have the respective value as their paemietvhile
two special symbols:*, #, * 7', N, 1=" N NS <operation> (operation) has two additional parameters —
<, <=, =, =<, =", >, =" each of these 17 operationsoperation priority and its name (add, multiply,.ptc
(except for+") is dyadic, two of them-(" and +') are both The following non-terminals are distinguished ine th
dyadic and monadic; and-''is monadic; their order of language description to denote particular langusgectures:

execution in compound expressions is determinedhieyt abstr_decl , abstr_decll , compound, declaration
priorities (aII monadic operations have the hlgfmslrlty 10): declarator , declaratorl , enumm expression ,
- - formula , init , operand , param, paramlist , pointer
OF’era' Name P.rlo- OPera' Name P.rlo- program , specif , statement , struct_decl . The non-
tion rity tion rity terminal namedprogram is usually the initial non-terminal
~' |Negation 10 /= ' |Not equal 5 | which any syntactically correct text is generateshf. The
n' |Power 9 '<' |Lessthan 5 | following semantics whose names begin wish 8ccur in the
'=<' |Left shift 8 '<=' |Lessthanor | 5 grammar rules to take into account non-formal ocdnte
equal dependenciessarrayl , $array2 , $arrow , $aster , $hrk ,
'=>"'_|Right shift 8 = Equal S $calll , $call2 , $call3 , $casel, $case2, $char ,
- Multiply 7 >' _|Greater than S $compl, $comp2, $cond , $condl , $cond2 , $cont , $decl ,
r Divide 7 A ' |And 4 $default , $dol, $do2, $dot, $else , $expr , $field
Subtract 6 # _|Exclusive Or 3 $finish , $forl , $for2 , $for3 , $ford , $for5 , $goto ,
'+ |Add 6 V' |Or 3 $ident , $if , $incrl , $incr2 , S$init , $label , $mem
'>=' |Greater 5 $null , $number, $opl, $op2, S$opcodel , $opcode2 ,
than or $operand , S$qual , $retl, $ret2 , S$start , $stmnt ,
equal $string , $swi, $sw2, $sw3, $tag , $then , $type , $wil ,
, , o . $wl2 . Each semantic usually denotes a certain procedure
e '<start> ' — a special initial lexem with no external

which is executes if in the process of input teatsing the
current recognized lexem follows this semantic thea
rammar rule, the semantic enjoying access to eaderh
arameters.
Grammar rules are formulated in the following way:

representation;

» '<string> ' — a denotation of a character string in doubl
quotes (), the string length — the number of containe
characters — may be from 0 (empty string) up tqrB@ximal
length); a double quote itself as a string charaistelenoted

by two double adjacent double gquotes; examples abe" , Non-terminal : Regular_expression .
(empty string)ya™be” (@ quote inside the string); Non-terminal being one of the non-terminal denotations
« '<tag>' — an identifier; i.e., a sequence of lettergnlisted above, and being specified in accordamite the

(including underscore) and digits beginning withetter. the following syntax of the Naur-Backus formalism:

Regular expression ::= {

Empty | Lexem | Non-terminal
| Semantic |

Basic elements (1)

Regular_expression
Regular_expression |

Concatenation (2)

Regular_expression ;'
Regular_expression |

Alternatives (3

Regular_expression "*'
Regular_expression |

Recursion (4

'(Regular_expression ')' }.

Expression i
brackets (SVB

Alternatives are enumerated in curly brackets is¢pd with a
vertical bar. In the section marked (1) basic ele@mef a

regular expression are enumerateginpty
expression denoting absence of anything)exem,
represents a

terminal , and Semantic . Section

(an empty
Non-

()

concatenation which has no particular denotatientien (3)
is for alternative choice with a semicolon as thperation
sign, section (4) stands for recursion with an ragteas its
operation sign, and the last section (5) allowstabrace a
regular expression in round brackets and thus msider it as
one operand in operations of concatenation, alteaahoice,

and recursion.

For better visibility of an alternative choice beem a

regular expression and an empty alternativé: 2 ;)

denoted asa in square bracketd A]

is
(pronounced as

"possibler™) , as well as for a recursions with an empty aft

right operand A anda* are denoted ag

A) and(a)*

respectively, while a recursion with both non-emppgrands

A*B isdenotedaé 2)*(B) .

