A Recognizer Influenced
Handler Based

Outer Interpreter Structure
Ulrich Hoffmann

Sk

uho@ (XLERE .de

many pictures taken from leo brodies famous book "starting forth" (c) forth, inc

/%

Sl
ver VIEW

e

® recognizers
® outer interpreter: what needs to be done?
® handlers
® idea
® code
® design options
® possible stack effects
® haeh!?
® token scanning
® search order
® summary
® disussion

recognizers

® new extensible outer interpreter!'l structure
proposed by mathias trute

® on its way to become a standard's
committee supported proposal

® interpret/compile/postpone structure for
syntactic classes that describes their
treatment in the outer interpreter

® stack structure for combining recognizers

[1] http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html
http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

outer interpreter: what
needs to be done!

"the text interpreter

scans the input _

stream, looking of handle it
strings of characters
separated by spaces."

Rl éﬁzsnezs—(|scan for token|

outer interpreter: what
needs to be done!

token —

run it

push it

consult user

outer compiler: what
needs to be done!

| IS it a immediate? | run it

compile it

|is it a number?| compile push it

IS it a word?

haeh? consult user

outer interpreter:

extensions
is it a word? run it
IS it a number? push it
s it a float? fpush it

haeh? consult user

outer interpreter:

extensions
is it a word? run it
IS it a number? push it
is it a char? push it

haeh? consult user

outer interpreter:

extensions
is it a word? run it
IS it a number? push it

IS ita hex ? push it

| haeh? | consult user

outer interpreter:

extensions
Is it a word? run it
IS it a number? push it
IS it a char? push it
IS it a hex ? push it
Is it a float? fpush it
haeh? consult user

handlers
idea

give the token to a list of handlers one
handler at a time until one can cope with it

if a handler can cope with it, it does it and
reports

if it cannot, it reports

handlers code

Variable handlers

interpret (—--)
BEGIN parse—-name dup
WHILE
handlers @ length handle
O= IF -13 throw THEN
REPEAT 2drop ;

handlers code

Variable handlers

interpret (—--)
BEGIN parse—-name dup
WHILE
handlers @ length handle
O= IF -13 throw THEN
REPEAT 2drop ;

and state?

handlers code
interpret words

\ interpret words in forth wordlist

:noname (c-addr ul -- i*x true | c-addr2 u2 false)
2dup forth-wordlist search-wordlist
IF nip nip execute true EXIT THEN false ;

difference to recognizers!?

e | task vs.3 in |
* immediate copeing vs. later execution

handlers code
compile words

\ compile words in forth wordlist

:noname (c-addr ul -- i*x true | c-addr2 u2 false)
2dup forth-wordlist search-wordlist
dup 0< IF (not immediate)
drop compile,
2drop true EXIT THEN
IF (immediate)
nip nip execute
true EXIT THEN

handlers code
interpret character literals

\ interpret character literals

: charlit (c-addr ul -- i*x true | c-addr2 u2 false)
dup 3 = IF over c@ [char] ' = 2 pick c@ [char] ' = and
IF drop char+ c@ true EXIT THEN THEN false ;

' charlit

handlers code
compile character literals

\ compile character literals

[: (c-—addr ul -- i*x true | c-addr2 u2 false)
charlit IF postpone literal true EXIT THEN false ;]

possible handlers

words

base numbers (single cell)

base prefix numbers (hex decimal bin)
character literals

string literals

<"

double precision numbers

floating point numbers

namespace scoped identifiers

object systems

date&time @
XX} ,'N
1

-~

P
L
“d

handlers properties

® modular extensible (I. dimension)

® interpreter (extensible) —
® compiler (extensible) —
® postponer (extensible) —

® more extensions (2. dimension)
® target compiler
® remote compiler
® DSL compiler

handlers properties

® handlers are simply colon definitions

® composing handlers give new handlers

® handler lists
® layed out in memory with create and ,
® n@ n! operate on cell counted lists
® handler lists can be in allocated memory

® handler chained in :-definitions

handlers design options

possible stack effects
haeh!?

token scanning
search order

® prototypes for each options on git branches

handlers design options
possible stack effect

® what stack effect shall a handler have?

® (c-addr ul -- i*x true | c-addr2 u2 false)
® (c-addru --i*x true | false)
® (c-addru --i*x c-addr u true | c-addr u false)

handlers design options
haeh!?

® if no handler can cope with the token, what
should be done?

® signal error (-13 throw)

® ighore

handlers design options
token scanning

® shall handlers work on pre scanned tokens!?

® of shall they inspect the input stream on
their own!

handler design options
search order

® shall a handler search the search order

® or look into a single word list?

® the search order will be a sublist of handlers

summary

® simple
® handlers are ordinary :-definitions
® handler lists are easy to build and manage

¢ extensible
in 2 dimensions:
|. extending handler lists with new handlers
2. different compilers/interpreters (postponers)

may the swap be with you!

discussion

handle code

: handle (c-addrl ul addr u -- i*x true | c-addr2 u2 false)

cells bounds
?DO (c-addrl ul)
I @ execute ?dup IF (i*x) UNLOOP EXIT THEN
cell +LOOP
false ;

