
35th EuroForth Conference

September 13-15, 2019

Hamburg
Germany

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 35th EuroForth
finds us in Edinburgh for the first time. The two previous EuroForths were held
in Bad Vöslau, Austria (2017) and in Edinburgh, Scotland (2018). Information
on earlier conferences can be found at the EuroForth home page (http://www.
euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there was one submission to the refereed track, which was accepted (100% ac-
ceptance rate). For more meaningful statistics, I include the numbers since
2006: 28 submissions, 20 accepts, 71% acceptance rate. The paper was sent to
three program committee members for review, and they all produced reviews.
The reviews of all papers are anonymous to the authors: The paper was re-
viewed and the final decision taken without involving the authors. This year
the only submission was co-authored by the program chair; Ulrich Hoffmann
served as secondary chair and organized the reviewing and the final decision for
that paper. I thank the authors for their papers and the reviewers and program
committee for their service.

Several papers were submitted to the non-refereed track in time to be
included in the printed proceedings. These online proceedings (http://
www.euroforth.org/ef19/papers/) also contain papers and presentations that
were too late to be included in the printed proceedings. Also, some of the papers
included in the printed proceedings were updated for these online proceedings.

Workshops and social events complement the program. This year’s Euro-
Forth is organized by Ulrich Hoffmann.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences (secondary chair)
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas, SC3D Ltd.

3

http://www.euroforth.org/
http://www.euroforth.org/
http://www.euroforth.org/ef19/papers/
http://www.euroforth.org/ef19/papers/

Contents

Refereed Papers
Bernd Paysan and M. Anton Ertl: The new Gforth Header 5

Non-Refereed Papers
Ulrich Hoffmann and Andrew Read: Simple-Tester, a Testing Tool for

Embedded Forth Systems . 21
Nick J. Nelson: Internationalisation — A new Approach in Forth . . . 27
Nick J. Nelson: Forth Returns to the Automotive Industry 36
Howard Oakford: colorForth in Black & White 44
Klaus Schleisiek: MUTEX (MUTual EXclusion) Mechanism in Hardware 50
Klaus Schleisiek: Getting Rid of µCore’s 2-phase Execution Cycle . . 52
Bill Stoddart and John Goldman: Galois Fields and Forth 54
Ulrich Hoffmann: Forth Projectional Editing 72

Late Non-Refereed Papers
Stephen Pelc: Experience with dual words and recognisers 77

Presentation Slides
Gerald Wodni: UI5: a robust HTML5-based user interface for VFX5 . 83
Bernd Paysan: CloudCalypse: building a social network on top of

net2o, and importing your existing data 86

4

The new Gforth Header
Bernd Paysan

net2o
M. Anton Ertl∗

TU Wien

Abstract
The new Gforth header is designed to directly im-
plement the requirements of Forth-94 and Forth-
2012. Every header is an object with a fixed
set of fields (code, parameter, count, name,
link) and methods (execute, compile,, (to),
defer@, does, name>interpret, name>compile,
name>string, name>link). The implementation of
each method can be changed per-word (prototype-
based object-oriented programming). We demon-
strate how to use these features to implement opti-
mization of constants, fvalue, defer, immediate,
to and other dual-semantics words, and synonym.

1 Introduction
Forth started out with a word header (Fig. 1) that
satisfied several requirements. As additional re-
quirements arose, the header was adapted, result-
ing in the fig-Forth header and eventually the old
Gforth header. A number of requirements were
tacked onto the existing header design, resulting in
a maze of ifs when text-interpreting a word.
Yet more requirements came along that necessi-

tated extending the header again. At that point
Bernd Paysan decided to perform a major redesign
of the header, following [Bro84, Tip 8.13]: “Use de-
cision tables”. The present paper explains this new
design.
We start out by discussing header-related require-

ments in Standard Forth and in Gforth (Section 2);
in particular, we discuss the desire to use the ex-
ecution token as name token (Section 3). In Sec-
tion 4 we describe the fields and methods of the
new Gforth header, and related implementation is-
sues. Section 5 shows examples of using the header
features to implement words that the old header
does not support well, such as to or synonym. Sec-
tion 6 compares the performance of the old and new
header. Finally, we look at related work in Sec-
tion 7.
In this paper we use “Gforth 0.7” to represent

old Gforth and Gforth 1.0 to represent new Gforth.
Most of the statements about Gforth 0.7 are also
true for several older versions; Gforth 1.0 has not

∗anton@mips.complang.tuwien.ac.at

Figure 1: The original Forth word header [Moo74]

link
count

name

code field
does-code

parameter field

alias
immediate

mcompile-only

nt

xt

body

Figure 2: The Gforth 0.7 header

been released yet, but all the code presented here
works with Snapshot gforth-0.7.9_20190829.

We use the notation]] a b c [[instead
of postpone a postpone b postpone c for com-
pactness and readability. We also use find-name
(c-addr u -- nt). We embed nameless colon
definitions inside colon defintions with the syn-
tax [: ... ;]; this pushes the xt of the name-
less colon definition. The Forth-2012 locals syntax
{: ...-- ... :} defines the names before -- as locals
in stack effect order and treats the rest as comment.

2 Requirements
The old Gforth header (Fig. 2) is not that far
from the original Forth header; it has more flags, a
varible-length name field, a two-cell code field, and
the link field has moved, but it mostly still has the
same fields. It satisfies the following requirements:

5

Paysan, Ertl New Gforth Header

Execution semantics The code address in the
first cell of the code field determines which kind
(colon definition, constant, etc.) the word is;
for children of create...does> the does-code
part points to the code after the does>. The
body in the parameter field contains data (e.g.,
the value of a constant) or the threaded code
of a colon definition.
These fields are all that is necessary for
execute and compile,, so words defined with
:noname or noname have only these fields (in-
dicated by the thick line in Fig. 2).

immediate The immediate bit makes it possible
to differentiate between words with default
compilation semantics and immediate words
(where the compilation semantics is the exe-
cution semantics).

compile-only Setting the compile-only1 bit re-
moves the interpretation semantics of a word;
trying to interpret it produces an error on
Gforth 0.7.2

alias An alias is a word with a different name (or
in a different wordlist), but the same xt as an-
other word. They are marked by setting the
alias bit, and instead of a code field they con-
tain the xt of the word they alias to.

Traverse wordlist e.g., for words or for build-
ing the hash table; the link, count, and name
field are used for that. Words are usually
searched through the hash table (a separate
data structure), but locals are searched directly
by traversing the wordlist.

Colon definition visibility The name of a colon
definitions becomes visible only at the end.
Gforth inserts (reveals) the new header into
the current word list at that time, and therefore
does not need a smudge bit. We kept this ap-
proach in the new header, and therefore hardly
mention it in the rest of this paper.

A number of additional requirements were ad-
dressed without redesigning the header:

Compile, In primitive-centric threaded code
[Ert02] each word is compile,d to a prim-
itive, usually with an inline argument, e.g.,
call body for a colon definition. Different
word types have to be compiled to different
code. In Gforth 0.7 compile, contains a big
case control structure for this that looks at
the contents of the code field.

1aka restrict
2In Gforth 1.0 all words have interpretation semantics.

Dual-semantics words (aka NDCS words
[Pel17]) The compilation semantics of words
like s" and to are neither default nor imme-
diate. So these words have an interpretation
semantics represented by one xt and a com-
pilation semantics represented by a separate
xt. In Gforth 0.7 such words have a special
code field, and the two xts are stored in the
parameter field.

Gforth uses name>interpret and
name>compile3 to access interpretation
and compilation semantics. In Gforth 0.7
they abstract the following complexity: These
words check for this special code field and
produce the appropriate xt or ct (compilation
token) [Ert98]. Name>interpret also looks at
the compile-only bit. Name>compile also looks
at the immediate bit. Both words also look at
the alias bit.

To Consider to name : The action performed at
run-time depends on how name was defined
(e.g., with fvalue or as a (cell-sized) local).
Again, there is a big case that looks at the
code field of name to decide what to do.

As a consequence, in Gforth 0.7 text interpreta-
tion performs quite a bit of conditional control flow
for every interpreted word. The new header elimi-
nates most of this conditional control flow.

The following requirement is satisfied in the new
header, but not reliably in the old header:

>name Reliably get from “the” xt of a word to its nt;
this is useful in, e.g., a decompiler. Gforth 0.7
implements >name with a heuristic that usually
works, but can also produce wrong results.

3 XT and NT
Originally, every word had one name and one
semantics/action (the execution semantics) which
also served as interpretation semantics, and from
which either default or immediate compilation se-
mantics were derived. Representing such words
through a single address or token is a good idea.

Later, Forth acquired features that turn the rela-
tion between “named words” and “semantics” from
1:1 to m:n. Therefore, these separate concepts need
separate tokens: execution token (xt) for seman-
tics/actions; and name token (nt) for named words.
Yet there is a strong desire among Forthers for a
unified token, leading to repeated discussions about
the necessity of nts.

3Called name>int and name>comp in Gforth 0.7.

6

Paysan, Ertl New Gforth Header

3.1 New Gforth approach
This desire was also strong in the design of the new
Gforth header, leading to the following design goals:

• For many words, the nt and the xt represent-
ing the interpretation semantics are the same
address.

• You can pass an xt to a word that expects an
nt, and you will get a plausible result.

• You can pass an nt to a word that expects an
xt, and you will get a plausible result.

Most defining words produce words where
the interpretation xt=nt. Exceptions are
interpret/compile: (which defines a dual-
semantics word), synonym and alias. There are
other xts associated with a word, but they are
usually thought of as being “the xt” of a separate
word. E.g., name>compile returns “the xt” of
execute or compile, on the top-of-stack (and
another xt beneath it).
Words defined with :noname and noname can also

use the xt as nt. name>string produces an empty
string, and name>compile produces default compi-
lation semantics.
Note that, for some words, name>interpret is

not a noop, and >name does not get you back to the
nt where you came from. This demonstrates that
there is a conceptual difference between nt and xt.
This is documented in the stack effect of words:

name>interpret (nt -- xt|0)
name>compile (nt -- w xt)
immediate? (nt -- flag)
name>string (nt -- c-addr u)
execute (... xt -- ...)
compile, (xt --)
>body (xt -- a_addr)
>name (xt -- nt|0)
xt>name (xt -- nt)

Note that xt>name is a no-op; it documents that
there is an xt on the stack before, and an nt after-
wards.
In the following we present examples that demon-

strate the difference. First we define some words:

: b ." b" ;
: c ." c" ;
:noname ." d" ; alias d
’ b alias e immediate
synonym f b
’ b ’ c interpret/compile: g
create t
’ t alias u
synonym v t
’ t ’ c interpret/compile: w

In the examples, the input is shown in bold, while
the output is shown in blue.

Here, xt=nt.

s" b" find-name ’ b = . -1 ok
s" b" find-name execute b ok
’ b name>string type b ok

But in the following examples, xt 6=nt:

s" d" find-name ’ d = . 0 ok
s" f" find-name ’ f = . 0 ok
s" g" find-name ’ g = . 0 ok

Xts are usable as nts, but the nt is of a different
word:

’ d name>string type ok
’ e name>string type b ok
’ f name>string type b ok
’ g name>string type b ok

Execute and compile, exhibit the same be-
haviour for nts as for their interpretation xts:

s" d" find-name execute d ok
s" f" find-name execute b ok
s" g" find-name execute b ok
: d1 [s" d" find-name compile,] ; see d1
: d1

; ok
: f1 [s" f" find-name compile,] ; see f1
: f1

b ; ok
: g1 [s" g" find-name compile,] ; see g1
: g1

b ; ok

But >body does not maintain this illusion; we de-
cided to make it a simple field access word rather
than a method; if you want to get from the nt to the
body of the interpretation xt, use name>interpret
>body:

s" u" find-name >body u = . 0 ok
s" v" find-name >body v = . 0 ok
s" w" find-name >body w = . 0 ok

There are other xts associated with some words:

s" g" find-name name>compile ok 24

name>string type execute ok 1
name>string type c ok

In Gforth, immediacy is a property of a named
word, not of the xt:

4Gforth~1.0 shows the number of items on the stack af-
ter ok unless the stack is empty.

7

Paysan, Ertl New Gforth Header

s" e" find-name immediate? . -1 ok
s" b" find-name immediate? . 0 ok
: h1 e ; b ok
h1 ok
: h2 b ; ok
h2 b ok

For some words, there is a difference between
compilation semantics and compile,ing the inter-
pretation semantics:

e \ interpretation semantics b ok
: j1 e ; \ compilation semantics b ok
j1 ok
: j2 [’ e compile,] ; ok
j2 b ok
g b ok
: i1 g ; c ok
i1 ok
: i2 [’ g compile,] ; ok
i2 b ok

3.2 Alternatives
The new Gforth approach is not for every Forth
system, but every system has to deal with tokens
for named words and tokens for semantics/actions.
The difference between these concepts is most pro-
nounced for separated-header systems where the
name field and link field of a word are separated
in memory from the code field and parameter field
(e.g., to make it easy to produce headerless code).
Here we explore the options for implementing nt
and xt (for interpretation semantics) in this set-
ting; we do not discuss implementing, e.g., dual-
semantics words.

XT 6=NT

The most straightforward approach is to let nt point
to the name field or link field, and let the xt point
to the code field or parameter field. You don’t get
a unified token, and you can only use xts for words
that take xts, and only use nts for words that take
nts. Getting from the xt to the nt is either slow5 or
requires adding a back pointer to every code field.

NFA as XT=NT

This approach works, but has several disadvantages:

• The name field part is needed whenever an xt is
used (e.g., for execute), and therefore leaving

5If the separated headers were stored in an array and if
we had the same order in memory for the separated headers
and for the separated bodies (and code fields), we could use
binary search for the body address in the headers. However,
a straightforward implementation of synonym means that a
header may point to an out-of-order body, so binary search
cannot be used.

name

count
link
vt

code field
parameter field

mcompile-only

xt=nt
body

padding compile,
(to)

defer@
does/extra

name>interpret
name>compile
name>string
name>link

Figure 3: The new Gforth header. The thick lines
surround fields present in nameless words.

the name headers away is either much harder
or can be used only for applications that don’t
use xts (e.g., no execute, is, or >body).