$call3")'; Sident) ;

$opl '(' expression $op2")')
[($dot "' ; $arrow ->") Sfield (

'<tag>'; '<label>')];
$tag '<label>';
$number '<number>'; $char '<char>';
$string '<string>'
)*($cond1 '?" expression $cond2 ') .

param : specif (declarator ;
[[formula]).

pointer : ($aster '<operation>'
*($qual 'const' ;
$qual 'volatile'))* .
program : $start '<start>'
((specif)*(*;';
declarator [compound]

"="init *('," declarator

[=="init])"';
"' (declarator [:="init]
()

*(declaration) compound

declarator *(declaration) compound
)* $finish '<finish>' .
specif : ($mem 'auto’ ; $mem 'register’ ;
$mem 'static’ ;
$mem 'extern’ ; $mem 'typedef’ ;
$type 'void' ; $type 'char’;
$type 'short' ;
$type 'int' ; $type 'long’;
$type ‘float' ;
$type 'double’ ; $type 'signed' ;
$type 'unsigned’ ;

With the above denotations a grammar of the OCC ('struct’; union’)['<tag>'] [*{ (
language may be specified through the followingutag

expressions:

abstr_decl : pointer [abstr_decl1];
abstr_decll .
abstr_decll : ('(" abstr_decl "))*(
T[formula] T ;
'(' [paramlist]")") .

compound : $compl '{' *(declaration $decl)

*(statement $stmnt) $comp2 '} .
declaration : (specif)* (declarator

[Sinit ="init]1)*(",")" .

declarator : [pointer] declaratorl .
declaratorl : ($tag '<tag>';

$tag '<label>' ; ‘(" declarator

))*((T [formula] T)*;

'(((Stag '<tag>')*(",');
paramlist ;
))
enumm : '<tag>'[=" expression] .
expression : (formula)*(",") .
formula : (*($opcodel '<operation>")
operand $operand)*(
$opcode2 =" ; $opcode?2 '<operation>') .

()Y

operand : (($incrl '<increment>'

struct_decl)*
Y1 lenum' ('<tag>' ['{' (enumm
)T
{ (enumm)*("")});
$qual 'const’ ; $qual 'volatile')* .
statement : *($label '<label>'"";
$casel 'case' expression
$case2 "' ; $default ‘default' ":')
(compound ;
'if $cond '(* expression $then ')’
statement
[$else 'else' statement | $if ;
'switch' $sw1l '(* expression $sw2 ')’
statement $sw3 ;
‘while' $cond ‘(' expression $wil ‘)’
statement $wi2 ;
$do1 'do’ statement 'while' $cond '('
expression ')’ $do2 ;
‘for' $forl ‘(' [expression]
$for2 ;' [expression]
$for3 ;' [expression] $for4)’
statement $for5 ;('goto’ $goto
'<tag>'; $cont 'continue’ ; $brk 'break’ ;
$retl 'return’ [expression] $ret2 ;
expression $expr ; $null) ;") .
struct_decl : specif (declarator ["'
expression])*(",') ;' .

$tag ('<tag>'; '<label>") ;

$tag '<tag>' ($incr2 '<increment>' ;
($arrayl T formula $array2 7')* ;
$calll '(' [expression $call2 |

The initial non-terminal in this grammarpgogram.
This grammar representation is nothing more thédinear
record of a syntactic graph of this language faogmizing

correctly constructed chains composed from itsrexeand it of the programming language, recognized in the tiext in
may be considered as a text in Forth (that's wheliéments the order of their occurrences in this text. Thanser is
are separated with spaces) which in its turn mayesent a implemented as two co-programs: the low-le8etChar and
Forth program if the respective word definitions @rovided. the upper-levelGetLex . The former sequentially consumes
Therefore, the development of a language proces$ich and filters characters from the input text skippatigrrelevant
recognizes this programming language consists haracters and returning the next significant atteraupon a

development of these word definitions. request, while the latter forms the next lexem frdmaracters
obtained at the low level. Both co-programs workthwi
. LANGUAGE PROCESSORSTRUCTURE "looking ahead" at 1 element — a character in oisietChar
The language processor works as follows. and a lexem in case dfetLex . Results of each invocation of

1. An instrumental Forth system compliant with the tRor these co-programs are returned in a respective phir
2014 standard (e.g., VFX Forth for Windows I1A32][bt variables: LurrChar , NextChar } in case ofGetChar , and
gFORTH for Windows [12]) is launched on a workinG P {CurrLex , NextLex } in case ofGetLex . The first variable in
under MS Windows, and the respective Forth texhwitthe pair contains the value (character or lexermrned upon
word definitions is compiled. the given request to respective co-program, andstwnd

