
A Recognizer Influenced
Handler Based

Outer Interpreter Structure
Ulrich Hoffmann

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

uho@ .de

m
an

y
pi

ct
ur

es
 t

ak
en

 fr
om

 le
o

br
od

ie
s

fa
m

ou
s

bo
ok

 "
st

ar
tin

g
fo

rt
h"

 (
c)

 fo
rt

h,
 in

c

over view
• recognizers
• outer interpreter: what needs to be done?
• handlers
• idea
• code
• design options
• possible stack effects
• haeh?
• token scanning
• search order
• summary
• disussion

44 HOW TO GET RESULTS

in which the following steps occur:

OPERATION
CONTENTS
OF STACK

DUP
*

a
a a
a2

OVER

Now somebody tells you to evaluate the expression:
a * (a + b)

given the following stack order:
< a b —)

But, you say, I'm going to need a new manipulation operator: I want two
copies of the "a," and the "a" is under the "b." Here's the word you need:
OVER . OVER simply makes

(a b — a b a)

Now the expression

a * <a + b)

can easily be written as

OVER + *

Here 's what happens:

CONTENTS
OPERATION OF STACK

a b
OVER a b a
+ a (b + a)
t a*(b + a)

When writing equations in Forth, it's best to "factor them out" first. For

44 H O W TO GET RESULTS

in which the following steps occur:

CONTENTS
OPERATION O F STACK

a
OUP a a

I OVER

Now somebody tells you to evaluate the expression:
a * (a + b)

given the following stack order:
(a b)

But, you say. I 'm going to need a new manipulation operator: I want two
copies o f the " a . " arid the " a " is under the " b . " Here's the word you need:

simply makes a copy of the "a " and leapfrogs it over the " b " :
(a b - - a b a)

I OVER! I OVER

Now the expression
a t (a + b)

can easily be written as
OVER +

Here's what happens:

CONTENTS
OPERATION O F STACK

a b
OVER a b a

a (b+ a)
$ a * (1 3 + a)

When writing equations in Forth. it 's best to "factor them out" first. For

recognizers

• new extensible outer interpreter[1] structure
proposed by mathias trute

• on its way to become a standard's
committee supported proposal

• interpret/compile/postpone structure for
syntactic classes that describes their
treatment in the outer interpreter

• stack structure for combining recognizers

[1] http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html
http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

outer interpreter: what
needs to be done?

14 FUNDAMENTAL FORTH

9PACES-
v-y.m m s s v-i vss

The text interpreter scans the input
stream, looking for strings of charac
ters separated by spaces.

When he finds such a string, he
looks it up in the dictionary.

If he finds the word in the diction
ary, he points out the definition to a
word called EXECUTE

—who then executes the definition
(in this case, he prints an asterisk).
The interpreter says everything's
"ok."

&

If the interpreter cannot find the
string in the dictionary, he calls the
numbers-runner (called |NUMBER]).

NUMBER| knows a number when
he sees one. If iNUMBERl finds a
number, he runs it off to a tempo
rary storage location for numbers.

14 F U N D A M E N T A L FORTH

The text interpreter scans the input
stream, looking for strings of charac-
ters separated by spaces.

1,$tar x
-
P r i n
t
a n
a s
t e r
i s
k

If he finds the word in the diction-
ary, he points out the definition to a
word called EXECUTE —

If the interpreter cannot find the
string in the dictionary. he calls the
numbers-runner (called NUMB E R).

Star g
Print an asterisk

When he finds such a string, he
looks it up in the dictionary.

—who then executes the definition
(in this case, he prints an asterisk).
The interpreter says everything's

'NUMBER' knows a number when
he sees one. I f NUMBER finds a
number. he runs it off to a tempo-
rary storage location for numbers.

"the text interpreter
scans the input

stream, looking of
strings of characters
separated by spaces."

scan for token

handle it

outer interpreter: what
needs to be done?

is it a word?

is it a number?

run it

push it

haeh?

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

T H E D I C T I O N A R Y 1 5

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

XLERB XLERB ?