• Words that consume an xt, in particular
execute and >body, perform an extra indirec-
tion.

Other properties: A synonym has a different xt
than its original; the code field can be stored with
the name and link fields and separate from the pa-
rameter field.

CFA as XT=NT

This does not work with the most obvious way
to implement this separated-header concept: If
a synonym is implemented as a name that has
the same code field as the original, both words
have the same nt=xt, and name>string will pro-
duce the same name. Implementing words with
traverse-wordlist and name>string will not
show the name of the synonym, but show the name
of the original for every synonym. E.g., with the
definitions above we would get

s" f" find-name name>string type b ok
One can complexify the implementation to avoid

these problems, but the result is probably less at-
tractive than the alternatives above.

4 The New Header
4.1 Organization and Fields
Figure 3 shows the new header. The xt/nt points
to the code field, and the header structure grows
in both directions from there, with variable-length
fields (name field and parameter field) at both ends.
The fields are:

code field This field contains the code address of
native code that implements the execution se-
mentics of the word (see also the execute
method in Section 4.2).6 The xt directly points
to this field.

6Note that while NEXT and the threaded code in a colon
definition use direct-threaded dispatch, execute (and other

8

Paysan, Ertl New Gforth Header

vt This virtual table field points to a table of im-
plementations for the various methods (see Sec-
tion 4.2). All method implementations are rep-
resented by xts. You can get to this field with
>namevt (xt -- addr).

parameter field This field serves the same pur-
pose as it has since the dawn of Forth: It con-
tains additional data or code, depending on the
word type, e.g., the value of a constant, or the
threaded code of a colon definition. You can
get to this field with >body (xt -- addr).

Unnamed words have only the fields above (in-
dicated by the thick line in Fig. 3). Named words
have the following fields in addition:

count field This (almost) cell-sized field contains
the length of the name in bytes. You can get
to it with >f+c (nt -- addr), but it is bet-
ter to get the count with name>string (nt
-- c-addr u) which also works on nameless
words.

name field This field contains the name of the
word. The arrangement is unusual in hav-
ing the name before the count field; this is
due to the variable-length nature of the name
field, and because we already have the variable-
length parameter-field at the end of the word
header. The actual name starts count bytes
before the count field; before the actual name,
there is padding that ensures that the parame-
ter field is maximally aligned (and, as a conse-
quence, the other fields are cell-aligned). You
can access the name with name>string.

compile-only flag While most flags have been
eliminated by using methods, we kept the
compile-only (aka restrict) flag with a much-
reduced role: Gforth now has interpreta-
tion semantics for all words, but warns in
some cases when the interpretation seman-
tics of compile-only words are used. You
can use compile-only? (nt -- flag) to
check whether a word is compile-only.

link field This field is just like the link field since
the dawn of Forth: it contains the nt of
the previous word in the same wordlist, or 0
if there is none. You can get to this field
with >link (nt -- addr), but the method
name>link (nt1 -- nt2) works even on
nameless words.

Variations

A possible variation of this organization is to move
the code field into the virtual table. This would
words going through the code field) use indirect-threaded
code dispatch [Ert02].

mean that a word header would be one cell smaller,
and, for a fixed virtual table (as for closures
[EP18]) would be cheaper to create. The disadvan-
tages would be: Each execute and other dispatch
through the code field would incur an additional in-
direction. And we would need an additional virtual
table for every primitive (each primitive has a dif-
ferent code address); with 413 primitives in Gforth,
this would mean 3717 cells for virtual tables, i.e.,
3717 words to break even; Gforth on AMD64 has
3922 named words, and a number of unnamed ones,
so, before loading user code, the benefit of this size
optimization is small.

To avoid the additional indirection, instead of
storing the code address in the virtual table, a copy
of the code itself could be stored there. Another way
to look at this would be that the virtual table would
be prepended to the code; the code would need to
be duplicated for different virtual tables. With this
variation, the vt field would again become a code
field.

4.2 Methods

There are various words that take an nt or xt; the
behaviour of many of these words depends on the
nt/xt. In the old header conditional/case code de-
cided what to do by looking at header flags or at
the contents of the code field.

The new header uses an object-oriented design7:
These words are method selectors, and the method
implementations are determined when the word is
defined. This section describes the methods; defin-
ing them is covered in Section 4.5. Apart from the
execute method which is implemented in native
code and represented by a native-code address, all
methods are implemented as Forth code represented
by an xt.

Execute (... xt -- ...)

Execute takes an xt and performs the semantics
represented by that xt. This has been treated as
a method since the dawn of Forth: Different word
types have different (native) code addresses in their
code field;8 for some word types (colon definitions,
does>-defined words), this (native) code then calls
threaded code that allows varying the behaviour of
the word by writing Forth code.

7The design is for a fixed set of methods, not for general
object-oriented programming. Mini-OOF is a general object-
oriented Forth extension with similar features.

8In indirect-threaded code; direct-threaded and native
code systems have some differences in details, but they also
execute some native code when executeing an xt.

9

Paysan, Ertl New Gforth Header

applicable to generated code set-optimizer by executed Aarch64 instructions
all words lit <xt> execute set-execute 14
does> words does-xt <xt> set-does> 11
constants lit <value> constant 2

Figure 4: Different correct implementations of compile, for a word defined with constant as shown in
Section 5.1

does (... body-addr -- ...)

For a word defined with set-does> or does>, the
native code pushes the body of the word body-addr
on the stack, and then executes the xt passed to
set-does> (or the xt representing the code follow-
ing the does>. This xt is the does method of the
word.
The does method is only used by words defined

with set-does>/does>. Its slot can be used for
other purposes by other word types; it is then called
extra.

Compile, (xt --)

A classic indirect-threaded Forth system uses , to
compile, an xt. But Gforth (since version 0.6) uses
primitive-centric threaded code [Ert02], where dif-
ferent words have to be compiled differently (“intel-
ligent compile,”); e.g., a colon definition is com-
piled to the primitive call followed by the body
address of the called word.
The significance of compile, is that 98.8% of the

dynamically executed primitives9 are in threaded
code produced by compile,, while only 1.2% of the
primitives10 are invoked through execute or a de-
ferred word, which use the execute method above.
So improving the code generated with compile, for
a word has a much greater effect than improving its
executed code.
In Gforth 0.7, compile, is implemented as a case

control structure that looks at the code address in
the code field. In Gforth 1.0, compile, is a method,
so new word types and their code generators can be
added without changing existing code.
Note that compile, has to be equivalent to

: compile, (xt --)
]] literal execute [[;

Many uses of compile, rely on this relation be-
tween execute and compile,. Every implemen-
tation of the compile, method has to satisfy this
equivalence, and therefore words like set-does>
that change what execute does for a word also
change what compile, does for a word. To get
an optimizing compile, implementation, you have
to call set-optimizer afterwards.

9in https://www.complang.tuwien.ac.at/forth/peep/
sorted

101% calls, 0.2% other primitives

There have been attempts to define the compile,
for some words in a way that does not satisfy this
equivalence, as a shortcut to implementing dual-
semantics words, but this does not work correctly in
all cases. To implement dual-semantics words, set
name>compile and/or name>interpret (see Sec-
tion 5.5 and 5.6).

Figure 4 shows the effects that different compile,
implementations have for compiling a constant as
defined in Section 5.1, corresponding to different
levels of specialization, resulting in fewer executed
instructions for the more specialized code.

Name>interpret (nt -- xt)

The Forth-2012 word name>interpret has been in
Gforth since 1996 under the name name>int, but it
used a number of ifs that looked at various flags
and fields to produce the correct xt. In Gforth 1.0,
it is a method. For normal words (where nt=xt), it
just performs a no-op.

Name>compile (nt -- xt1 xt2)

The Forth-2012 word name>compile has been in
Gforth since 1996 under the name name>comp, and
it also used a number of ifs to do its work. In
Gforth 1.0 it is a method; for normal words, it just
pushes the xt of compile,; for ordinary immediate
words, it pushes the xt of execute. Examples of
other implementations will be shown below.

(to) (val xt --)

Words defined with, e.g., value or fvalue can be
used with to. What to do then depends on how the
word was defined.

In Gforth 1.0, to and is are synonyms, so to can
also be used for words defined with defer.
In Gforth 0.7 to name looks at the code field of

name, and has a case structure for all the types
of words known to it. Adding a new type requires
changing the code of to.
In Gforth 1.0, we have a method (to) that per-

forms the actual storing of the value val (of any
type) into the word specified by xt. E.g., for a word
defined with fvalue the implementation of (to) is
(simplified):
: fvalue-to (r xt --)

>body f! ;

10

Paysan, Ertl New Gforth Header

One can see this method as the implementation
equivalent to the approach used to specify to in the
Forth-2012 document11: There, to first performs
the generic part of to, and then the word-type-
specific to name semantics; and these semantics are
specified at each defining word.

Defer@ (xt1 -- xt2)

Gforth 1.0 also has several defer-like defining
words, e.g., the standard defer and the per-task
udefer. Words defined with these words all behave
like words defined with defer: Running such a word
executes the xt stored in it; that xt can be read with
defer@ or action-of, and it can be written with
defer! or is.
Gforth 1.0 defines defer@ as a method, which

allows different ways of accessing the xt for the dif-
ferent word types. Action-of uses defer@. Is is
a synonym for to, which makes Defer! a synonym
of (to) (see above). Therefore we do not need a
separate defer! method.

Name>string (nt -- c-addr u)

In Gforth words defined with :noname and noname
have no name field. Therefore name>string is a
method:

• For named words, it just returns the address of
the name field and the number of characters.

• For unnamed words, it returns an empty string.

Name>link (nt1 -- nt2|0)

Name>link is a method that provides the function-
ality of a link field even for (unnamed) words which
have no link field.

Grouping

These methods can be divided into the following
groups12:

• Name>string and name>link each have only
two implementations: One for named words
and one for noname words. They are otherwise
independent of the other methods. Instead of
implementing them as methods, one could also
use a noname bit in the header, and implement
these words with if.

• Name>interpret and name>compile define the
semantics of named words. They make sense
only for named words.

11http://forth-standard.org/standard/core/TO
12These groups could be considered as interfaces or traits

in object-oriented programming languages.

• Execute, does, compile,, defer@ and (to)
(in its role of defer!) define the behaviour of
an xt, and are relevant for unnamed as well as
named words.

These differences are also visible in the stack ef-
fect: The first two groups take nts, the last group
an xt (or body).

Factoring

For the most part, these words were not introduced
for this header design, but already existed earlier,
and we just turned them into methods:
word year origin
execute 1970s early Forth [Moo74]
does 1970s early Forth
compile, 1994 Forth-94
name>interpret 1996 Gforth 0.2
name>compile 1996 Gforth 0.2
defer@ 2005 Forth 200x
name>string 1996 Gforth 0.2
(To) corresponds to the “to name run-time”

semantics factoring in Forth 200x introduced in
200913.

Only name>link was introduced with this header
design.

So most of these words have proven their worth as
factors of other words for a long time, but are they
also good interfaces for method implementations?
In our experience they are, and you can judge for
yourself by reading Section 5.

One word that has been questioned is
name>compile, because it represents compila-
tion semantics with two xts instead of just one.
The benefit is that name>compile is cheaper to
implement for normal words and immediate words
(i.e., the vast majority of words). Dual-semantics
words require an extra layer (see Section 5.5),
but that can be done once for all such words
(Section 5.6).

4.3 Find
While the new header design does not change our
implementation of find (we already implemented
find based on name>interpret and name>compile
in the old header), this is a related topic, and may
be of interest to the reader. It also is relevant by
showing why we do not want to exploit all the flex-
ibility that the two xts returned by name>compile
offer.

On success, find returns an xt and either 1
(immediate14) or −1 (otherwise). Find-based

13http://www.forth200x.org/documents/forth09-3.pdf
14Actually, assuming that find should be usable for user-

defined text interpreters, we need a different notion of imme-
diate than “compilation semantics = execution semantics”:
If find returns an xt in compile state that the user-defined

11

Paysan, Ertl New Gforth Header

user-defined text interpreters either execute or
compile, the xt, depending on state and the num-
ber returned by find.
If name>compile (name -- xt1 xt2) returns

either execute or compile, as xt2, find can be
implemented in a way that allows such text inter-
preters:

: find {: c-addr -- c-addr 0 | xt 1/-1 :}
c-addr count find-name dup if

dup name>compile >r swap name>interpret
state @ if drop else nip then
r> [’] execute = if 1 else -1 then

else
drop c-addr 0

then ;

The state-dependent part caters for dual-
semantics words where the xt returned by
name>interpret is different from the xt1 returned
by name>compile. The part afterwards extracts the
1/−1 from the xt2 returned by name>compile.
Our implementations of name>compile all heed

the restriction mentioned above, and that is prob-
ably a good idea for all systems that implement
find.

4.4 To optimization and locals
A simple way to compile to name is to compile a
literal for the xt of name, followed by (to). But
what we actually do is to resolve the method dis-
patch already at compile time, and compile the im-
plementation of (to) for that xt.

But optimization does not stop there. E.g., in the
fvalue-to case above, we want to resolve the >body
during compilation, resulting in compiling the body
(instead of the xt) as literal, and compiling f!, elim-
inating the colon definition overhead and the >body
at run-time. We first define the compile, imple-
mentation for fvalue-to as follows (simplified):

: fvalue-to-compile, (xt --)
drop]] >body f! [[;

We can use this word with set-optimizer (see
Section 4.5):

: fvalue-to (r xt --)
>body f! ;

’ fvalue-to-compile, set-optimizer

Another syntax that does not require a name for
the compile, implementation is to use opt::

: fvalue-to (r xt --)
>body f! ;

opt: drop]] >body f! [[;

text interpreter should execute, find should also return 1.