2. After successful compilation of this Forth text wii variable in the pair contains the value to be retdrupon the
establishes the necessary context, another Fotthwith — next request addressed to this co-program.
the language grammar is compiled which thus is A list of lexems is specified by the defining word
transformed into a parser program. Successful datigmi LexClasses created to build definitions of all lexems in the

of the grammar is terminated with the messagsital word list Lexems. A lexem is represented with its execution
Analyzer = successfully compiled! " from the token which never executed during compilationhef kexical
instrumental Forth system. analyzer, while during parsing this code checks thérethe

3. Upon successful completion of the step 2, the sotegt current value of the variableurrLex is the execution token
in the programming language is submitted as inputheé of this lexem and if this is the case, the currexem is
parser for analysis and upon successful completibn "accepted” and the parser proceeds to considehagnext
parsing a pseudo-code of the submitted programilsib Jexem from its input stream; otherwise, this lexsignals the
an output file for subsequent execution. If a syr&aor in parser about its failure to accept the currentriexe
the input text were found or any exception occur(éc Along with lexems, the scanner recognizes two kinéls
file system error, buffer overflow etc.) then apestive comments in the input: a) from two adjacent slaghes') up
error message is produces and the parser terminai§she end of line; and b) from a slash and anriakté'/* ")

processing. up to an asterisk and a slasM ("), as is common in many C

The language processor has two major components: fjizations, unless these two character combinstinarking
lexical analyzer (scanner) and the syntactic amaljgarser), ihe beginning of a comment are not inside a stiexgotation.

each of them may be considered as a separate 8BtWA(the formal level, a comment is treated as a sgharacter.

product. The initial value of the variabl8extChar is a space, and

d Ifn .:.he cur;inihve[s;or, 'the ?cggge[Oc((:)n5|sts "ngear} that of the variabl@®extLex is the lexem'sstart>' . Upon
efinttions wi € fotal size€ 0 s (soutoees o reaching the end of the input file, the co-prograetChar

code in Forth, excluding empty lines and lines vatmments : .
returns a special charactekeof> with no external

only) .and the parser h"?‘s 73 definitions of thelteizge 431 representation and denoting the end-of-file. Frbat tnoment
LOCs; thus the total size of the scanner and passéi99 ! . .
this character is returned kpetChar in response to all further

LOCs including the OCC grammar of 135 LOCs. The

grammar graph of the OCC language in its ir]temaﬂsquests for the next character. When consumechéyco-

representation occupies 1391 cells (machine words) programGetLex this character transforms in a special lexem
For scanner and parser testing, the respectivavtegipers '<finish>' returned byGetLex in response to all further
and test suites were developed. Exceptions whichiroehen refl\uests for the ne>;t IexEm. id h Kiol
running these programs are processed through thth Fo # test wrapper for the scanner provides three kintls
interruption mechanism o€ATCH-THROWwhere the word testing: ggttlng Fext lines fro_m the input file teg ch_a_racters
CATCHreceives an address of the message string formed fBom the input file, and 96“'”9 lexems. They apedfied by
the scanner or parser when the exception is regegrand (€St ~ words TestGetline” , TestGetChar" , and
passed byTHROW Exceptions recognized while compiling TestGetLex which get the name of the.|nput file from the
these two components terminate compilation thrathghword ~ iNPUt stream and subsequently extract lines, cherscand

ABORT"with a respective error message. lexems from it until the input file is exhaustedhe word
Test" is an extension ofestGetLex" — it establishes an
IV. LEXICAL ANALYZER interrupt handler througBATCHand executeSestGetLex"

. . in this context.
The lexical analyzer (scanner) converts the inputce text Test" ("<chars>name<quote>"--)

into a sequence of numeric values denoting lexéensm{nals) -1 ?Echo !

[1 TestGetLex" CATCH ?DUP

IF

CR ." Exception: " COUNT TYPE

CR CloselnFile
THEN ;

Fig. 1 displays excerpts from a log of runni@gtLex in
the test wrappetA_TestWrapper
work of the scanner. Excerpts are separated bgdibttes.

which demonstrates the

include
c:\yard\LA_TestWrapper.fth
Including
c:\yard\LA_TestWrapper.fth
Including C:\yard\LA34.fth
ok

Test" c:\yard\words31.txt
Yard version:
C:\yard\LA34.fth

Test run on 30.06.2017 at
11:21:30

001 // Identifiers<eol>

002 abcd x1 _great<eol>
'<START>'

