

A multi-tasking wordset for
Standard Forth

Andrew Haley
Consulting Engineer
8 September 2017

2 Forth multi-tasking

Background
Forth has been multi-tasking for almost 50 years. It's time to
standardize it.

● Chuck Moore's early Forths had a simple and efficient multi-tasker

● This was refined by others at Forth, Inc. and eventually became the
core of polyFORTH

● Many Forths have used a version of this multi-tasker since then, and
because of that there is some practical portability of multi-tasking
programs between Forth systems. These include products from MPE
and Forth, Inc. as well as free systems such as F83

3 Forth multi-tasking

Goals

● To make it possible to write multi-tasking programs in Standard Forth

● These standard multi-tasking programs will run unaltered on both co-
operative (round-robin) and time-sliced schedulers, on hosted and
freestanding systems

4 Forth multi-tasking

Design criteria

● No innovation!

● Wherever possible, use established practice from Forth systems

● Where no established practice exists in Forth, take inspiration from
other programming languages, especially C

● This should be a low-level wordset

● Standardize the most basic elements of multi-tasking, eschewing
more complex objects such as queues and channels. These can be
provided by libraries, based on this wordset

5 Forth multi-tasking

Design criteria

● Completeness

● This wordset must provide everything that is necessary to write
libraries and multi-tasking programs without such needing to use
carnal knowledge

● Simplicity

● Given that this is a Forth standard, simplicity hardly needs
mentioning, but it must be paramount after completeness

● Simplicity mostly “falls out” of the design as a result of following
common Forth practice

6 Forth multi-tasking

Design criteria

● Efficiency

● While the greatest possible efficiency will always result from a
system-specific wordset, we can get very close with a standard
wordset

● This wordset should work well on large multi-core systems but not
impose a significant burden on very small single-core systems

● Portability

● The wordset shouldn't require anything that is unavailable on a
system that is capable of realistic multi-tasking. This means that the
wordset should be usable on a machine with some kbytes of
memory, not megabytes

7 Forth multi-tasking

Round-robin versus pre-emptive
scheduling

● One of the surprising things (well, it surprised me!) was the realization
that we need to say hardly anything about the differences between
round-robin and pre-emptive schedulers

● We make no guarantees about forward progress (doing so in a
portable standard in a meaningful way is almost impossible) so it's
not necessary to discriminate between these

● Non-normative language must point out that on some systems you
need to PAUSE or perform I/O from time to time, but that's all

● Programs written with this wordset will work well with either type
of scheduler

8 Forth multi-tasking

Memory ordering

● We have to say something about what happens when more one task
accesses the same memory at the same time

● Real systems have some surprising behaviours when you do this.
These include, but are not limited to

● Word tearing, where a fetch sees a partial update of a multibyte
word

● Memory updates to different cells appear in different orders to
different tasks

● Memory reads can appear to go backwards in time, so that a
counter is not monotonic

● Memory can temporarily have unexpected values.

● Many other things

9 Forth multi-tasking

Memory ordering: SC-DRF

● I believe that the best memory ordering model for Forth is SC-DRF.

● The best reference for this is Hans Boehm, Foundations of the
C++ Concurrency Memory Model,
www.hpl.hp.com/techreports/2008/HPL-2008-56.pdf

● Hans Boehm: “IMHO, the closest we have [to a language-independent
memory model] that is actually solid and understandable is the basic
DRF model, with undefined semantics for data races.”

Or, “sequentially consistent / data race free.”

10 Forth multi-tasking

Memory ordering: SC-DRF

● A data race is defined as a concurrent (non-atomic) access to shared
memory

● SC-DRF allows tasks to use relaxed memory ordering locally, but
requires them to use SC atomic operations when communicating with
other tasks

● We give no semantics to programs with data races. The hardware
might do all manner of things. We don't have to care: a data race
might be benign on some hardware, but it won't be portable

● This isn't the dreaded nasal daemons: we only have to warn that tasks
may observe misordering, word tearing, apparent loss of causality, and
so on

Or, “sequentially consistent / data race free.”

11 Forth multi-tasking

Memory ordering: SC-DRF

● Sequential consistency, defined by Lamport, is the most intuitive
model. Memory operations appear to occur in a single total order (i.e.,
atomically); further, within this total order, the memory operations of a
thread appear in the program order for that thread

● We could define all Forth memory operations to be SC, but this would
seriously restrict many compiler and hardware optimizations

● The best route is to allow tasks to use relaxed memory ordering locally,
but require them to use SC atomic operations when communicating
with other tasks

Or, “sequentially consistent / data race free.”

12 Forth multi-tasking

Memory ordering: SC-DRF

● A program which has no data races can be proved equivalent to a
program in which every fetch and store are SC, i.e. they appear to all
threads to happen in the same order

● This is easy for programmers to understand and it is reasonably easy
to specify

● Other weaker memory models exist, but such mixed memory models
become far more complicated and unintuitive

Or, “sequentially consistent / data race free.”