We have also implemented Mecrisp’s constant
folding mechanism [Koc15] in Gforth [Pay19]15:
Compiling a literal pushes it on a compile-time lit-
eral stack; compile, implementations can access
the literal stack to perform operations on the con-
stants at compile time. In the present case, com-
piling >body takes name’s xt from the literal stack
and pushes name’s body. Before generating actual
code, the remaining contents of the literal stack are
compiled as literals. In the present case, the body
is compiled as literal before compiling f!. The end
result is that to name (where name is an fvalue) is
compiled to the same code as

[’ name >body] literal f!

In most cases the optimization is just nice to
have. But there is one case where optimizing
to name is essential: locals. Gforth does not keep
the headers of locals around until run-time, so us-
ing the xt of a local at run-time would not work.
The (to) implementation of a (cell-sized value-
flavoured) local is called to-w:. The compile, im-
plementation of to-w: is (simplified):

: to-w:-opt (xt-to-w: --)
?fold-to >body @ lp-offset (offset)
]] laddr# [[,]] ! [[;

Compile, passes the xt of to-w: to to-w:-opt.
?fold-to (xt-to -- xt-name) drops this xt
and moves xt-name from the literal stack to the
data stack.16 The rest of to-w:-opt computes
the offset of the local from the locals-stack pointer
(first line), and then (second line) compiles code
for generating the run-time address of the local
(]] laddr# [[,), and for storing the value there
(]] ! [[).

Similar optimizations are also used for the defer@
method (and, based on that, action-of).

Alternatives to the scheme above are:

• Keep the headers of locals around for the whole
session. Then you can just use an unopti-
mized or minimally optimized implementation
of to name .

• Have additional methods equivalent to]]
literal (to) [[and]] literal defer@
[[. Then you do not need constant folding
to avoid having to deal with the xts of locals
at run-time. We used this approach in Gforth
before we implemented constant folding.

15For a description in English, see news:<2019Aug5.
121829@mips.complang.tuwien.ac.at>

16The other case (no literal) does not happen when the
source code is to name , but is also handled correctly: it just
compiles to-w: without optimization and exits to-w:-opt
without performing the words after ?fold-to.

12

Paysan, Ertl New Gforth Header

4.5 Setting method implementations

By setting the method implementations appropri-
ately, we can define words with capabilities that
are not properly supported by the old header for-
mat (see Section 5), but how do we set them?

The basic approach is that of an object-oriented
system based on prototypes [Bor86] rather than
classes. A new word is created by building a new
header, copying the methods of an existing one, and
then changing individual method implementations.

In practice, the usual approach is to call an ex-
isting defining word (which at bottom level works
by copying and then changing the behaviour of a
pre-existing word, which in turn was created by the
cross-compiler), and then modifying the behaviour
of the resulting word.

You can change individual method implementa-
tions of the most recently defined word with the
following words:
setter stack effect sets
set-execute (addr --) code field

compile,
set-does> (xt --) code field

does
compile,

set-optimizer (xt --) compile,
set->int (xt --) name>interpret
set->comp (xt --) name>compile
set-to (xt --) (to)/defer!
set-defer@ (xt --) defer@
set->string (xt --) name>string
set->link (xt --) name>link

In order to preserve the relation between execute
and compile,, every word that changes what
execute does also has to change what compile,
does. Set-execute changes the compile, im-
plementation to the default code generator for
all words. Set-does> changes the compile, im-
plementation to the default code generator for
create...does> words. Afterwards, you can change
the compile, implementation with set-optimizer
to one that generates faster code. Using
set-optimizer before set-execute or set-does>
(or does>) will not have an effect that survives the
set-execute/set-does>.

If you want to change a method of an older word,
you can make the older word take the place of the
most recently defined word with

make-latest (nt --)

To avoid confusing mixups of behaviours, the be-
haviour of a word should not be changed after it has
been used; the implementations of the behaviour
can still be changed (e.g., for optimization).

five
4

link
vt

docon
5

constant,
no-to

no-defer@
empty
noop

default-name>comp
named>string
named>link

5 constant five
6 constant six

six
3

link
vt

docon
6

Figure 5: Two words with a shared (deduplicated)
virtual table

4.6 Deduplication
Implementing this prototype-based approach is
easy if each word has its own vt (virtual table):
just copy the vt of the original, and then change it
as you please. If you go that way, you can put the
virtual table directly into the header instead of in
a separate structure.

However, we want to avoid the memory costs
of this approach.17 Therefore we deduplicate the
virtual tables: Just before the definition of the
next word starts, Gforth checks whether the cur-
rent word’s virtual table is equal to one of the vir-
tual tables that existed before (for words defined
earlier). If so, the address of the earlier copy of the
virtual table is stored in the current word’s vt field,
and the current virtual table’s memory is reclaimed
(see Fig. 5). As a result, we currently only have 117
vts in the Gforth image (for ≈ 4000 words).

You can keep virtual tables in the main dictio-
nary with this scheme (we have done so for a while),
but it causes complications in some places. An ap-
proach that avoids these complications is to keep
the virtual tables in a separate section [Ert16].

Gforth performs deduplication and its rever-
sal (duplication) automatically: If you change a
method of a word with a deduplicated vt, Gforth
duplicates the vt first. When switching to a new
word by defining a new word or with make-latest,
Gforth deduplicates the vt.

4.7 Create-from
Creating a word by starting out with some word,
modifying it, and finally deduplicating the vt is

17≈28 000 cells for the Gforth image alone. The memory
cost can become a problem even on large machines for code
that uses the dictionary for lookup tables, or otherwise cre-
ates many words at run-time).

13

Paysan, Ertl New Gforth Header

somewhat expensive. This is especially relevant
when defining a huge number of words for using
a wordlist as a lookup table for data.
A part of that expense could be reduced by using

a hash table for deduplication rather than the lin-
ear search we use now, but we did not pursue this
direction for now. Instead, we introduced

create-from (nt "name" --)

This creates a hidden18 word with an empty body
that has the same method implementations as nt.
Implementationwise, this means that we just copy
the vt address instead of duplicating and later dedu-
plicating the vt.
Gforth uses create-from to implement all the

common definition words (such as constant). But
if a word is modified after that (with immediate,
does> or one of the set-... words), it incurs the
cost of duplication and, later, deduplication.
In combination with noname19, our current im-

plementation still duplicates the vt, changes the
name>string and name>link implementation and
eventually deduplicates the vt; we plan to optimize
this case in the future.

4.8 Out-of-band data
Gforth keeps some header-related data in other
places than the header.

Hash table

Gforth uses a hash table to speed up dictionary
searches. This hash table is in allocated mem-
ory; it is built on system startup by inserting all
the words from the linked-list representation of the
wordlists, and is rebuilt in the same way when nec-
essary (e.g., to increase the number of buckets).
The hash table is also needed with the new header

design (linear search in a linked list does not be-
come faster with the new header), and our imple-
mentation is actually hardly affected by the header
change.

Location information

Gforth 1.0 keeps a lot of source code location infor-
mation around, but it is all out-of-band. In partic-
ular, there is an array that contains a location for
every dictionary cell. If a dictionary cell is the nt of
a word, the corresponding location indicates where
the word is defined. If a dictionary cell is some
threaded-code cell, the corresponding location indi-
cates the source code for which this threaded-code
cell was generated.

18You have to reveal the word to make it visible.
19The next defining word after noname produces a nameless

word.

4.9 +TO, ADDR
Many Forth systems, including Gforth, also sup-
port +to name (for incrementing name) and, in
some cases, addr name (for taking the address of
name20). We will only look at +to in the following,
but the issue is similar for addr.
The most straightforward way to implement +to

is to have another method (+to) and implement
+to similar to to. This leads to similar code at the
+to definition, but also the various (+to) imple-
mentations would look very similar to their respec-
tive (to) implementations; e.g., for fvalue they
would look as follows:

: fvalue-to (r xt-fvalue --)
>body f! ;

opt: drop]] >body f! [[;

: fvalue-+to (r xt-fvalue --)
>body f+! ;

opt: drop]] >body f+! [[;

To avoid this code duplication, Gforth employs
the following approach: At the start of TO/+TO
text interpretation, the variable to-style# is set
to indicate which of the two is currently being text-
interpreted, then the same code is executed for both
words, and in the end, this variable is used to pick
the right xt (f! or f+! in this case) from a table,
and then execute or compile, it. The correspond-
ing code for fvalue looks as follows:

Create f!-table ’ f! , ’ f+! ,

: fvalue-to (r xt-fvalue --) \ gforth
>body f!-table to-!exec ;

opt: drop]] >body [[f!-table to-!, ;

While using a global variable makes the code
smell, variants of this approach have been used in
Forth systems for decades, without known prob-
lems; in contrast to the state-smartness problem
[Ert98], the consumer of the value in to-style# is
not separated from the producer if the to-like words
parse (as they do in Gforth).21

For simplicity of exposition, we ignore this par-
ticular twist in the rest of this paper.

20Addr destroys one of the advantages of value-flavoured
words: That they have no aliases and can therefore be al-
located to registers, or their accesses reordered wrt memory
accesses and accesses to other value-flavoured words. Addr
exerts this destructive effect already when it can be applied
to a word, even when it is not actually applied, because there
is no guarantee that it will not be applied later. One way
to deal with this would be to make it explicit at word defi-
nition whether addr can be applied to this word, and report
an error if addr is applied to a word to which it cannot not
be applied.

21Some other systems have non-parsing variable-setting
to implementations, and one can produce funny effects
with them <news:2017Jan7.150224@mips.complang.tuwien.
ac.at>.

14

Paysan, Ertl New Gforth Header

5 Examples
This section shows examples of using the set-...
words to perform things that were much less elegant
with the old header. The shown code is usually sim-
plified: It does not show some of the complications
for extra features of Gforth that are not the focus
of the present work, e.g., +to.

5.1 Constant
: constant (x "name" --)

create ,
[’] @ set-does>
[: >body @]] literal [[;] set-optimizer

;

This first defines constant as a create...does>
word with the does> action @. The program-
mer is not allowed to change constants, so our
compile, implementation (the quotation before
set-optimizer) compiles the constant’s value x as
a literal, which has the same effect, but is cheaper
than the code that would be produced without the
set-optimizer part (2 Aarch64 instructions in-
stead of 11).
The actual Gforth implementation of constant

uses a native-code docon. This docon has been
there since Gforth’s inception, and was important
for performance before we switched to primitive-
centric threaded code (it takes 5 Aarch64 instruc-
tions, compared to 10 for the does>-based definition
above).

5.2 Fvalue
: fvalue-to (r xt-fvalue --)

>body f! ;
opt: drop]] >body f! [[;

: fvalue (r "name" --) \ float-ext
fconstant
[: >body]] Literal f@ [[;] set-optimizer
[’] fvalue-to set-to ;

Fconstant is defined analogously to constant;
Fvalue reuses the execute/does part of
fconstant, but defines a different optimizer
that accesses the body at run-time in order to
treat changing values correctly; the resulting code
performs 3 Aarch64 instructions.
The to implementation is set to fvalue-to. Its

definition and its optimizer are quite straightfor-
ward. One non-obvious thing that happens when
compiling to name is that name’s xt is compiled
as a literal, followed by >body f!; constant folding
performs the >body at compile-time rather than at
run-time, so the final code generated when compil-
ing to name is a literal followed by f! (4 Aarch64

instructions, compared to 20 without this opti-
mizer).

5.3 defer
: value-to (x xt --)

>body ! ;
opt: (xt --) \ run-time: (x --)

drop]] >body ! [[;

: defer-defer@ (xt1 -- xt2)
>body @ ;

opt: (xt --)
drop]] >body @ [[;

: perform @ execute ;

: defer ("name" --)
create [’] abort ,
[’] perform set-does>
[: >body]] lit-perform [[, ;]

set-optimizer
[’] value-to set-to
[’] defer-defer@ set-defer@ ;

This example shows setting the execute/does>,
compile,, to and defer@ methods, with to and
defer@ having optimizers.

5.4 Default and immediate compila-
tion semantics

: default-name>comp (nt -- xt1 xt2)
name>int [’] compile, ;

: imm>comp (nt -- xt1 xt2)
name>int [’] execute ;

: immediate (--) \ core
[’] imm>comp set->comp ;

: immediate? (nt -- flag)
name>compile nip [’] execute = ;

The default compilation semantics are to com-
pile the execution semantics, i.e. (in Gforth 1.0)
the interpretation semantics. Default-name>comp
implements the default compilation semantics.
Most defining words (e.g., create and :) use
default-name>comp as implementation of the
name>compile method.

Immediate changes the compilation semantics
to be the same as the execution/interpretation
semantics. So this implementation changes the
name>compile implementation to produce the xt of
execute (instead of compile,) as xt2; so when you
execute the result, it eventually executes the xt of
the word.

15

Paysan, Ertl New Gforth Header

Immediate? shows how one can determine the
immediacy of a word based on name>compile. But
there is actually rarely a need to check for im-
mediacy. Instead, you can use name>compile di-
rectly. E.g., a text interpreter in compile state
can just perform name>compile execute to per-
form the compilation semantics of a word, without
worrying about immediacy. Postpone can also be
implemented without worrying about immediacy:

: postpone ("name" --)
parse-name find-name dup 0= -13 and throw
name>compile swap]] literal [[compile,

; immediate

5.5 To
To is an example of a word that has neither default
compilation semantics nor immediate compilation
semantics.22 We first show how to implement to
directly:

: to-int (v "name" --)
parse-name find-name dup 0= -13 and throw
(to) ;

: to-comp (compilation: "name" --)
(run-time: v --)

parse-name find-name dup 0= -13 and throw
]] literal (to) [[; immediate

: to-name>comp (nt -- xt1 xt2)
drop [’] to-comp [’] execute ;

synonym to to-int
’ to-name>comp set->comp

To-int has the same interpretation semantics as
to, and to-comp (explained below) the same com-
pilation semantics. We then define to-name>comp,
which later serves as the name>compile implemen-
tation for to. Finally, to is defined as synonym for
to-int, copying (among others) the interpretation
semantics of to-int. The compilation semantics is
then overwritten with set->comp.