'<TAG>' repr=abcd
'<STAG>' repr=x1

003 <eol>

004 /I Integers<eol>

005 0101B 111111B /*
Binary */<eol>

'<TAG>' repr=_great
'<NUMBER>' repr=0 value=0
'<NUMBER>' repr=101B
value=5

006 777C 100C /* Octal
*/<eol>

'SNUMBER>' repr=111111B
value=63

'<NUMBER>' repr=777C
value=511

007 125 126D /* Decimal
*/<eol>

'<NUMBER>' repr=100C
value=64

'SNUMBER>' repr=125
value=125

008 0ffH OAH ODH 1000H /*
Hexadecimal */<eol>
'<NUMBER>' repr=126D
value=126

014 static struct switch
typedef union<eol>
'SIGNED' repr=signed
'STATIC' repr=static
'STRUCT" repr=struct
'SWITCH' repr=switch
‘TYPEDEF' repr=typedef
015 unsigned void volatile
while <eol>

'UNION' repr=union
'UNSIGNED' repr=unsigned
020 ~not A ** * [+-=<>
#xor N&\V|or>=/=<=
=> =< shl shr le ge <eol>
'WHILE' repr=while
'<OPERATION>' repr=~ op=~
prio=10

025 <eol>

026 // Strings<eol>

027 "abc"<eol>

--' repr=-

028 "™ /* Empty string
*/<eol>

'<STRING>' repr=abc
length=3

029 ""abc" "a"™"bc" "abc™"
/* Quote in various places
*/<eol>

'<STRING>' repr= length=0
'<STRING>' repr="abc
length=4

'<STRING>' repr=a"bc
length=4

030 <eol><eof>
'<STRING>' repr=abc"
length=4

'<FINISH>'

ok

Fig. 1. A log of a scanner test run

Three digit numbers in the beginning of a line e input

main parser word in this context.

The parser main word is created through the defimiord
Grammar. It starts grammar definition of the considered
programming language in form of a series of gemggatles
for its non-terminals. The grammar ends with thasiclg word
EndGrammar which identifies the initial non-terminal:

: Grammar ("<spaces>name"--123)

CREATE ALIGN HERE (pfa)

DUP GrammarGraph !\ Grammar graph start
[1(CallNT), 0, HERE CELL+ CELL+,
[(Success), [1] (Fall) ,

: EndGrammar ("<spaces>name" addr 123 --)

(pfa) ' (pfa xt-inital) >SBODY @

SWAP CELL+!0,

CR ." Lexical Analyzer successfully
compiled!" ;

The Forth interpreter of the underlying Forth sgste
ensures execution of the source grammar text estantForth
resulting in construction of a grammar graph foe tiven
formal language which consists of elements of s#vdnds.
The parser main word created by the defining weralmmar
provides traversal of this graph controlled by tagablePnt ,
pointing to its next element. The return stadturn with
operationsPush andPop and the queuBemanticsQueue of
semantics whose execution is delayed till acceptiegcurrent
terminal, are used as auxiliary data structuresecHbable
codes are denoted with words in brackets. In t&a&inds of
elements are provisioned for a grammar graph:

1. Jump at the addressddr — 2 cellsjJump)jaddr |

:(Jump) Pnt @ @ Pnt!;
2. Call of a non-terminal at the addressir — 3 cells:
[(CallNT)| addr [failaddr |
: (CalNT) Pnt @ Return Push (Jump) ;
3. Starting a non-terminak — 2 cells: [(StartNT)| xt |
: (StartNT) CELL Pnt +!;
if zero is specified instead af then this is an auxiliary non-
terminal created automatically with no name.
4. Successful completion of a non-terminal — 1 cell:

text line numbers; the text lines are includechia ibg as they |(ExitNT)

are read-in by the co-progra@etChar . There are 30 such
lines in this example. Each line terminates witk gymbol
<eol> which marks its end-of-line, while the symbdof>
marks the end of the input file.

The log contains denotations of the recognized ntexe
followed be their external representation in thauirfile (after

the key word ftepr= ") and additional parameters of this

lexem if any with appropriate key words.