When the text interpreter cannot find XLERB in the dictionary, it tries to
pass it off on | NUMBER]. | NUMBER] shines it on. Then the interpreter returns
the string to you with an error message.

Many versions of Forth save the entire name of each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told not to keep the entire
name, but simply the count of characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory, but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now, remember we said that (T| is a word? When you type the word Q],
as in

S T A R 4 2 E M I T ; E

What happens when you try to execute a word that is not in the dictionary?
Enter this and see what happens:

X L E R B O M XLERB ?

When the text interpreter cannot find XLERB in the dictionary. it tries to
pass it off on NUMB E R N U M B E R shines it on. Then the interpreter returns
the string to you with an error message.

Many versions o f Forth save the entire name o f each definition in the
dictionary, along with the number of characters in the name. The problem with
this scheme is that in large applications, too much memory is consumed not by
the program or by data, but by names.

In some versions of Forth, the compiler can be told nol to keep the entire
name. but simply the count o f characters in the whole name and a specified
number of characters, usually three. This technique allows the program to reside
in less memory. but can result in naming conflicts. For instance, if the compiler
only saves the count and the first three characters, the text interpreter cannot
distinguish between STAR and STAG, while it can distinguish between STAR
and START.

It's nice if the Forth system lets you switch back and forth between using
shortened name fields and, for words that cause "collisions," keeping "natural-
length" names. (Check your system documentation to see whether—and how—
you can do this.)

To summarize: When you type a predefined word at the terminal, it gets
interpreted and then executed.

Now. remember we said that E is a word? When you type the word
as in

: S T A R 4 2 E M I T ;

THE DICTIONARY 1 5

consult user

token

outer compiler: what
needs to be done?

is it a word?

is it a number?

is it a immediate? run it

haeh?

compile it

compile push it

consult user

outer interpreter:
extensions

is it a word?

is it a number?

run it

push it

haeh? consult user

is it a float? fpush it

outer interpreter:
extensions

is it a word?

is it a number?

run it

push it

haeh? consult user

is it a char? push it

outer interpreter:
extensions

is it a word?

is it a number?

run it

push it

haeh? consult user

is it a hex ? push it

outer interpreter:
extensions

is it a word?

is it a number?

run it

push it

haeh? consult user

is it a char?
is it a hex ?

push it
push it

is it a float? fpush it

handlers
idea

• give the token to a list of handlers one
handler at a time until one can cope with it

• if a handler can cope with it, it does it and
reports

• if it cannot, it reports

handlers code
Variable handlers

: interpret (--)
 BEGIN parse-name dup
 WHILE
 handlers @ length handle
 0= IF -13 throw THEN
 REPEAT 2drop ;

handlers code
Variable handlers

: interpret (--)
 BEGIN parse-name dup
 WHILE
 handlers @ length handle
 0= IF -13 throw THEN
 REPEAT 2drop ;

and state?

handlers code
interpret words

\ interpret words in forth wordlist

:noname (c-addr u1 -- i*x true | c-addr2 u2 false)
 2dup forth-wordlist search-wordlist
 IF nip nip execute true EXIT THEN false ;

difference to recognizers?

• 1 task vs. 3 in 1
• immediate copeing vs. later execution

handlers code
compile words

\ compile words in forth wordlist

:noname (c-addr u1 -- i*x true | c-addr2 u2 false)
 2dup forth-wordlist search-wordlist
 dup 0< IF (not immediate)
 drop compile,
 2drop true EXIT THEN
 IF (immediate)
 nip nip execute
 true EXIT THEN
 false ;

handlers code
interpret character literals

\ interpret character literals

: charlit (c-addr u1 -- i*x true | c-addr2 u2 false)
 dup 3 = IF over c@ [char] ' = 2 pick c@ [char] ' = and
 IF drop char+ c@ true EXIT THEN THEN false ;
' charlit

handlers code
compile character literals

\ compile character literals

[: (c-addr u1 -- i*x true | c-addr2 u2 false)
 charlit IF postpone literal true EXIT THEN false ;]

possible handlers
• words
• base numbers (single cell)
• base prefix numbers (hex decimal bin)
• character literals
• string literals
• s"
• double precision numbers
• floating point numbers
• namespace scoped identifiers
• object systems
• date&time
• ...

