U]

A Recognizer Influenced
Handler Based

Outer Interpreter Structure

Ulrich Hoffmann

=,
uho@é@g?&de

I
over view

recognizers
outer interpreter: what needs to be done?
handlers
® idea
® code
® design options

® possible stack effects

® haeh!?

® token scanning

® search order

® summary
® disussion

recognizers

new extensible outer interpretert' structure
proposed by mathias trute

on its way to become a standard's
committee supported proposal

interpret/compile/postpone structure for
syntactic classes that describes their
treatment in the outer interpreter

stack structure for combining recognizers

ric-D.html

outer interpreter: what
needs to be done?

B

scan for token

i
%‘rﬁééhsmzs«

[0 4040 M OO ONO)

"the text interpreter
scans the input
stream, looking of
strings of characters
separated by spaces."

handle it

I

many pictures taken from leo brodies famous book "starting forth" (c) forth, inc

outer interpreter: what
needs to be done?

token —_

i
T+
e

is it a word?

is it a number?

haeh?

run it

push it

consult user

outer compiler: what
needs to be done!

is it a word?

is it a immediate?

is it a number?

run it
compile it

compile push it

haeh?

outerinterpreter:

extensions
is it a word? run it
is it a number? push it
is it a float? fpush it
haeh? consult user

outer interpreter:
extensions

is it a word? run it

is it a number? push it

is it a char? push it

haeh? consult user

consult user

outer interpreter:
extensions

is it a word?

is it a number?

isitahex ?

haeh?

run it

push it

push it

consult user

outer interpreter:
extensions

is it a word?

is it a number?

is it a float?

haeh?

J‘
\$
.
&

|

| —

run it

push it

push it
push it
fpush it

consult user

handlers
idea

® give the token to a list of handlers one
handler at a time until one can cope with it

o if a handler can cope with it, it does it and
reports

e if it cannot, it reports

handlers code

Variable handlers

interpret (--)
BEGIN parse-name dup
WHILE

handlers @ length handle
0= IF -13 throw THEN
REPEAT 2drop ;

handlers code

Variable handlers

interpret (--)
BEGIN parse-name dup
WHILE

handlers @ length handle
0= IF -13 throw THEN
REPEAT 2drop ;

and state?

handlers code
interpret words

\ interpret words in forth wordlist

:noname (c-addr ul -- i*x true | c-addr2 u2 false)
2dup forth-wordlist search-wordlist
IF nip nip execute true EXIT THEN false ;

difference to recognizers?

e | task vs.3in |
e immediate copeing vs. later execution

handlers code
compile words

\ compile words in forth wordlist

:noname (c-addr ul -- i*x true | c-addr2 u2 false)
2dup forth-wordlist search-wordlist
dup 0< IF (not immediate)
drop compile,
2drop true EXIT THEN
IF (immediate)
nip nip execute
true EXIT THEN

false ;

handlers code
interpret character literals

\ interpret character literals

: charlit (c-addr ul -- i*x true | c-addr2 u2 false)
dup 3 = IF over c@ [char]
IF drop char+ c@ true EXIT THEN THEN false ;

' charlit

' = 2 pick c@ [char] ' = and

handlers code
compile character literals

\ compile character literals

[: (c-maddr ul -- i*x true | c-addr2 u2 false)
charlit IF postpone literal true EXIT THEN

false

i1

possible handlers

words

base numbers (single cell)

base prefix numbers (hex decimal bin)
character literals

string literals

sll

double precision numbers

floating point numbers

namespace scoped identifiers

object systems
0o

date&time

.3

2

handlers properties

® modular extensible (1. dimension)

® interpreter (extensible) _
® compiler (extensible) —_—
® postponer (extensible) _

® more extensions (2. dimension)
® target compiler
® remote compiler
® DSL compiler

handlers properties

® handlers are simply colon definitions

® composing handlers give new handlers
® handler lists

layed out in memory with create and ,
n@ n! operate on cell counted lists
handler lists can be in allocated memory
handler chained in :-definitions

handlers design options

® possible stack effects
® haeh?

® token scanning

® search order

prototypes for each options on git branches

handlers design options
possible stack effect

e what stack effect shall a handler have?
® (c-addr ul -- i*x true | c-addr2 u2 false)
® (c-addru --i*x true | false)
® (c-addru -- i*x c-addr u true | c-addr u false)

handlers design options
haeh?

® if no handler can cope with the token, what
should be done?

® signal error (-13 throw)

® ignore

handlers design options
token scanning

® shall handlers work on pre scanned tokens?

o of shall they inspect the input stream on
their own?

handler design options
search order

® shall a handler search the search order

® or look into a single word list?

® the search order will be a sublist of handlers

summary

® simple
® handlers are ordinary :-definitions
® handler lists are easy to build and manage

® extensible
in 2 dimensions:
|. extending handler lists with new handlers
2. different compilers/interpreters (postponers)

may the swap be with you!

0 &
%\\“ %64

i

discussion

handle code

¢ handle (c-addrl ul addr u -- i*x true | c-addr2 u2 false)

cells bounds
?DO (c-addrl ul)

I @ execute ?dup IF (i*x) UNLOOP EXIT THEN
cell +LOOP

false ;