V. SYNTACTIC ANALYZER

The syntactic analyzer (parser) is built on-togha lexical
analyzer. Its main (starting) word @CC" which obtains the
name of the input file with the program text to &malyzed
and checks whether this text complies with the gnamof the
programming language OCC. As with the scanner,t¢lse
wrapper of the parser contains the wordst” which
establishes an interrupt handler and initiates @@t of the

: (ExitNT) Return Pop CELL+ CELL+ Pnt!;
5. Unsuccessful completion of a non-terminal — 1 cell:
: (FailNT) Return Pop CELL+ Pnt ! (Jump) ;
6. Passing a semantic — 2 cells](Semantic)| xt |
: (Semantic) Pnt @
SemanticsQueue Push CELL Pnt +!;
7. Passing a lexemt — 3 cells{{Lexem)|xt [failaddr |
: (Lexem) CurrLex @ pnt @ @ =
IF \ accept the current lexem:
Pnt @ CELL+ CELL+ Pnt!
ELSE \ reject the current lexem:
CELL Pnt +!' (Jump) THEN ;

8. Successful completion of parsing — 1 cfgfiuccess) |

: (Success) (--) CR ." Success!" 1 THROW ;
9. Unsuccessful completion of parsing — 1
: (Fall) (--) CR ." Compilation Failed!"
........... \ Form a message in MessageBuf
MessageBuf THROW ;

the scanner reports throughessageBuf which lexem was
the current one and what other lexems were chefded in
form of the message:L&xem < name is unexpected;
possible options are: < list of lexem names'.

The above list of 9 element kinds is complete foe t
following reasons. ElementéSuccess) and (Fail) are
necessary because these are all possible outcom#ése o
parsing process (excluding its abnormal terminatittmough
ABORT or exceptions). Element&allNT) , (Semantic)
and(Lexem) are inevitable as they match all grammar ba
elements. Execution of a non-terminal may termirgitber
successfully or with a failure; therefore, two difnt exits
(ExitNT) and(FailNT) should be provisioned as well. An
finally, (StartNT) and (Jump) are needed to start a nor
terminal body and to jump around it in a linear ecaf a
grammar graph. Thus, totally 2+3+2+2=9 differemdsd of
elements are needed and this seems to be a sufffi
minimum (as the number of Musas).

An initial value — the address of a five cell
"invoking the initial non-terminal”

[(CallNT)] addr [failaddr|(Success)|(Fail) |

of the given grammar is assigned to the variabie, addr
being the starting address of a series of elenfenthe initial
non-terminal of the grammar, anfiiladdr being the
address of the next cell but one which containsfarence to
the code(Fail) while the previous cell contains a referen
to the codgSuccess) (see items 8 and 9 above which occ
in the grammar graph only once in this five cedreént).

elemne

GrammarGraph @ .DisplayCode
0000 (CALLNT) 2848 0016
0012 (SUCCESS)
0016 (FAIL)
0020 (STARTNT) ABSTR_DECL
0028 (CALLNT) 2700 0060
0040 (CALLNT) 0080 0052
0052 (JUMP) 0072
0060 (CALLNT) 0080 0076
0072 (EXITNT)
0076 (FAILNT)
0080 (STARTNT) ABSTR_DECL1
0088 (JUMP) 0148
0096 (STARTNT) Noname
L0104 (LEXEM) ‘(' 0144
116 (CALLNT) 0020 0144
0128 (LEXEM) ')’ 0144
0140 (EXITNT)
0144 (FAILNT)
[0148 (CALLNT) 0096 0264
0160 (LEXEM) [0204
“0172 (CALLNT) 1216 0184
0184 (LEXEM) '] 0204
0196 (JUMP) 0240
0204 (LEXEM) '(0260
£j@216 (CALLNT) 2560 0228
0228 (LEXEM) ')’ 0260
0240 (CALLNT) 0096 0260
0252 (JUMP) 0160
0260 (EXITNT)
0264 (FAILNT)
0268 (STARTNT) COMPOUND
0276 (SEMANTIC) $COMP1
0284 (LEXEM) '{' 0376
0296 (CALLNT) 0380 0324
0308 (SEMANTIC) $DECL
0316 (JUMP) 0296
0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
| 0344 (JUMP) 0324
C@352 (SEMANTIC) $COMP2
UP360 (LEXEM) '} 0376
372 (EXITNT)
0376 (FAILNT)

U

The parser provides an option to print-out the gram

0380 (STARTNT) DECLARATION

0388 (JUMP) 0424

0324 (CALLNT) 4416 0352
0336 (SEMANTIC) $STMNT
0344 (JUMP) 0324

0352 (SEMANTIC) $COMP2
0360 (LEXEM) '} 0376
0372 (EXITNT)

0376 (FAILNT)

0380 (STARTNT) DECLARATION
0388 (JUMP) 0424

0396 (STARTNT) Noname
0404 (CALLNT) 3440 0420
0416 (EXITNT)