MISCELLANEOUS MATH OPERATORS 97

There are three reasons to use a word such as 11 + |, instead of one and
| + |, in your definitions. First, you save a little dictionary space each time.
Second, since such words have been specially defined in the "machine language"
of each individual type of computer to take advantage of the computer's architec
ture, they execute faster than one and | + |. Finally, you save a little time during
compilation.

MISCELLANEOUS MATH OPERATORS
Here's a table of four miscellaneous math op
erators. Like the quickie operators, these func
tions should be obvious from their names. Aunt riin and Uncle Max

ABS (n — :n!) Returns the absolute
value.

NEGATE (n n) C h a n g e s t h e s i g n .
MIN < ni n2 — min) Returns the minimum, f
MAX < ni n2 — max) Returns the maximum. V

Here are two simple word problems, using ABS and MIN
ABS

Write a definition that computes the difference between two numbers, regardless
of the order in which the numbers are entered.

: DIFFERENCE (nl n2 — difference) - ABS ;
This gives the same result whether we enter

or52 37 DIFFERENCE
37 52 DIFFERENCE

I5_Qk
15 ok

MISCELLANEOUS MATH OPERATORS

I ABS I

MISCELLANEOUS MATH OPERATORS 9 7

Here's a table of four miscellaneous math op-
erators. Like the quickie operators. these func-
tions should be obvious from their names.

ABS (n) R e t u r n s the absolute
value.

NEGATE (n -
n)
C h a n g e s
t h e
s i g n
.

MIN (n i n2 - - min) Returns the minimum.
MAX (n1 n2 - - max) Returns the maximum.

Aunt Mtn and Uncle Mag

Here are two simple word problems, using I ABS and I MINI:

There are three reasons to use a word such as I , instead o f one and
in your definitions. First, you save a little dictionary space each time.

Second. since such words have been specially defined in the "machine language"
of each individual type of computer to take advantage of the computer's architec-
ture, they execute faster than one and I + Fin a l ly , you save a little time during
compilation.

. 2
4
)

Write a definition that computes the difference between two numbers, regardless
of the order in which the numbers are entered.

: DI FFE RE NCE (n 1 n 2 - - d i f f e r e n c e) - A B S

This gives the same result whether we enter

52 3 7 DI FFE RE NCE 1 5 01
, o r37 5 2 DI FFE RE NCE - 1 5 o k

modular extensible

handlers properties

• modular extensible (1. dimension)
• interpreter (extensible)
• compiler (extensible)
• postponer (extensible)

• more extensions (2. dimension)
• target compiler
• remote compiler
• DSL compiler

handlers properties

• handlers are simply colon definitions

• composing handlers give new handlers
• handler lists

• layed out in memory with create and ,
• n@ n! operate on cell counted lists

• handler lists can be in allocated memory

• handler chained in :-definitions

handlers design options

• possible stack effects
• haeh?
• token scanning
• search order

• prototypes for each options on git branches

handlers design options
possible stack effect

• what stack effect shall a handler have?

• (c-addr u1 -- i*x true | c-addr2 u2 false)

• (c-addr u -- i*x true | false)

• (c-addr u -- i*x c-addr u true | c-addr u false)

handlers design options
haeh?

• if no handler can cope with the token, what
should be done?

• signal error (-13 throw)

• ignore

handlers design options
token scanning

• shall handlers work on pre scanned tokens?

• of shall they inspect the input stream on
their own?

handler design options
search order

• shall a handler search the search order

• or look into a single word list?

• the search order will be a sublist of handlers

summary

• simple
• handlers are ordinary :-definitions
• handler lists are easy to build and manage

• extensible
in 2 dimensions:

1. extending handler lists with new handlers
2. different compilers/interpreters (postponers)

may the swap be with you!

discussion

handle code

: handle (c-addr1 u1 addr u -- i*x true | c-addr2 u2 false)
 cells bounds
 ?DO (c-addr1 u1)
 I @ execute ?dup IF (i*x) UNLOOP EXIT THEN
 cell +LOOP
 false ;

