
recognizers

• new extensible outer interpreter[1] structure
proposed by mathias trute

• on its way to become a standard's
committee supported proposal

• interpret/compile/postpone structure for
syntactic classes that describes their
treatment in the outer interpreter

• stack structure for combining recognizers

[1] http://amforth.sourceforge.net/pr/Recognizer-rfc-D.html

handlers
idea

• give the token to a list of handlers one
handler at a time until one can cope with it

• if a handler can cope with it, it does it and
reports

• if it cannot, it reports

handlers properties

• modular extensible (1. dimension)

• interpreter (extensible)

• compiler (extensible)

• postponer (extensible)

• more extensions (2. dimension)

• target compiler

• remote compiler

• DSL compiler

handlers properties

• handlers are simply colon definitions

• composing handlers give new handlers

• handler lists

• layed out in memory with create and ,

• n@ n! operate on cell counted lists

• handler lists can be in allocated memory

• handler chained in :-definitions

handlers design options

• possible stack effects

• haeh?

• token scanning

• search order

• prototypes for each options on git branches

handlers design options
possible stack effect

• what stack effect shall a handler have?

• (c-addr u1 -- i*x true | c-addr2 u2 false)

• (c-addr u -- i*x true | false)

• (c-addr u -- i*x c-addr u true | c-addr u false)

handlers design options
haeh?

• if no handler can cope with the token, what
should be done?

• signal error (-13 throw)

• ignore

handlers design options
token scanning

• shall handlers work on pre scanned tokens?

• of shall they inspect the input stream on
their own?

handler design options
search order

• shall a handler search the search order

• or look into a single word list?

• the search order will be a sublist of handlers

summary

• simple

• handlers are ordinary :-definitions

• handler lists are easy to build and manage

• extensible
in 2 dimensions:

1. extending handler lists with new handlers
2. different compilers/interpreters (postponers)