Note that to-comp resolves the (to) method at
compile time through the optimizer of (to) (not
shown here).

5.6 Interpret/compile:
Directly defining a word like to is cumbersome,
so Gforth has two more convenient ways to define
them. First, there is interpret/compile:, which

22Standard programs must not tick or postpone to, mak-
ing an immediate state-smart implementation possible.
Other standard words (e.g., s") do not have this restriction.
We demonstrate a to that works even without this restric-
tion, as an example for this whole class of words, because it
also shows the usage of (to).

has been in Gforth since 1996. You can use it to
define to as follows:

’ to-int ’ to-comp interpret/compile: to

The interface interpret/compile: has been de-
signed for the previous header implementation, but
can be implemented with the new header implemen-
tation relatively straightforwardly:

: i/c>comp (nt -- xt1 xt2)
>body cell+ @ [’] execute ;

: interpret/compile: (i-xt c-xt "name" --)
defer , lastxt defer!
[’] defer-defer@ set->int
[’] i/c>comp set->comp
[’] no-to set-to
[’] no-defer@ set-defer@ ;

The interpretive behaviour of name is
like for a deferred word, so we implement
interpret/compile: as inheriting from defer.
It stores i-xt to the first cell of the body with
lastxt defer!. The name>interpret imple-
mentation fetches i-xt by reusing defer-defer@;
note that unlike most words, for name xt 6=nt, so
name>interpret is not a noop here.
In addition, it stores the c-xt in the second cell

of the body (with ,). The compilation semantics is
to execute c-xt, and the name>compile implemen-
tation i/c>comp implements this behaviour.

We inherit from defer, so we inherit the (to)
and defer@ implementations for defer (i.e., is,
defer!, action-of and defer@ would work). We
do not want that, so we override these methods
with no-to and no-defer@, which report an error if
these words are used on name. Note that the inter-
pretation semantics explicitly uses defer-defer@
rather than the generic defer@, because the latter
no longer works after the set-defer@.

Interpret/compile: has been criticized on aes-
thetic grounds, so Gforth also has code for
compsem:, which is used like opt:. The implemen-
tation of compsem: is short23, but would require
explaining Gforth features beyond the scope of this
paper, so we skip it here.

23http://git.savannah.gnu.org/cgit/gforth.git/
tree/set-compsem.fs

16

Paysan, Ertl New Gforth Header

x
...
vt

dodoes
5e

...
(to)
...

does
...

f@

fvalue-to
...
vt

docol
>body

f!
;s

compile,
...

vt
docol

drop]] >body f! [[;

y
...
vt

dodoes
x

...
(to)
...

does
...

perform

s-to
...
vt

docol
>body

@
(to)
;s

compile,
...

vt
docol

?fold-to >body @
]] literal (to) [[;

to-comp
...
vt

docol
...

]] literal (to) [[;

to
...
vt

dodoes
to-int

...

name>compile
...

to-name>comp
...
vt

docol
drop

[’] to-comp
[’] execute ;

Figure 6: Data structures for the example

5.7 Synonym
: s-to (val nt --)

>body @ (to) ;
opt: (xt --)

?fold-to >body @]] literal (to) [[;

: s-defer@ (xt1 -- xt2)
>body @ defer@ ;

opt: (xt --)
?fold-to >body @]] literal defer@ [[;

: synonym ("name" "oldname" --)
defer
parse-name find-name dup 0= -13 and throw
dup lastxt defer!
compile-only? if compile-only then
[: >body @ compile, ;] set-optimizer
[: >body @ name>interpret ;] set->int
[: >body @ name>compile ;] set->comp
[’] s-to set-to
[’] s-defer@ set-defer@ ;

Synonym stores the nt of oldname in the body
of name. The normal way to deal with name is
through words that use the nt. name>interpret
gets the nt of oldname and gets its xt; likewise
for name>compile. Text interpretation, ticking and
postpone work through these words.

The implementation of (to) also gets the nt of
oldname and performs its (to) implementation; if
oldname has to oldname semantics, they will be

performed; if not, oldname’s (to) implementation
reports an error. The (to) implementation also has
an optimizer that computes oldname’s nt and com-
piles its (to) implementation (which in turn trig-
gers oldname’s (to) optimizer). The implementa-
tion of defer@ is analogous.
Note that these things work for arbitrarily deep

chains of synonyms, always delegating to implemen-
tation of the same method at the next level.

In order to make name’s nt also work as xt,
synonym inherits from defer. So, if you execute
the nt of name, this will execute the nt of old-
name; eventually a word with nt=xt is performed.
Synonym also has an optimizer for compile,ing the
nt, which optimizes away the indirection.

5.8 Example
This example presents these words in action. Fig-
ure 6 shows the data structures involved in the ex-
ample.

5e fvalue x
synonym y x
: foo to y ;

In this code, to y performs the compilation se-
mantics of to by performing the name>compile
method and its implementation to-name>comp. As
a result, the text interpreter executes to-comp,
which first parses y and produces its nt, and then
compiles the nt as a literal followed by (to). (to)

17

Paysan, Ertl New Gforth Header

has an optimizer that takes the preceding literal (y’s
nt) into account and then compile,s s-to. This
calls the optimizer of s-to, which in this case con-
sumes the preceding literal (still y’s nt), then fetches
the body of y (giving x’s nt), and compiles that as
literal, followed by (to). Again, (to)’s optimizer
resolves this, this time to compile,ing fvalue-to.
This calls the optimizer of fvalue-to, which com-
piles >body f!. >Body’s optimizer consumes the
preceding literal (x’s nt), and compiles x’s body as
literal. The following f! is compiled as-is. As a
result, the code for foo is the same as produced by
directly writing

: foo [’ x >body] literal f! ;

6 Empirical Results
The goal of this work has been design cleanli-
ness and flexibility, not performance. But here we
demonstrate that performance does not suffer (and
actually benefits a little).
Unfortunately, since the work on the new headers

began in 2012, a lot of other changes have been
made in Gforth (> 3000 commits), and the header-
related changes cannot be isolated with reasonable
effort.
Nevertheless, we take various measures to isolate

the performance effects: We compiled the last old-
header Gforth24 and a recent new-header Gforth25

with gcc-4.7.2, a compiler version where both the
old and the new version use all the performance
features of Gforth. We use --ss-number=14 to en-
sure that both versions use almost the same static
superinstructions. And finally, instead of measur-
ing a task such as compilation of a complete file,
where other features (in particular, IDE features
like locate and where) impact the performance,
we look at individual operations.
In the following results, we do not use the sim-

plified implementations shown above, but the more
complex implementations in Gforth.
All results are in cycles of user time on a Core

i7-4790K (Haswell).

6.1 Find-name
Gforth uses an out-of-band hash table that does not
use the link field of the header during find-name,
so the new header structure should have little effect
on find-name performance. Nevertheless, the text
interpreter calls find-name once for every word it
interprets or compiles, so we present performance
numbers here. The following table shows the av-
erage run-time of one invocation of find-name on

24commit 617d4a8deccf5f4eefeb236f972171d6f65bb685
25commit 045ff553a7c6304015be66533ead115c93866882

one word out of a set of 1602 words (all present in
the search order):

cycles old new
find-name 3184 3855
Apparently the other changes between these ver-

sion have slowed down find-name a little.

6.2 Name>interpret and name>compile
When text interpreting, the nt produced by
find-name is then usually processed either
by name>interpret (when interpreting) or
by name>compile (when compiling). For
the old header, normal words, aliases26, and
interpret/compile: words are treated in dif-
ferent paths of a cascade of ifs spread across
a number of words. For the new header, differ-
ent method implementations are called. So for
different word types, the performance may be
different; we therefore measure the performance of
name>interpret and name>compile for different
word types:

cycles old new
name>interpret normal 123.8 15.0

name>interpret alias 123.3 24.6
name>interpret i/c 124.2 24.7

name>compile normal 136.4 32.1
name>compile alias 138.8 47.4

name>compile i/c 143.2 30.1
This part of text interpretation is quite a bit

faster with the new header thanks to not having
to perform a lot of tests, but in the overall scheme
of things, this speedup vanishes in the noise.

6.3 Compile,
When compiling, Gforth eventually compile,s
some xt (e.g., because name>compile produced the
xt of compile, as xt2, and the text interpreter
executes that), and that compile, eventually com-
piles a primitive. The path from entering compile,
to compiling a primitive has changed a lot: With
the old header, compile, uses an if-cascade to
decide the word type and what code to generate;
the new header uses method dispatch instead. De-
pending on where in the if-cascade a word type
is, the performance can vary; in particular, does>-
defined and value-defined words are early in the
if-cascade; by contrast, the old compile, recog-
nizes primitives by excluding all other word types,
so the old compile, performs the the longest chain
of ifs for them.
In the following, we present the run-time of the

whole compile,, as well as a number without code
generation. The latter number does not include the
actual code generation of the primitive, nor (in the

26Aliases are similar to synonyms; synonyms are not sup-
ported in the old header.

18

Paysan, Ertl New Gforth Header

new system only) recording which threaded-code lo-
cation corresponds to which source code location; it
does include the time spent on laying down the in-
line parameters of the primitives that execute the
does and value words.

cycles old new
compile, does 1074 1156

without code generation 153 51
compile, value 963 1103

without code generation 151 49
compile, primitive 1013 985

without code generation 235 12
In the without code generation lines, we can see

that the overhead of selecting what to compile has
become much smaller. However, that overhead is
just a small part of the costs of compile,, and the
additional work of recording the source/threaded-
code correspondence has more than made up for
these savings.

6.4 >Name

Sometimes it is useful to get back from that xt of a
word to the nt; e.g., the decompiler does it in order
to print the name of a word. Gforth has a word
>name (xt -- nt|0) that does this or returns 0
if its argument is not an xt. With the new header,
the conversion from xt to nt is a noop (but if you
want to make it explicit, you can use xt>name). But
>name also does the checking, and Gforth 1.0 uses
relatively reliable, but costly heuristics to do that.
Gforth 0.7 uses heuristics for both conversion and
checking.

cycles old new
’ create >name 1281 2280

’ noop >name 51971 2314
For the old scheme, >name is particularly expen-

sive for primitives like noop, while for normal words
like create, it is not so extreme. For the new head-
ers, the heuristics for non-primitives are more ex-
pensive than for the old headers. But these costs
have not been a performance bottleneck yet, and
we can think of some ways to improve these costs if
they ever prove to be a problem.

6.5 Header creation
As mentioned in Section 4.7, creating words is more
expensive in Gforth 1.0 if the overhead of dupli-
cation and deduplication is incurred, but is fast if
that is avoided with create-from. We measured
this with a benchmark that defines 1,000,000 con-
stants in a wordlist, using different implementa-
tions of constant. The numbers reported are cy-
cles per created word; for the new results, we use
snapshot gforth-0.7.9_20190829 compiled with
gcc-4.9.2.

new
cycles old deduplicated create-from

constant 2168 9477 1742
This performance difference is not just relevant

for applications that use wordlists as a data struc-
ture. Loading programs is also affected: We saw
a speedup by 30% when loading the OpenGL and
Xlib libraries.

7 Related work
In the beginning, Forth stored the length and 3 let-
ters of the name [Moo74]. Fig-Forth supported full-
length names, optionally shortened to the length
stored in width [Tin81]. As a result, it was expen-
sive to get from the name field to the link field (as
required repeatedly during name search) and other
fields. Smith proposed [Smi80] to reduce this cost
by moving the name characters before the count
byte, with the link field still pointing to the count
byte; In Smith’s scheme, the name characters are
stored in reverse order, because thanks to width
they system may store only a part of the name, and
that part should be the start of the name. Our
new header is similar in putting the variable-length
name string before the rest of the header, at a nega-
tive offset from the nt address that we use for header
accesses; however, we store the name characters in
conventional order, because we can use the count to
get at the start of the name.

Shaw [Sha88] puts multiple code fields in head-
ers. In addition to the ordinary code field, a word
can have a to code field, which corresponds to our
(to) method, but uses a different execution mecha-
nism. Shaw also uses the multiple code field mech-
anism to get rid of state-smart words, by having
an optional code field for the compilation semantics
(the ordinary code field implements interpretation
semantics); it uses the same code field for that as
for to, using flags to decide if that code field is used
for compilation semantics. While there are signifi-
cant differences from the new Gforth header, Shaw’s
work is conceptually still closer than all others.

CmForth27 by Charles Moore and Pygmy28 by
Frank Sergeant implement dual-semantics words by
putting a word for the interpretation semantics in
the FORTH vocabulary and a word for the compi-
lation semantics in the COMPILER vocabulary, with
the text interpreter searching the appropriate vo-
cabulary for the current use. Mark Humphries
also implements dual-semantics words with multi-
ple headers, but he puts them in the same wordlist,
with flags that indicate whether the word should be
found when looking for a certain semantics.