0420 (FAILNT)

0424 (CALLNT) 0396 0584
0436 (CALLNT) 0396 0456
0448 (JUMP) 0436

0456 (JUMP) 0524

0464 (STARTNT) Noname
0472 (CALLNT) 0588 0520
0484 (SEMANTIC) $INIT
0492 (LEXEM) "= 0516
0504 (CALLNT) 1384 0516
0516 (EXITNT)

0520 (FAILNT)

0524 (CALLNT) 0464 0584
0536 (LEXEM) ', 0568
0548 (CALLNT) 0464 0568
5424 (STARTNT) STRUCT_DECL
5432 (CALLNT) 3440 5564
5444 (JUMP) 5504

5452 (STARTNT) Noname
5460 (CALLNT) 0588 5500
5472 (LEXEM) "' 5496
5484 (CALLNT) 1120 5496
5496 (EXITNT)

5500 (FAILNT)

5504 (CALLNT) 5452 5564
5516 (LEXEM) ',' 5548
5528 (CALLNT) 5452 5548
5540 (JUMP) 5516

5548 (LEXEM) ;' 5564
5560 (EXITNT)

5564 (FAILNT) ok

graph with by the wordDisplayCode - see Fig. 2 below.
Similar to Fig. 1, excerpts from the OCC grammaapyr

Fig. 2. The beginning and the end of the OCC grangreph

) FIC XCE Future work will consist in developing a pseudo&od
representing its beginning and end are separatesl dgtted generator and an its interpreter to simulate execubf

line. One can see that the whole graph occupiey onprograms in the considered programming language.

5564/4=1391 cells.

VI. CONCLUSION

The described implementation of a scanner and sepan
Forth turned out to be quite flexible and powerfizs. main
part was borrowed from earlier author's developniigdit and
ported from Forth-83 to the Forth 2014 standard Jsih
minor changes. However, it required
redeveloping the grammar interpreter in order toiddirect
references to the internal structure of the deéding prohibited
by Forth 2014. The tool runs on a PC under MS Wiveland
was developed using the system VFX Forth [11] whi
supports Forth 2014.

Another problem yet to be solved with the propos
analyzer is checking the input grammar for its ectmess; i.e.,
that it really belongs to the class LL(1) and corgano
undesirable recursions. This problem was succégsf
overcome in [13], so the tool may reuse the fowsidtmn.

! “The thrice three Muses mourning for the death

Of Learning late deceas'd in beggary

That is some satire, keen and critical. (W. Shaéasp "A Midsummer
Night's Dream"”, Act 5, Scene 1, 52-54).

REFERENCES

[1] M. E. Lesk, E. Schmidt, "Lex — A Lexical Analyzere@erator", web:

http://dinosaur.compilertools.net/lex/ (2017).

[2] "Win flex-bison",
(2017).

web: http://sourceforge.net/praig/winflexbison/

reworking angk

[3] "GNU Bison", web: http://www.gnu.org/software/bigq2017).

[4] Terence Parr, "ANTLR (ANother Tool for Language Bguition)",

web: http://www.antlr.org/ (2017).

"Forth 200x", web: http://www.forth200x.org/forth@®.html (2016)

[6] L. Brodie,Thinking Forth Punchy Pub, 2004

[71 A. Aho, R. Sethi, J. UllmanCompilers: Principles, Technigues and
Tools Addison-Wesley (1986).

[8] Jeffrey E.F. FriedIMastering regular expression®'Reilly Media, Inc.,

ch 2002.
[9] B. K. Martynenko, "Regular Languages and CF Gramfain
Computer Tools in Education. 1, pp.14+-2012. (In Russian).
eﬂO] S. Baranov, Ch. LavarenneQpen C Compiler in Forth In:
EuroForth’95, 27-29 Oct. Schloss Dagstut®95.
[11] "VFX Forth for Windows. User manual. Manual revisia.70, 19
ul August 2014". — Southampton: MPE Ltd, 2014. — 429 \peb:
http://www.mpeforth.com/ (2014)

[12] "gForth", web: https://www.gnu.org/software/gfoi2017)

[13] S.N. Baranov, L.N. Fedorchenko, "Equivalent Transfions and
Regularization in Context-Free Grammars" Cybersedied Information
Technologies. Bulgarian Academy of Sciences, Safid4. Volume 14,
no 4, p.30-45. web: http://www.degruyter.com/videdjt.2014.14.issue-

4/cait-2014-0003/cait-2014-0003.xml (2017)

