Forth: A New Synthesis
Progress Report

Growing Forth with seedForth

Ulrich Hoffmann <uho@xlerb.de>

Overview
Growing Forth

introduction

pI‘EFOI’th (simpleForth, Forth)
seedForth

summary

‘Forth:A New Synthesis'

® EuroForth 2016

Implementing the Forth Inner Interpreter in High Level Forth

® Forth 2017

Stack of Stacks strings on the data stack

® EuroForth 2017

handler based outer interpreter

‘Forth:A New Synthesisl

Forth everywhere (as much as possible)
bootstrap-capable self-generating system
completely transparent

simple to understand

quest for simplicity

biological analogy

disaggregation

Can Forth emerge from less than Forth?

preForth

® Can Forth emerge from less than Forth!?
® What can be omitted?

® no DOES>

® no BASE

® no STATE

® no pctured numerical output <# # #>

® no CATCH/THROW

preForth

® Can Forth emerge from less than Forth!?

® VWhat else can be omitted?

® no immediate words, i.e.
® no control structures |IF ELSE THEN BEGIN
WHILE REPEAT UNTIL
no defining words - but :
no memory @ ! CMOVEALLOT,
no input stream

no dictionary, no EXECUTE nor EVALUATE
not interactive

preForth

® What remains!?
® stack
return stack
just ?EXIT and recursion as control structures
colon definitions
optional tail call optimization
in- and output via KEY/EMIT
decimal positive und negative numbers (single cell)
character literals in 'x'-notation

decimal number output (single cell)

preForth Programs

How do they look like!?

: countdown (n --)
dup .
?dup 0= ?exit
1- tail countdown ;

5 countdown
54 3210

preForth Programs

How do they look like!?

: dashes ((n --)
?dup 0= ?exit
'-'" emit 1- tail dashes ;

5 dashes

preForth Programs

How do they look like!?

\ show displays topmost string

show (S —--)
?dup 0= ?exit swap >r 1l- show
r> emit ;

preForth Programs

How do they look like!?

."Hello, world'" (--)
'Hl lel ll' 'l' 'ol ',' bl
'w! 'o' 'r' '1l' 'd' '!t' 13 show ;

Hello world!

preForth Operations
for Stack Strings

® dup (S -- S S)
® swap (S1 S2 -- S2 S1)
® drop (S --)

® show (S --)
® Patterns
 dup pick (S -- c) first character

© swap 1+ (S1 c -- S2) append character

Pick and Roll ?!

: pick (xn-1 ... x0 1 -- xn-1 ... x0 x1i)
over swap ?dup 0= ?exit nip swap
>r 1- pick r> swap ;

roll (xn-1 ... x0 i -- xn-1 ... xi-1 xi+l1 ... x0 xi)
?dup 0= ?exit swap >r 1- roll r> swap ;

?dup (x -- x x | 0)
dup dup 7?exit drop ;

Primitives

® Forth everywhere (as much as possible)

® the must be some basis:

® |3 primitives: :
emit key

dup swap drop
O< -

lexit

>r r>

nest unnest

lit

Defintion of Primitives

Formulate in the plattform target language (here i386-Asm)

code ?exit (£ --)
pop eax
Oor eax, eax
Jjz gexitl
mov esi, [ebp]
lea ebp, [ebp+4]
gexitl: next

Describing Target Code

Formulate in the plattform target language (here i386-Asm)

prefix
format ELF

macro next {
lodsd
Jmp dword [eax]

pre
prelude

prefix

preamble

preformatted

preForth compiler

accepts preForth programs from stdin

writes plattform programs to stdout

® here i386 assembler

® more backends very easy (C, planned AMDs4, stm8, NIGE)
formulated itself in preForth

can reproduce itself

first bootstrap via gForth or SwiftForth

machine code generated by plattform assembler

preForth compiler

® outer interpreter and compiler based on handlers

® Handler (S -- 1*x 0 | S)

\ ?'x' detects and compiles a character literal
?'x' (S --0] S)
dup 0= ?exit
dup 3 - ?exit

over 't - RPexit
3 pick ''' - ?exit
2 pick >r drop r>

,1it 0 ;

® Handlers are combined in colon definitions.

preForth compiler

® Handlers are combined in colon definitions.

® preForth compiler loop:

1 (—=)

token \ get next token
\ run compilers
?; ?dup 0= ?exit \ ; leave compiler loop
2\ \ comment
?tail \ marked as tail call
?'x' \ character literal
?lit \ number
?word \ word
\

_drop tail] ;

ignore unhandled token and cycle

generated plattform code

7exit ?dup
; ?Pexit ; ?dup
_Qexit: DD QexitX _Qdup: DD nest
_QexitX:pop eax _QdupX:
or eax, eax DD dup
jz gexitl DD dup
mov esi, [ebp] DD Qexit
lea ebp, [ebp+4] DD drop
gexitl: next DD unnest

simpleForth

* prefForth is turing complete

Writing a complete Forth in preForth is

possible...
... but cumbersome.