27https://raw.githubusercontent.com/ForthHub/
cmFORTH/combined/cmforth.fth

28http://pygmy.utoh.org/pygmyforthmanual.html#
h1id47

19

Paysan, Ertl New Gforth Header

MPE’s VFX Forth has set-compiler that works
like Gforth’s set-optimizer: It changes what
compile, does for the preceding word [MPE16,
Chapter 19.7.3]. This suggests that VFX imple-
ments the intelligent compile, in a similar way as
the new Gforth header, but to the best of our knowl-
edge this has not been published.
In 2004, Ertl sketched29 a header structure with

an additional field for the intelligent compile,, and,
for named words, an xt2 field for implementing com-
pilation semantics: for normal words, the xt2 field
would contain the xt of compile,; for immediate
words, the xt of execute; and for other words, it
would contain something else. However, it requires
some additional complexity to implement find in a
way that supports user-defined text interpreters.
The new Gforth header differs from the 2004

header ideas in that it implements compilation se-
mantics by defining what name>compile does for a
word. This means that unlike in the 2004 ideas, the
xt1 of a compilation token can be different from the
xt representing the interpretation semantics, thus
making it simpler to implement find. In addition,
the new Gforth header allows changing what sev-
eral other words do for the present header, which
supports defining value-like words, synonyms, etc.
And it stores the xts for all these method implemen-
tations in a separate structure (vt) that is dedupli-
cated.

8 Conclusion
Gforth’s old header (based on the original Forth
header) leads to complex and inflexible implemen-
tations of words like compile,, name>interpret,
name>compile,, and to; it supports dual-semantics
words through an ugly hack; we did not even im-
plement synonym, because that would have required
adding more special cases.
By contrast, the new Gforth header has a

prototype-based object-oriented design that allows
extending the behaviour of words like compile,,
name>interpret, name>compile, and to for indi-
vidual words. This flexibility makes it relatively
easy and compact to implement, e.g., synonym such
that the created synonyms also work with to if the
original worked with to.

Acknowledgments
We thank the reviewers for their comments, which
helped to improve the paper.

29https://www.complang.tuwien.ac.at/forth/
header-ideas.html

References
[Bor86] Alan Borning. Classes versus proto-

types in object-oriented languages. In
ACM/IEEE Fall Joint Computer Confer-
ence, pages 36–40, 1986. 4.5

[Bro84] Leo Brodie. Thinking Forth. Fig Leaf
Press (Forth Interest Group), 100 Dolores
St, Suite 183, Carmel, CA 93923, USA,
1984. 1

[EP18] M. Anton Ertl and Bernd Paysan. Clo-
sures — the Forth way. In 34th EuroForth
Conference, pages 17–30, 2018. 4.1

[Ert98] M. Anton Ertl. State-smartness — why
it is evil and how to exorcise it. In Euro-
Forth’98 Conference Proceedings, Schloß
Dagstuhl, 1998. 2, 4.9

[Ert02] M. Anton Ertl. Threaded code varia-
tions and optimizations (extended ver-
sion). In Forth-Tagung 2002, Garmisch-
Partenkirchen, 2002. 2, 6, 4.2

[Ert16] M. Anton Ertl. Sections. In 32nd Euro-
Forth Conference, pages 55–57, 2016. 4.6

[Koc15] Matthias Koch. Flags, Konstantenfaltung
und Optimierungen. Vierte Dimension,
31(arm):16–18, 2015. 4.4

[Moo74] Charles H. Moore. Forth: A new way to
program a mini-computer. Astron. Astro-
phys. Suppl., 15:497–511, 1974. 1, 4.2, 7

[MPE16] Microprocessor Engineering. VFX Forth
for x86/x86 64 Linux, 4.72 edition, 2016.
7

[Pay19] Bernd Paysan. Constant Folding für
Gforth. Vierte Dimension, 35(2):17,
2019. 4.4

[Pel17] Stephen Pelc. Special words in Forth. In
33rd EuroForth Conference, pages 37–45,
2017. 2

[Sha88] George W. Shaw. Forth shifts gears.
Computer Language, pages 67–75 (May),
61–65 (June), 1988. 7

[Smi80] Robert L. Smith. A modest proposal for
dictionary headers. Forth Dimensions,
I(5):49, 1980. 7

[Tin81] C. H. Ting. Systems Guide to fig-Forth.
Offete Enterprises, Inc., San Mateo, CA
94402, 1981. 7

20

simple-tester is a very lighweight testing tool designed to assist the devlopment of a Forth system on
embedded target. simple-tester's is inspired by the ANS Forth test harness [1]. One innovation is the use of
hashing rather than memory to compare actual and expected results.

There is a chicken and egg situation with any testing tool that is implemented within the system it is
designed to test:

1. if there are bugs in the system then the testing tool itself may not function
2. if the testing tool is complex then it cannot be implemented until the system has largely been

completed, so the testing tool is not avilable during the development phase
3. if bugs in the system happen disable charater I/O, then the testing tool will not be able to communicate

test diagnosis

For these and other reasons we believe Test Driven Development [2] has not typically been applied to the
development of Forth implementations on embedded systems, while the ANS Forth test harness is mainly
used for verificaton at the final stage.

The goal of simple-tester is to:

1. allow unit testing on embedded targets with limited resources and
2. allow testing as early on as possible in the lifecycle of new forth systems, even before the system

knows how to compile new colon word defintions

simple-tester, a testing tool for embedded Forth
systems

Ulrich Hoffmann and Andrew Read

EuroForth 2019

Introduction

The need for a simple testing tool

21

We present an illustration from seedForth [3] [4], which is an approach to developing an embedded Forth
system without a cross-compiler. (Roughly speaking, a tokenizer running on the host compiles source code
to a token file which is processed on the target.) In the example below we bring up a series of elementary
code words in seedForth and test them.

Tstart
 CODE: drop
 T{ 1 2 drop }T 1 ==

 CODE: dup
 T{ 1 dup }T 1 1 ==

 CODE: swap
 T{ 2 1 swap }T 1 2 ==
Tend

CODE: is part of seedForth, not simple-tester. (Briefly put, it simply "activates" a code word that has been
implemented in assembly language on the target.)

Tstart is part of simple-tester and we assume that it, like the rest of simple-tester, is already
implemented as a code word on the target. Tstart initiates testing.

T{ designates the start of a test. The syntax is the same as the ANS Forth test harness.

}T designates the end of the section of code being tested. After }T there follows the expected results.
This is different syntax to the ANS test harness.

== compares the actual results with the expects results and takes action if they do not match. This is new
syntax from the ANS test harness, but arguably the post-fix comparison is more Forth-like. (And also avoids
the -> operator that is used for assignements in VFX.)

Tend concludes the series of tests.

simple-tester communicates entirely through a single numeric output device. This could be a line of micro
LEDs (presenting numbers in binary), a seven-segment hexadecimal display, bytes over a serial line, or
some other mechanism.

At the inception of testing Tstart sets the internal test counter to zero. At the start of each test, T{

increments the internal test counter and reports the test number on the numberic output device. At the

Test Driven Development of a Forth system

simple-tester's communication protocol

22

conclusion of each test, == acts as follows: if the actual results match the expected results, then do
nothing. Otherwise halt the system whilst leaving the current test number visible on the numeric output
device.

Assuming that all tests conclude sucessfully, then Tend displays some magic number, typically FFFF ,
to indicate successful conclusion. On the other hand if any test has failed then Tend will not be reached
and the sequential number of the failing test will remain on the numeric output device.

This testing protocol was chosen for the following reasons:

1. we leverage hardware on the embedded system for output rather than rely on high-level Forth words
such as "dot". Outputting a number to a line of LED's or a seven-segment display can often be
accomplished with a single store instruction

2. implementing this communication protocol is very simple and requires minimal code
3. the test number is displayed before the code under test is executed. If the execution of the code

causes a system-failure, then the identity of that test will already have been reported
4. assuming that all tests have completed sucessfully, then FFFF on the numeric output device is

quickly and conveniently noted

This communication protocol is more limited than that of the ANS test harness: the reason for a test failure
(different stack count or different actual results) is not reported, and only the first failing test is identified, not
the full set. Nevertheless we consider that the advantages listed above are compelling in the situations
where we envisage using simple-tester.

We highlight the key aspects of implementation before walking through the reference implementation in the
next setion.

simple-tester is implemented as code words (likely in target system assembly language), rather than as
colon definitons. Ideally these code-words should be implemented at a very early stage so that they can be
employed to test further code words as they are developed.

We note that the ANS test harness stores the actual results of each test in memory prior to comparison with
the expected results. We consider this approach to be less suitable for embedded systems since RAM may
be limited. Instead we use a simple hash algorithm to hash both the actual and expected results and
compare only the hash totals. Using this approch, our reference implementation requires only two cells of
RAM storage.

We recognize that a hash approach may lead to false test passes where the actual and expected results
are different but where there is a collision between the hash totals. We don't consider this weakness to be
fatal - few testing approaches provide complete coverage of all possible cases, and so a judgement must
always be made as to what level of testing coverage is sufficent to provide the required level of assurance.

Implementing simple-tester

23

We do take the precation of using a hash algorithm that is non-symmetric: if the actual and expected test
results are the same values but in reversed order, then the test will fail. Of course a more sophisticated
hash algorthim than the one we have chosen may be implemented if hash collisions are anticipated to be a
problem in any particular situation.

Although simple-tester is anticipated to be implemented as code words rather than in colon definitions, the
reference implementation is given in Forth for ease of communication.

\ utility words
\ report the test number to a numeric output device
: T.
 . \ for gforth testing
;

\ halt the system
: halt
 quit \ for gforth testing
;

\ compute h1 by hashing x1 and h0
: hash (x1 h0 -- h1)
 swap 1+ xor
;

\ hash n items from the stack and return the hash code
: hash-n (x1 x2 ... xn n -- h)
 0 >R
 BEGIN
 dup 0 >
 WHILE
 swap R> hash >R
 1-
 REPEAT
 drop R>
;

variable Tcount \ the current test number
variable Tdepth \ saved stack depth

\ start testing
: Tstart
 0 Tcount !
;

Reference implementation

24

\ start a unit test
: T{ (--)
 Tcount @ 1+ dup T. Tcount !
 depth Tdepth !
;

\ finish a unit test,
: }T (y1 y2 ... yn -- hy)
 depth Tdepth @ - (y1 y2 ... yn Ny)
 hash-n (hy)
 depth Tdepth ! (hy)
;

\ compare actual output with expected output
: == (hy x1 x2 ... xn --)
 depth Tdepth @ - (hy x1 x2 .. xn Nx)
 hash-n (hy hx)
 = 0= IF halt THEN
;

\ signal end of testing
: Tend (--)
 65535 (0xFFFF) T.
;

simple-tester has been designed first and foremost with the goal of supporting Test Driven Development of
Forth systems on embedded targets. simple-tester might also be useful in other situations, for examlple:

1. Test Driven Development of applications on embedded Forth systems. Our experience is that the ANS
test harness is not commonly used on embedded systems because of its size and complexity. Where
simple-tester is already built in to a new embedded Forth system, then there is no reason why it cannot
also be employed application testing

2. power on self testing (POST). For example, in seedForth the Forth system is recompiled from a token
file at each power on, and since unit tests are interleaved with the Forth system definition, the system
is freshly tested at every restart. This helps ensure that that the system can never be modified without
subsequent regression testing, and also verify any hardware upon which the system is reliant

3. as an alternative to the ANS test harness for small application development. Since the reference
implemention of simple-tester is provided in Forth it could also be used for application testing on
desktops. There may be occasions where the simpler and lighter simple-tester, although more limited
in scope than the ANS test harness, might be easier to handle

Potential applications

25

We have developed a very lighweight tool for supporting Test Driven Development, with a particluar focus
on Forth systems in embedded targets. simple-tester is open source and available on GitHub [5]. We
welcome correspondence.

Ulrich Hoffmann (FH Wedel University of Applied Sciences), uh@fh-wedel.de

Andrew Read, andrew81244@outlook.com

[1] http://www.forth200x.org/documents/html/testsuite.html
[2] https://en.wikipedia.org/wiki/Test-driven_development [3]
http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/hoffmann.pdf
[4] https://github.com/uho/preForth
[5] https://github.com/Anding/simple-tester

Conclusion

References

26

EuroForth 2019
Internationalisation - a new approach in Forth

Abstract

The unique capabilities of Forth are harnessed in a technique that greatly improves
the efficiency of software internationalisation.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

In software, the word "internationalisation" means writing a program in such a way as
to separate the function of the program from its country or language specific
appearance. The goal is to make it possible to produce either, different language
versions of the program, or in our case, to produce a program that can be dynamically
switched between different languages. We need this because the normal user of the
program might require a foreign language, and our own support engineer might
require English. There are cultural aspects to internationalisation (for example the
formatting of date, time and currency), but the main part of the work concerns text.

The word "localisation" refers to the process of adding a new language. The aim of
the exercise is to make localisation as easy and foolproof as possible.

We have been doing this for many years now, but recently a new technique using the
unique capabilities of Forth, has greatly improved the efficiency of the process.

27

2. The old method reviewed

The previous technique, first described in Euroforth in 1995, was based around the
word:

: P" \ Comp: "text" -- ; Run: -- u

The run time action was easy to describe - it simply returned a number that referred
to the phrase that in English was "text".

The compilation action was rather more complex.

First, it checked to see if "text" already existed in the set of phrases for English. If so,
it just compiled the number of that phrase as a constant. If the phrase did not exist,
then it added "text" to the table of English phrases. Then it compiled the new phrase
number as a constant.

At the end of the compilation process, the table of phrases was saved to a text file in a
directory called "English". (Originally, phrases were saved in a set of Forth "screens"
in non-volatile memory!) There was one line in the file for each phrase.

The process of localisation was then to create a matching phrases file, in another
directory named after the alternative language. A text editor was selected which both
showed line numbers (equal to the phrase number) and allowed two files to be
displayed side by side. This made it relatively easy for the translator.

When the user selected a different language, the alternative phrase file was loaded
into memory, in a "bi-string" format with both a leading byte count and a double zero
terminator. The language text could then be accessed by either a word CTEXT, that
returned the address of the counted string, or a word ZTEXT, that returned the
address of the zero terminated string. All window text, including menus, were then
updated with the new text. Whenever a new dialog was created, during its
initialisation, the text was set for each control that required it.