13 Forth multi-tasking

Creating a task

TASK <taskname> [polyFORTH]

Define a task. Invoking taskname returns the address of the task's
Task Control Block (TCB).

/TASK (- n) [new]

n is the size of a Task Control block. [This word allows arrays of tasks
to be created without having to name each one.]

CONSTRUCT (addr --) [polyFORTH]

Instantiate the task whose TCB is at addr. This creates the TCB and
and possibly links the task into the round robin. After this, user
variables may be initialized before the task is started

14 Forth multi-tasking

Starting a task

ACTIVATE (xt addr –) [polyFORTH]

Start the task at addr asynchronously executing the word whose
execution token is xt. [This differs from Forth, Inc. practice, which
uses the “word with an exit in the middle” technique of DOES>.]

What should we say about a task which reaches the end of this
word, i.e. it hits the EXIT ? Traditionally, Forth systems would
crash, and in order to prevent that you'd have to end an activation
with

BEGIN STOP AGAIN

IMO, we'd be better saying that the task terminates

15 Forth multi-tasking

USER variables

USER (n1 --) [polyFORTH]

Define a user variable at offset n1 in the user area.

+USER (n1 n2 -- n3) [polyFORTH]

Define a user variable at offset n1 in the user area, and increment
the offset by the size n2 to give a new offset n3.

#USER (– n) [polyFORTH]

Return the number of bytes currently allocated in a user area. This is
the offset for the next user variable when this word is used to start a
sequence of +USER definitions intended to add to previously defined
user variables.

A programmer may define words to access variables, with private
versions of these variables in each task (such variables are called
“user variables”).

16 Forth multi-tasking

USER variables

HIS (addr1 n -- addr2) [polyFORTH]

Given a task address addr1 and user variable offset n, returns the
address of the ref- erenced user variable in that task's user area.
Usage:

 <task-name> <user-variable-name> HIS

● This is very useful for initializing user variables before a task runs

A programmer may define words to access variables, with private
versions of these variables in each task (such variables are called
“user variables”).

17 Forth multi-tasking

STOP and AWAKEN

● These have been present in some form since the earliest days of Forth

● STOP blocks the current task unless or until AWAKEN has been issued

● Calls to AWAKEN are not “counted”, so multiple AWAKENs before a STOP
only unblock a single STOP

● A task invoking STOP might return immediately because of a
"leftover" AWAKEN from a previous usage. However, in the absence of
an AWAKEN, its next invocation will block

● STOP is the most OS-independent low-level blocking primitive I know
of: it is a leaky one-bit semaphore

● STOP and AWAKEN can fairly easily be used to create locks, blocking
queues, and so on

● STOP and AWAKEN correspond to BSD UNIX's _lwp_park(2) and
_lwp_unpark(2)

18 Forth multi-tasking

Atomic operations

ATOMIC@ (a-addr -- x)[new]

Atomically load x from a-addr. The load is sequentially consistent.
Equivalent to C11's atomic_load().

ATOMIC!(x a-addr --)[new]

Atomically store x at a-addr. The store is sequentially consistent.
Equivalent to C11's atomic_store().

● These words are part of the total order so can be used for
synchronization between threads

All of these are data race free

19 Forth multi-tasking

Atomic operations

ATOMIC-XCHG (x1 a-addr – x2) [new]

Atomically replace the value at a-addr with x1. x2 is the value
previously at a-addr. This is an atomic read-modify-write operation.
Equivalent to C11's atomic_exchange().

ATOMIC-CAS (expected desired a-addr – prev) [new]

Atomically compare the value at a-addr with expected, and if
equal, replace the value at a-addr with desired. prev is the value
at a-addr immediately before this operation. This is an atomic
read-modify-write operation. Equivalent to C11's
atomic_compare_exchange_strong().

● These words are part of the total order so can be used for
synchronization between tasks

All of these are data race free

20 Forth multi-tasking

GET and RELEASE

MUTEX-INIT (addr) [new]

Initialize a mutex. Set its state to released.

[In polyFORTH, this was just 0 addr ! .]

/MUTEX (– n) [new]

n is the number of bytes in a mutex.

[In polyFORTH, a mutex was a simple variable.]

MutExes provide mutual exclusion

21 Forth multi-tasking

GET and RELEASE

GET (addr --) [polyFORTH]

Obtain control of the mutex at addr. If the mutex is owned by
another task, the task executing GET will wait until the mutex is
available.

[In a round-robin scheduler, this word executes PAUSE before
attempting to acquire the mutex.]

RELEASE (addr –) [new]

Relinquish the mutex at addr

● These words are part of the total order

MutExes provide mutual exclusion

22 Forth multi-tasking

And also...

PAUSE (–) [polyFORTH]

Causes the execuiting task temporarily to relinquish the CPU.

● In a system which uses round-robin sheduling, this can be used to
allow other tasks to run

● However, this isn't usually needed because I/O causes a task to block.
All words which do I/O should, unless they are extremely high priority,
execute PAUSE