* extending preForth: simpleForth

simpleForth

* simpleForth is like preForth
e prefForth c simpleForth

* in addition:

e control structures: |[F ELSE THEN BEGIN
WHILE REPEAT UNTIL

¢ definitions with and without Header in
generated code

* memory: @ ! c@ c! allot c,,

e variable constant

* ['] execute

* immediate definitions

Bootstrapping Forth

e full, interactive Forth ("Forth") in simpleForth

* new synthesis:
* handler based text/interpretierer
* dual words

* dynamic memory management
®

* works - but not really satisfying

Observations / Dislikes

e "double” description
e control structures
* header structures
|. for the generated Forth image
2. for use in the interactuce system

* continue quest

The Birth of seedForth

seedForth

eliminates the issue of double described structures
further simplifies the basis even further

very small (potentially) interactive Forth system
460 LOC

has dictionary extensible by colon definitions

can be extended to a full-featured interactive Forth

* accepts source code in byte tokenized form

¢ seedForth for i386 and AMDé64

The Birth of seedForth

Data Stack

Return Stack

simplify names:
names are just numbers

c!!

h@

h!

c@ @

Memory for code-, colon-definitions, data

seedForth virtual machine
e data stack, return stack
e dictionary

A
1

dp

addressable memory for code, colon defs, data

e headers

array mapping word indices to start adresses

seedForth words

$00 #FUN: bye $01 #FUN: emit $02 #FUN: key $03 #FUN: dup
$04 #FUN: swap $05 #FUN: drop $06 #FUN: 0< $07 #FUN: ?exit
$08 #FUN: >r $09 #FUN: r> SOA #FUN: - SOB #FUN: unnest
SO0C #FUN: 1lit SOD #FUN: @ SOE #FUN: c@ SOF #FUN: !
$10 #FUN: c! $11 #FUN: execute $12 #FUN: branch $13 #FUN: ?branch
$14 #FUN: negate $15 #FUN: + $16 #FUN: O= $17 #FUN: ?dup
$18 #FUN: cells $19 #FUN: +! $1A #FUN: h@ $1B #FUN: h,
$1C #FUN: here $1D #FUN: allot $S1E #FUN: , $1F #FUN: c,
$20 #FUN: fun $21 #FUN: interpreter $22 #FUN: compiler $23 #FUN: create
$24 #FUN: does> $25 #FUN: cold $26 #FUN: depth $27 #FUN: compile,
$28 #FUN: new $29 #FUN: couple $2A #FUN: and $2B #FUN: or
$2C #FUN: catch $2D #FUN: throw S2E #FUN: sp@ S$S2F #FUN: sp!
$30 #FUN: rp@ $31 #FUN: rp! $32 #FUN: $1lit

: interpreter (--)

key execute

tail interpreter ;

compiler (--)

key ?dup 0= ?exit compile,

tail compiler ;

seedForth Tokenizer

e convert human readable source code to

byte tokenized source code (“editor task")
e about 100 LOC

program demo.seed

demo.seedsource

'H' # emit 'e' # emit 'l' # dup emit emit 'o' # emit 10 # emit
s 1+ (x1 --x2) 1 #, + ;'

'A' # 1+ emit \ outputs B

\

00000000 02 48 01 02 65 01 02 6¢c 03 01 01 02 6f 01 02 Oa |.H..e..1l....0...|
00000010 01 20 Oc 00 02 01 1e 22 15 Ob 00 02 41 33 01 00 |. "....A3. .|

end

demo.seed

seedForth Tokenizer

e convert human readable source code to
byte tokenized source code (“editor task")

e about 100 LOC

program demo.seed

demo.seedsource

'H' # emit 'e' # emit 'l' # dup emit emit 'o' # emit 10 # emit
s 1+ (x1 --x2) 1 #, + ;'

'A' # 1+ emit \ outputs B

end

¢ demo.seed

$ cat demo.seed | bin/seedForth

seed
Hello
B

00000000 02 48 01 02 65 01 02 ¢
00000010 01 20 Oc 00 02 01 1le 2

seedForth grows

Planned extensions toward full-featured interactive Forth

V' dynamic memory allocation with allocate, resize and free
V' defining words including DOES>

headers with dictionary search and DUAL behaviour word support
text interpreter and compiler that work on non tokenized source
using a handler based approach with string descriptors and regular
expressions.

compiling words

a Forth assembler for the target platform and additional primitives,
multitasking

OOP

file and operating system interface

access to hardware

the tokenizer and preForth can eventually also be expressed in
seedForth and so it will be self contained.

Summary Forth: A New Synthesis

preForth

- bootstrap capable, self-generating system
- complete transparency

- simple to understand

seedForth

- byte tokenized source code

- initially word names are number indices into the header array
- extensible to full-featured interactive Forth

- simple to understand

Can Forth emerge from less than Forth!?
Yes - with preForth and seedForth ©