28

3. Improvements to the underlying system

Over the years, many improvements were made to the P" based system.

a) The storage of phrases was moved to a database table.
b) In addition to standard text phrases, classes of diagnostic phrases and sequences
phrases, customised to the machine being controlled, were introduced.
c) When a new phrase was encountered, all supported languages were also updated,
using the "text" phrase preceded by the phase number. This made it easy to identify
untranslated phrases.
d) A Translators Aid dialog was developed, which isolated the translator from the
method of storage, and prevented him from introducing positional errors.
e) English ceased to be special. New "text" was placed into a base language. This
meant that text could be altered in English as well as all other languages, without
recompilation.
f) Support for counted strings was dropped.
g) P" returned a pointer to the translated string, instead of a phrase number.

4. Limitations of the old method

a) The main limitation of the old method was that all textual objects needed to have
their text set, either initially and on change of language, for main windows and
menus; or on initialisation, for dialog boxes. In a large program, this accounted for
thousands of lines of code.

b) A further limitation was that the original code was devised for ASCII based text. It
was extended for "Shift-JIS" for Japanese, and "GB 18030" for simplified Chinese.
However, it was very difficult to apply in many other languages with non-standard
characters.

5. Big breakthrough no. 1 - dropping Windows!

Several years ago, we came to the conclusion that Windows was no longer a suitable
operating system for use with machine automation. It became company policy that all
new programs would be written for Linux. From the point of view of
internationalisation, the most important improvement here was moving to a native
UTF-8 encoding, instead of having to use the "adapted-ASCII" APIs that had been in
use with Windows. No more code pages! This dealt with limitation 4b).

29

6. Big breakthrough no. 2 - GtkBuilder

When we adopted Linux, we also decided to move to GTK+ for our graphical user
interfaces.

In my presentation at Euroforth 2017, I described how a control element named in the
GTK graphical design program "Glade", could appear automatically as a Forth
VALUE, without any other coding! This discovery, only possible in Forth, enabled
hundreds of lines of code to be removed from a typical program.

It was only later that we realised that a very similar technique could be used to handle
text internationalisation, without any application specific coding. This would
therefore deal with limitation 4a) and remove many hundreds more lines of code.

7. Review of the GtkBuilder process

In order to appreciate the automated internationalisation technique, it is necessary to
understand a little bit about how GTK works.

a) The windows, dialog boxes, menus, and all other graphical elements, are designed
using a visual tool called "Glade". The information is saved in XML format.

b) Each component is referred to by a name. Components such as labels, titles and
menu entries are also given initial text during the design process.

b) The application loads the XML files using functions of an object called
GtkBuilder. During the loading process, each component is created and receives a
reference number, similar to a "handle" in Windows.

c) When the application uses a graphical component, for example, to set the text of a
label, it must use the reference number to identify the component.

d) Any time after loading, a list of all components can be accessed using a GtkBuilder
function.

e) We read in XML files not just during execution, but also during compilation, at an
early stage. We go through the list and create a Forth VALUE for every component,
with the same name as was used in the design tool, and which returns the reference
number. This means that during the rest of the Forth compilation process, all
components can be referred to by their Glade / Forth VALUE names.

f) Note one big difference from Windows. In Windows, dialog boxes are created and
destroyed as necessary. When using GtkBuilder, everything is created when the XML
files are loaded, and items such as dialog boxes are shown and hidden, not created
and destroyed. Therefore, all graphical components are always accessible.

30

8. Automating the internationalisation process

When an application is initialising, before any graphical elements have been
displayed, but after we have loaded our language phrase table from the database, we
need to set the correct phrase into each textual component. We call a word
SETPHRASES - simplified listing below:

: SETPHRASES { | pslist pobject -- } \ Set language phrases
 PBUILDER gtk_builder_get_objects -> pslist \ Make list of objects
 pslist g_slist_length 0 ?DO \ For all objects
 pslist I g_slist_nth_data -> pobject \ Get data
 pobject gtk_label_get_type
 g_type_check_instance_is_a IF \ It's a label
 pobject SET-LABELPHRASE
 THEN
..... Other object types
 LOOP
 pslist g_slist_free \ Free list
;

This gets the list of objects and checks each one to see if it's a type of object that
needs some text (e.g. a label). If so, it calls the function to set text for that object type.

: SET-LABELPHRASE { plabel | plabeltxt -- } \ Set language phrase for label
 plabel gtk_label_get_label -> plabeltxt \ Get text, incl. markup
 plabel plabeltxt SET-WIDGETPHRASE -> plabeltxt \ Associate with a phrase
 plabel plabeltxt gtk_label_set_label \ Set language text
;

The get_ and set_ functions in GTK are different for each object type, so a different
SET-xxxPHRASE word is needed. But all object types use the same base object, so a
common word can be used.

: SET-WIDGETPHRASE { pwidget ptext | pphrase -- ptext' } \ Widget to phrase
 ptext IF \ Text defined
 ptext C@ TRANSCHAR = ptext \ Marked for translation
 1+ C@ 0<> AND IF \ Not null
 1+ PHRASE? -> pphrase \ Get phrase number
 pphrase -1 = IF \ Phrase does not already exist
 ptext 1+ ADDPHRASE -> pphrase \ Add to database
 THEN
 pwidget pphrase SETPHRASE \ Associate phrase with widget
 pphrase LANGPHRASE \ Return language phrase
 ELSE \ This text not to be translated
 ptext \ Return unchanged
 THEN
 ELSE
 ZNULL \ Return a null string
 THEN
;

31

Not all text object should be translated - some might contain symbols. So we mark
text that needs translating with a preceding character - usually a hash sign.

Other words such as PHRASE? , ADDPHRASE and LANGPHRASE already exist
from our implementation of P".

The interesting bit is SETPHRASE.

: SETPHRASE { phandle pphrase -- } \ Associate phrase number with widget
 phandle Z" Phrase" pphrase g_object_set_data
;

Because every component in GTK is an object, and all objects can carry a set of key-
to-pointer associations, we simply create a key called "Phrase" and link it to the
phrase number, which is pretending to be a pointer.

Now we can look at what happens when a user selects a different language. First, we
load the set of phrases for the new language, then we call CHANGEPHRASES,
which is very similar to SETPHRASES as shown above, except that for each object
type, it calls a change function, instead of a set function, for example:

: CHANGE-LABELPHRASE { plabel -- } \ Change language phrase for label
 plabel GETPHRASE ?DUP IF \ A phrase number defined
 plabel SWAP LANGPHRASE gtk_label_set_label \ Set text in current lang
 THEN
;

GETPHRASE simply looks up the phrase number using the key name of the object.

: GETPHRASE (handle---phrase) \ Get phrase number of widget
 Z" Phrase" g_object_get_data
;

Note that none of the above is application specific. Any program that uses GtkBuilder
and Forth can be internationalised, simply by including the appropriate files, and
adding just just half a dozen words to the application code.

32

9. Other internationalisation issues

Besides the purely textual issues, we have to resolve some cultural issues, such as
formatting of dates.

For example, if we do an SQL query with a date in the result, we need to format that
date in a language specific way, before displaying it in, say, a GtkLabel.

The first thing that is needed, is to set the program locale on change of language.

2 0 CallProc: on_French_clicked { pbutton puser -- } \ Button "French" click
 ITASK \ Init every thread or callback
 Z" French" CHANGE-LANG \ Set all GTK text
 LC_ALL Z" fr_FR.utf8" SetLocale DROP \ Set program locale
;

Now take the date from the SQL result set. First, place it into a Linux "broken down"
time structure. Then call the Linux date / time formatting function.

: SQLDATE>LOCALE { zsqldate | tm[tm] -- z$ } \ Localise SQL date
 zsqldate tm[SQLDATE>TM \ Put date into tm structure
 PAD 50 Z" %x" tm[strftime DROP \ Format onto PAD
 PAD
;

33

10. An unresolved problem - GtkCalendar

I've just put this in to prove that Forth programmers can still read C code, if they
really have to!

There is no easy way to make the GtkCalendar control change language
programmatically, because of the way the widget has been written.

It's not a compound widget - the whole calendar is drawn as a single element.
It is locale sensitive, but unfortunately the day and month names for the locale are
obtained from the operating system during gtk_calendar_init , which is called only
when the first instance of GtkCalendar is first created.

This means that any calendar control always displays the day and month names that
correspond to the locale that was current when the first calendar control was created.
They can't be changed later, even if all calendar controls have been destroyed and
recreated.

Possible solutions:
a) Register this as a GTK bug and see if we can persuade the developers to fix it.
I am hoping that by including this note in a conference paper, this might nudge them!
b) Rebuild GTK, fixing the issue ourselves. I can easily fix the code, but we have no
experience in the recompilation.
c) Make our own calendar control.
d) Accept the limitation. Remember the locale in use, and save it when closing the
application. Then re-select the locale, before doing gtk_init.

In the GTK source code, the problem could be fixed by moving the lookup of
default_abbreviated_dayname[i] and default_monthname[i]
from get_calendar_init to gtk_calendar_draw.

34

11. Some other enhancements

Several other nice labour-saving things can be done by adding just a few words to the
basic SETPHRASES function, for example:

a) If the object is a button, then an icon can be automatically added to the button,
according to the base phrase.

: SET-BUTTONIMAGE { pbutton | plabeltxt pimage pfilename -- } \ Set image
 pbutton gtk_button_get_label -> plabeltxt \ Get text of button label
 plabeltxt IF \ Any text set
 plabeltxt C@ IF \ A non null string
 ICONSDIR plabeltxt Z+ Z" .png" Z+ \ Construct path to png
 -> pfilename
 pfilename ZCOUNT FILEEXIST? IF \ There is a matching png
 pfilename gtk_image_new_from_file \ Create an image
 -> pimage
 pbutton pimage gtk_button_set_image \ Put image into button
 pbutton TRUE \ Always show
 gtk_button_set_always_show_image
 THEN
 THEN
 THEN
;

Then, to make every button in the program that has, for example, the base phrase
"Cancel", display the same cancel icon, all one has to do is place a file "Cancel.png"
in the icons directory.

b) If the object is a dialog box, we can automatically make it transient to the main
window. This is not possible in Glade, if the main window is defined in a different
XML file from the dialog.

: SET-DIALOGTRANSIENT { pdialog -- } \ Set transient parent for dialogs
 pdialog MWINDOW gtk_window_set_transient_for
;

8. Conclusion

The process of internationalisation has been completely automated. When making a
new application, it is only necessary to include the required phrase handling files, and
add a couple of words to the initialisation code. A huge amount of work has been
saved. This technique is only possible in Forth, with its unique ability to control the
compilation action.

NJN
30/7/19

35

EuroForth 2019
Forth returns to the automotive industry

Abstract

A stretch bending machine for producing automotive components is described, on
which the automation system is programmed in Forth.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
R.J. Merrett B.Eng.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

A wide variety of processes are used to produce bodywork parts for vehicles. One of
those processes is called stretch bending. A formed metal section (typically a U
section) is bent into a complex shape while being simultaneously stretched so as to
retain its sectional form without distortion. A typical usage might be the surrounding
frame of a car window. The parts have tight tolerances and must be produced in high
volumes. The control system of a machine that produces such parts is quite
sophisticated.

2. Historical notes

The Euroforth 2003 conference included a visit to a company that made stretch
bending machines. The machines at that time used hydraulic proportional valves,
each controlled by a dedicated circuit with an IX1 single chip microcontroller. This
communicated with a virtual programmable logic controller (VPLC), installed within
a personal computer. The PC, VPLC and IX1 were all programmed in Forth.

The mechanical engineering company that made the stretch bending machines had
enjoyed a great deal of success, creating machines that were used to produce
numerous popular European cars, for all the main manufacturers.

Unfortunately, it was taken over by a much larger company which, a short time later,
went bankrupt.

36

Some of the engineers from the original company went on to form a new company,
though it took them some years before they accumulated the resources to offer a
complex machine. Finally in 2019 they obtained a contract from Jaguar Land Rover,
to build a machine for a new model. In turn, our company was called on to automate
the machine. Forth returns to the automotive industry!

3. A truly international industry

Jaguar and Land Rover are historical British companies, and all design work is still
carried out in the U.K. However, the owner of JLR is the Indian company Tata
Motors. The final assembly of the new model will take place in Slovakia. The engines
will be built in the U.K. However, the part that we are concerned with is to be made
in Turkey. This means that the automation system must be usable in both English and
Turkish.

4. Overview of a stretch bending machine

The material is presented to the stretch forming machine as a continuous strip of
preformed steel or aluminium alloy section. The machine cuts a piece to the required
length, grasps and then bends it in several planes, simultaneously stretching the
section in order to avoid irregularities in the curved surfaces.

Some sections are formed in quite heavy material, and considerable forces are
required to perform the stretching and bending actions. This means that the axes
cannot be driven by stepper motors which are commonly used on industrial robots.
In the past, hydraulic cylinders were used to obtain the necessary force. These days,
d.c. servomotors combined with linear actuators are sufficiently powerful. The axes
positions are measured by encoders.

In order that the finished parts fit precisely into their assemblies, considerable
accuracy is required – the current specification calls for a positional tolerance of
0.01mm over a total axis length of up to 2m. To obtain the correct shape, the
stretching and bending must take place over up to seven axes simultaneously, all
moving in a co-ordinated manner.

The machines must operate quite rapidly, for example a high volume car might
require around 1,000,000 parts per year. Even a company like JLR, which is a
relatively low volume luxury manufacturer, produces almost half a million vehicles a
year. The machines must be extremely reliable because they form part of a just-in-
time production system with no parts storage. Downtime of less than 24 hours can
stop a major car plant, with thousands of workers laid off.

37

5. Some design decisions of the control system hardware and software

a) The machine must be able to produce a variety of different parts, for different
varieties of the same basic car - for example, long and short wheelbase models. This
is achieved by having a standard machine base, to which are attached different
tooling modules. The base, and each item of tooling has different sensor and actuator
requirements, and therefore each has its own control panel with PLC I/O modules and
servo drives as necessary.

b) To connect the various PLC and servo modules together, a fieldbus is necessary. A
decision had been made to use Bosch servo drives, and this determined that the
Sercos fieldbus system had to be used.

c) In turn, for ease of integration, the Bosch PLC had to be used. This unfortunately
meant that IEC61131 had to be used for programming the PLC.

d) Supervisory control, diagnostics, visualisation, performance monitoring reports
and statistics, and part profile programming and storage are done by an industrial PC
running Ubuntu Linux and programmed in Forth using MPE VFX.

e) In a previous paper at Euroforth, I compared the benefits of programming in Forth,
with IEC61131. These remarks still stand, therefore when dividing the control
responsibilities between the PLC and the PC, as much of the work as possible is
carried out by the PC.

38

6. Some key features of the software

a) The main visualisation

This is a live display showing the machine status, with an animated plan view of the
bending process.

b) High speed communication with PLC

We use our standard method of data exchange from PC to PLC, using fixed format
UDP messages over a dedicated Ethernet connection, on a 50ms tick.

c) Diagnostics

As well as the status of the safety system and the air and hydraulic supplies, the
correct position of each axis is constantly monitored for tolerances.

39

d) Program change

When the tooling needs to be changed, to suit a different model of the vehicle, the
fieldbus configuration of the PLC and servo drive network changes, because some
elements of the PLC are installed on the changeable tooling. So the system validates
that the PLC configuration matches the selected bending program. This was one of
the most difficult things to achieve, because the hardware application engineers had
not encountered this requirement before.

40

e) Programming and teach mode

When designing the bending program for a new part, the procedure is to inch each
axis step by step to a new desired position, using a "teach mode". This gets the basic
shape right, but the bending program still needs fine tuning to account for dynamic
operation.

f) Multilanguage support

The machine is installed in a factory just outside Istanbul! So all the on screen
functions need to be in Turkish as well as English. See the previous paper
"Internationalisation - a new approach in Forth".

41

7. Some major lessons learned from the project

a) Never overestimate the capabilities of major suppliers.

We were offered a lot of assistance by a team of application engineers from the
hardware suppliers, particularly in getting the servo drives to function as required. It
took about a week before we realised that by then we knew more about drives than
they did!

b) Never underestimate your own engineering capabilities.

Although we had no experience of this type of drive before, we did have a lot of
experience in multi-access positioning systems. Sufficient, in fact to realise after a
while, that the advice offered by the hardware suppliers might not be the best.

c) Beware of newly introduced products.

The machine included two highly integrated hydraulic compressor packs, which were
being used for the first time in the UK. These were fieldbus controlled. You would
have thought that a hydraulic compressor was a fairly simple piece of equipment, but
it's amazing how complex you can make them with a bit of imagination.

8. If we did it again, we would…

Not go for a new hardware supplier when starting a major new project. The double
learning curve was a severe challenge.

9. Conclusion

Once again, Forth has shown its capabilities as an outstanding tool for automating
industrial control equipment.

42

10. References

Industrial control languages: Forth vs IEC61131
N.J. Nelson
Euroforth 2000

A hydraulic servo controller using the IX1 microprocessor
A.C. Wheatley and N.J. Nelson
Euroforth 2003

Internationalisation - a new approach in Forth
N.J. Nelson
Euroforth 2019

NJN RJM
30/7/19

43

colorForth in Black & White Howerd Oakford 2019 Aug 31

Contents
Summary ... 2

Emergent Properties ... 2

Shortening the Conceptual Gap .. 2

Removing Punctuation .. 3

Metadata and Colour .. 4

Four Times ... 4

Philosophy : Keep It Simple ... 5

colorForth History ... 6

Actions, not Words .. 6

Downloads ... 6

44

colorForth in Black & White Howerd Oakford 2019 Aug 31

Summary
colorForth is a dialect of the Forth programming language, both of which languages were invented by

Charles H. “Chuck” Moore ; - Forth around 1968, and colorForth in the late 1990’s.

In this paper I hope to explain why colorForth is about so much more than just colour.

colorForth uses a 32 bit token as the basic unit of interaction between the computer and human being.

Each token has a 28-bit human readable name field and 4 bits of meta-data (“colour”). The token’s meta-

data field can replace global variables such as STATE, allowing a simpler compiler and a more

complex/powerful editor.

Conventional programming environments separate the editor, compiler and interpreter into discrete

functional units, whereas colorForth puts them all into a blender and filters the resulting mush into

something completely different.

Emergent Properties
One emergent property of the colorForth environment is the Magenta Variable, where setting a new value

at run-time actually affects edit-time, by changing the pre-parsed source for the program.

Another is the Blue Token, which controls the behaviour of the editor at edit-time (over and above seeing

what you type). This is similar to putting CRs and TABs into a text file, but Blue Tokens are extensible – you

can run Forth code at edit-time.

Because the boundaries between editor, compiler and interpreter are blurred, you can choose what you

do, and when you do it, much more easily than in a conventional environment. For example, version

control could be added using Blue Tokens to retrieve earlier versions of code at edit-time and compile-

time.

Shortening the Conceptual Gap
Edsger Dijkstra in his 1968 paper Go To Statement Considered Harmful states that:

“we should […] do our utmost to shorten the conceptual gap between the static program and the

dynamic process […]”, which I interpret as “shorten the conceptual gap between source text and program

execution”. That is, make it as easy as possible for someone reading the source to create a conceptual

model of what the program will do when it runs.

To make a program clear and easy to understand, each word should have a name with some mnemonic

value, and should do something simple that is hinted at by that name. In this context, a “goto” means that

something else happens while this word is executing which is most likely not hinted at by the word’s name

– this is therefore a bad thing.

Giving a Forth word the correct name is of course important, but by adding meta-data, the word (now a

token) stores more information – not just what it does, but when it should do it : edit-time, compile-time

or interpret-time.

45

colorForth in Black & White Howerd Oakford 2019 Aug 31

Removing Punctuation
“Shortening the conceptual gap” applies to any computer language – Forth takes it to an extreme by

defining a “word” as a sequence of characters surrounded by spaces, and leaving it to the author to decide

about almost everything else.

Other languages add a more complicated syntax, restricted keywords and program style guides in order

to lock people in to that language. From a Forth perspective these additions are just noise – they do

nothing to shorten the conceptual gap between source and program. From a financial perspective these

additions increase profit.

When Chuck Moore created colorForth one of his intentions was to use colour to replace punctuation:

becomes:

While the use of colour to replace punctuation is an interesting idea, it ultimately fails as a general-purpose

programming language because a surprisingly high percentage of people are colour-blind. According to

Wikipedia, red-green color blindness affects up to 8% of males and 0.5% of females of Northern European

descent. It also makes it difficult to exchange “pure” colorForth source code in a monochrome text file.

I should point out here that when I work with Forth source in text files (*.f) I use my favourite editor

(EditPlus) with a Forth colouring option, so the text appears in colour – but this has absolutely nothing to

do with the use of colour in colorForth.

In colorForth, colours are just a representation of the “color” of the token, the bottom four bits of the

token value. It is very easy to modify the colorForth editor to add conventional Forth punctuation. That is,

the meta-data can be used to control what the user sees in the editor, what the compiler compiles or what

the interpreter does.

46

colorForth in Black & White Howerd Oakford 2019 Aug 31

Metadata and Colour
While the name “colorForth”, the coloured representation colorForth and the colourful appearance of the

display all emphasise colour (spelled “color” in the USA), in fact the fundamental principles in colorForth

go way beyond colour. Colour in this context is just one way of conveying meta-information about a

computer program.

For example, conventional Forth uses ‘:’ to indicate the definition of a new Forth word, colorForth uses

the colour red together with starting the definition on a new line.

While conventional Forth can have coding style standards that usually specify that colon definitions start

on a new line, this not required. In colorForth, red tokens (that start a new word definition) are displayed

on a new line automatically. There are some special blue tokens that modify this default behaviour, and

this can in any case be changed, if desired, in the NASM source code.

In the cf2019 distribution of colorForth, pressing the F4 function key toggles between colorForth mode

and a more conventional Forth display. This is easy to do because the information and meta-information

(information about the information) are stored as 32 bit tokens, and can be displayed in any desired way.

The F4 function also makes it easier for people who are colour-blind to read the code.

Token Colours

The following colours and their meaning is described below, from file cf2019.nasm :

actionColourTable: ; * = number
 dd colour_orange ; 0 extension token, remove space from previous word, do not change colour
 dd colour_yellow ; 1 yellow "immediate" word
 dd colour_yellow ; 2 * yellow "immediate" 32 bit number in the following pre-parsed cell
 dd colour_red ; 3 red forth wordlist "colon" word
 dd colour_green ; 4 green compiled word
 dd colour_green ; 5 * green compiled 32 bit number in the following pre-parsed cell
 dd colour_green ; 6 * green compiled 27 bit number in the high bits of the token
 dd colour_cyan ; 7 cyan macro wordlist "colon" word
 dd colour_yellow ; 8 * yellow "immediate" 27 bit number in the high bits of the token
 dd colour_white ; 9 white lower-case comment
 dd colour_white ; A first letter capital comment
 dd colour_white ; B white upper-case comment
 dd colour_magenta ; C magenta variable
 dd colour_silver ; D
 dd colour_blue ; E editor formatting commands
 dd colour_black ; F

Four Times
There are four logical periods of time in computer programming, starting from the human being and

ending up at the computer :

1. Design-time - the human being thinks about how to solve the problem at hand

2. Edit-time - the human being types a program, using the computer running a previously

written program (the Editor)

3. Compile-time - and compiles the program, using the computer running a previously written

program (the Compiler)

4. Run-time - then asks the computer to run the compiled program, and tests the results

47

colorForth in Black & White Howerd Oakford 2019 Aug 31

In Forth, there is an outer interpreter that collects words typed by the human being and interprets them.

When developing a program, the four times follow each other in a logical progression, repeating by cycling

back to design- or edit-time as required, as in a REPL read–eval–print loop.

In general it is best to concentrate on the earliest possible logical time : a problem solved at compile-time

consumes less resources than solving the same problem at run time, likewise a better design-time

algorithm or way of approaching a problem can save both compile- and run-time effort.

An example is modular multiplication, calculating A B N **MOD , A taken to the power B modulo N.

Montgomery Multipication (https://en.wikipedia.org/wiki/Montgomery_modular_multiplication) is a

design-time improvement that maps A to Montgomery form so that taking the result modulo N can be

done by dividing by a power of 2 – this is equivalent to shifting and is very much faster than division. The

result is then mapped back from Montgomery form to give a usable result, with better run-time

performance.

By being very simple and attaching meta-data to data, colorForth can allow more control over the entire

development environment – this could allow a major design-time improvement.

Philosophy : Keep It Simple
It is not easy to define simplicity – it is more of a direction than a goal. Sometimes adding complexity in

one area can decrease the complexity overall. An example is the simple Text Input Buffer in conventional

Forth being replaced by a pre-parsing Shannon-Fano encoder in colorForth – but this simplifies the

compiler.

From Chuck Moore’s book Programming a Problem-oriented Language :

“The Basic Principle

• Keep it Simple

As the number of capabilities you add to a program increases, the complexity of the program increases

exponentially. The problem of maintaining compatibility among these capabililties, to say nothing of some

sort of internal consistency in the program, can easily get out of hand.

You can avoid this if you apply the Basic Principle.

You may be acquainted with an operating system that ignored the Basic Principle. It is very hard to apply.

All the pressures, internal and external, conspire to add features to your program.

After all, it only takes a half-dozen instructions; so why not? The only opposing pressure is the Basic

Principle, and if you ignore it, there is no opposing pressure.”

I am looking forward to discovering new ways of simplifying the total colorForth system, by adding

carefully controlled complexity into certain key areas.

48

colorForth in Black & White Howerd Oakford 2019 Aug 31

colorForth History
Around 2001 I downloaded Chuck Moores’ public domain colorForth from his website and copied on to a

3.5 inch floppy disk. It was not easy to get working – I had to add a new, compatible floppy disk ISA board

to make it work.

I was impressed, and wrote the article : colorForth and the Art of the Impossible and presented it at

EuroForth 2001. I also had the great good fortune to spend about 45 minutes with Chuck, looking at his

colorForth CAD system, OKAD II.

I love working in colorForth – I think it must be something genetic, certainly it appears not to be curable.

I presented another paper at EuroForth 2003 “The colorForth Magenta Variable”, and handed out floppy

disks with the first distribution of my version of colorForth.

Time marches on, and one of my two PCs still with a floppy disk drive, died. I still have the other one, in

the cellar, “just in case”. But it became obvious that colorForth needed to be updated to run from a USB

stick.

A decade or so later, I presented a paper “Crypto colorForth” at EuroForth 2017 (the video is here), and

demonstrated colorForth running from a USB stick. I believe that security and complexity are incompatible

in computer software, and that colorForth can be the basis of a very secure operating system (without

using files).

Actions, not Words
I strongly recommend that you, dear reader, run cf2019 as a program on a suitable computer. There are

two ways of doing this :

1. Copy the binary image file cf2019.img directly onto a USB drive, and boot the computer using this

drive.

2. Run cf2019 in a bochs environment under Windows. Double click on the file go.bat in the cf2019

distribution to do this.

This is because “the map is not the territory” – both Forth and colorForth provide an interactive

environment that is best experienced, rather than discussed.

Downloads
colorForth can be downloaded here, and can be copied to a USB drive to run native on most PCs, or under

Bochs for Windows.

Documentation is available here, and is included in the distribution.

Enjoy!

Howerd Oakford 2019 Aug 31

49

MUTEX (MUTual EXclusion) Mechanism in Hardware

Klaus Schleisiek - kschleisiek at freenet.de

Thanks to µCore's PAUSE signal, mutual exclusion processing can be completely realised in hardware. This
gets rid of a very popular source of hard to track errors in complex control systems.

What is mutual exclusion and why do we have to bother?

In complex control systems, there are usually several control loops, each of which is running in its own task.
For input signal acquisition, the same A/D converter (ADC) may be shared by several tasks. A/D conversion
usually takes several processor cycles and therefore, a MUTEX mechnisam is needed for two things:

a) To prevent any task to touch the ADC while it is converting another task's input signal.

b) To guarantee that a conversion result is actually read by the task that started the conversion previously.

For the sake of discussion I assume that we have an ADC with an integrated eight channel multiplexer. It is
connected to a hardware/software interface that allows to store a channel number into its memory mapped
ADC register (ADC_reg) initiating signal acquisition. When the A/D conversion has finished, ADC_reg can
be read returning the conversion result of the selected channel. In order to detect when the conversion has
finished, we also have flag bit #adc_ready in the FLAG register (FLAG_reg). In addition we can define
Semaphors with methods lock and unlock.

In the first part of the paper I will show how mutual exclusion is usually implemented in software.

In the second part I will show how the entire MUTEX mechanism can be realised in hardware using µCore's
PAUSE signal.

Conventional MUTEX in software
At first some informal word definitions of a typical co-operative multi tasking system:

pause (--) puts the current task to sleep and calls the scheduler in order to give another task the chance to
run. Please note that µCore's PAUSE signal input and the Forth word pause are completely different things!

Semaphor is a defining word that creates a semaphor. In priciple it is a variable that allows to store true and
false.

lock (addr --) as long as the semaphor at addr is true, pause is executed. When it is false, it is set to true
and execution of the task continues.

unlock (addr --) sets the semaphor at addr to false.
Semaphor sema_ADC

: sample (channel -- sample)
 sema_ADC lock ADC_reg !
 BEGIN pause FLAG_reg @ #adc_ready and UNTIL
 ADC_reg @ sema_ADC unlock
;

Variable Result

And now a task may acquire the analog data of channel 4 in a safe way using the following phrase:
... 4 sample Result ! ...

50

MUTEX (MUTual EXclusion) Mechanism in Hardware

MUTEX in hardware
As the Janus-faced side of interrupts, µCore has an additional hardware input signal pause, which, when
raised, aborts the current instruction, pushes the instruction's program memory address on the return stack,
and branches to the pause trap.

interrupt: An event did happen that was not expected by the software.

pause: An event did not happen that was expected by the software.

In a single task environment, the pause trap just holds an exit instruction. As a result, the processor
would continuously try to execute the instruction that raised the pause signal until some external event makes
the instruction executable.

In a multi tasking environment, the pause trap holds a branch to Forth's pause routine defined above and
therefore, the processor can do other things while waiting for the external event to happen.

As before, we need the flag bit #adc_ready. But this time, it is not only a flag that can be read by the
processor, it becomes the semaphor itself.

Here is some hardware pseudo code (simplified VHDL) that is needed for the MUTEX mechanism:

read_ADC_reg is true when the Forth phrase ADC_reg @ is executed.

write_ADC_reg is true when the Forth phrase ADC_reg ! is executed.

ADC_busy is true while the ADC is converting. Very often this is an output signal of the ADC chip.

The hardware implementation consists of a combinatorial part that feeds the pause input of µCore
pause <= true
 WHEN (read_ADC_reg = true AND ADC_busy = true) OR
 (write_ADC_reg = true AND FLAG_reg(#adc_ready) = false)
 ELSE false;

and a sequential part that controls the #adc_ready bit storing its result on the rising edge of a clock.
IF rising_edge(clk) THEN
 IF write_ADC_reg = true THEN
 FLAG_reg(#adc_ready) <= false;
 END IF;
 IF read_ADC_reg = true AND pause = false THEN
 FLAG_reg(#adc_ready) <= true;
 END IF;
 IF reset = true THEN
 FLAG_reg(#adc_ready) <= true;
 END IF;
END IF;

And now a task may acquire the analog data of channel 4 in a safe way using the following phrase:
... 4 ADC_reg ! ADC_reg @ Result ! ...

In essence, you can treat the ADC_reg similar to a variable without bothering about conversion time needed
or mutual exclusion on the software level any more.

51

Getting Rid of µCore's 2-phase Execution Cycle

 Klaus Schleisiek - kschleisiek at freenet.de

µCore_1 did have a two phase instruction execution cycle, because the internal blockRAMs in FPGAs do
have an internal address register that needs to be set first before data can be read. Each phase lasts for at least
one clock cycle:

1st phase: All address computations are done for µCore's three memory areas:

1. Program memory

2. Data memory and return stack

3. Data stack

At the end of the 1st phase, these addresses may be registered in the respective memory areas depending on
an instruction's need.

2nd phase: Now the memory areas may be read and used for computing results as well as reading the next
instruction. At the end of the 2nd phase, results can be stored on the data stack, in the data memory, on the
return stack, and in the
instruction register.

This is a waste of computing
time for the majority of
instructions that do not need to
read any memory except for
the program memory.

I got rid of this unfortunate scheme by splitting up a random blockRAM memory access into two subsequent,
indivisible instructions. Along the way, I invented a generic 'instruction chaining mechanism', which can
readily be used for indivisible read-modify-write instructions like +!.

Program memory
The trick for the program memory is to get rid of the instruction register. At the end of every µCore_2
execution cycle the next instruction's address gets registered in the program memory's address register. In the
next cycle the output data of the program memory constitutes the next instruction. The instruction register of
µCore_1 is no longer needed. :-)

Data stack
The trick for the data stack memory is simple: The data stack pointer always points at the the last item
pushed into the data stack memory. This implies that its internal address register is set to said item and
therefore, it is ready to be read back in the next cycle already. No random access will ever happen, because
the data stack memory solely serves as a stack that can only be pushed or poped.

Data memory and return stack
In µCore, both the data memory and the return stack reside in different regions of the same memory. Each
memory read must be split up into two instructions: The 1st instruction sets the data memory's address
register, and the 2nd instruction can then read the data and operate on it. These two instructions need to be
indivisible or else an interrupt may overwrite the memory's address register before executing the 2nd

instruction.

52

Getting Rid of µCore's 2-phase Execution Cycle

The 1st instruction (e.g. @) will be compiled by µCore's cross compiler. When it is executed, it will schedule
the 2nd instruction for execution in the next cycle without advancing the program counter.

To this end I invented a general mechanism to chain up a series of indivisible instructions.

The following table lists µCore_2's two-cycle instructions:

instruction 2nd cycle
r> store memory data into TOR
rdrop store memory data into TOR
exit, iret store memory data into TOR
?exit only executed when TOS /= 0: store memory data into TOR
next only executed when finishing a FOR ... NEXT loop (TOR = 0): store memory data into TOR
@ store memory data into TOS
+! write (memory data + NOS) back into memory
I store the sum of TOR and data memory (2nd return stack item) into TOS
IF in the 1st cycle, the branch address is dropped, in the 2nd cycle the flag as well

These two cycle instructions constitute about 20 % of the instructions executed by a typical program.
Therefore, total throughput of µCore_2 has increased by about 65 % compared to µCore_1.

Instruction chaining mechanism
inst is an 8-bit register that delivers the next instruction when chain = true (see below).

chain is a flip-flop, which must be set when the next instruction should be read from inst instead of the
program memory. When chain is being set, the program counter will not be advanced.

Interrupts will be suppressed as
long as chain = true.

Given this mechanism, an
arbitrary number of single
instructions may be chained up
for application specific opcodes.

Reset
After a reset, execution should start at address zero. Therefore, the processor must be set up to execute a
noop while fetching the first instruction from address zero. This can be realised as follows:
IF reset = true THEN
 inst <= op_NOOP;
 chain <= true;
 program_memory_addr <= 0;
END IF;

Execution of @

53

Galois Fields and Forth

Bill Stoddart and John Goldman

September 25, 2019

Abstract

Galois �elds are rich �nite algebraic structures with applications in

cryptography, error correcting codes, experimental design, constraint

programming and pattern recognition. We describe some of these �elds

and the structures related to them known as Latin Squares, which are

used in many applications. We describe and implement examples of

the polynomial arithmetic that underlies Galois Fields, we describe

the automorphisms between di�erent implementations of the "same"

�eld, and we give an implementation of the �eld used in the Advanced

Encryption Standard. As an example application we consider in detail

the construction of a pack for the children's card game Dobble, in

which there are cards marked with symbols such that any two cards

share exactly one symbol. We include mathematical appendices in

which we prove, or show how to prove by comprehensive validation,

various important properties satis�ed by these �elds.

1 Introduction

Galois �elds are named in honour of the French mathematician Evariste Ga-
lois, an inspiring but tragic �gure who died at 20 in a duel yet left a huge
legacy. He discovered them whilst investigating the properties of polynomials.
These �elds are rich �nite algebraic structures with applications in cryptog-
raphy, error correcting codes, experimental design, constraint programming
and pattern recognition. Each Galois �eld consist of values 0..p along with
two operations which are analogous to multiplication and addition. These
operations obey the axioms of a mathematical ��eld�, which are also shared
by real numbers, but not, totally, by integers, since every element in a Galois

54

�eld has an exact multiplicative inverse. Galois �elds also support operations
analogous to subtraction and division, and division is perfect, there is never
a remainder.

This paper is organised as follows. In section 2 we give the axiomatic prop-
erties of a Galois �eld. In section 3 we show how Galois �elds with a prime
number of elements are implemented. We de�ne Latin squares, and also what
it means for two Latin squares to be orthogonal. We show how orthogonal
Latin squares can be used to solve an old playing card puzzle. In section 4 we
look at �elds of size qn where q is prime, and in particular we implement the
�eld of size 8. We show there are di�erent implementations of this �eld which
are related by an automorphism. In section 5 we implement the Galois �eld
with 256 elements, which is mandated for use in the Advanced Encryption
Standard.

In section 6 we look at our main example problem, which is the allocation of
symbols to cards in Dobble packs. In section 7 we consider a Forth imple-
mentation for the construction of a Dobble pack. In section 8 we conclude.

In the mathematical appendices we prove that modular arithmetic does not
generally yield a Galois Field, and we prove the existence of the mutually
orthogonal Latin squares associated with each �eld. Finally we consider the
proof of �eld axioms by exhaustive veri�cation.

2 Galois Field Properties

A Galois �eld {F} of size p consists of two operations analogous to addi-
tion and multiplication, acting on a set of values 0..p and obeying certain
axioms. A Galois �eld will exist whenever p is the power of a prime., e.g.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, .. 256 ...

The addition and multiplication on a Galois �eld of size p=qn where q is
prime are those of �polynomial modular arithmetic", which we will explain
in due course. In the case where p is prime this reduces to addition and
multiplication modular p and we can de�ne the Galois �eld operations as:

: +0 + p MOD ; : *0 * p MOD ;

We will write the operations of a Galois �eld as +0 and *0 to distinguish
them from normal addition and multiplication. If considering more than one
implementation of the same �eld we will also use the names +1, *1, +_, and
*_. The �eld size will be clear from context.

55

The axioms of a Galois �eld are a set of rules that, with one exception, also
apply to integers. The exception is that every element has an inverse within

the �eld. The integer n can be said to have inverse 1/n, but this inverse is
not itself an integer. The inverses of Galois �eld elements are in the �eld.

2.1 Axioms

In the following u, v, w are arbitrary values in the �eld F .
Closure. If u, v are in the �eld so are u +0 v and u *0 v

Commutativity. u +0 v = v +0 u and u *0 v = v *0 u

Associativity. (u +0 v) +0 w = u +0 (v +0 w)

Distributivity u *0 (v +0 w) = (u *0 v) + (u *0 w)

Unit property u *0 1 = u

Zero properties u +0 0 = u and u *0 0 = 0

Inverses. If u is non-zero it has a multiplicative inverse u−1 in F such that
u *0 u

−1 = 1, and has an additive inverse ∼ u in F such that u +0 ∼ u = 0

The existence of inverses means division and subtraction may be de�ned,
with a /0 b =̂ a *0 b

−1 and a -0 b =̂ a +0 ∼ b

3 Latin Squares, orthogonality, and a combina-

torial playing card problem

A Latin square is an n× n array containing n di�erent elements with each of
these occurring once in each column and once in each row.

Two Latin squares are orthogonal if the pairs of elements formed from the
�rst and second square are all di�erent.

Here are two orthogonal Latin squares, together with the square of pairs
formed from them:

0 1 2 3 0 1 2 3 0, 0 1, 1 2, 2 3, 3
1 0 3 2 2 3 0 1 1, 2 0, 3 3, 0 2, 1
2 3 0 1 3 2 1 0 2, 3 3, 2 0, 1 1, 0
3 2 1 0 1 0 3 2 3, 1 2, 0 1, 3 0, 2

56

A Galois �eld of size n is associated with n-1 mutually orthogonal Latin
squares, with the element at the j,kth position the ith such square given by
i *0 j +0 k. A mathematical proof is given in the appendix.

As an example application of orthog-
onal Latin squares, and a justi�ca-
tion of the term �orthogonal�, con-
sider �nding a solution to the prob-
lem of arranging the 16 picture cards
from a pack in a 4 × 4 square such
that in each row and each column we
have one Ace, one King, one Queen,
one Jack, one Heart, one Diamond,
one Club, and one Spade. We can
use two orthogonal Latin squares to
split the program into two. We use
the �rst Latin square to allocate po-
sitions for aces, kings queens and
jacks, and the second to allocate po-
sitions to hearts diamonds clubs and
spades. Under this interpretation
the Latin squares above give the shown solution to our picture card problem.

4 Polynomial arithmetic and �elds of size 2n

To implement a Galois �eld of size qn where q is prime we use addition and
multiplication of polynomials with coe�cients taken from the �eld G(q). To
explain this fully we consider �elds of size 2n.

The Galois �eld G(2) has elements 0,1 with the multiplication:

0 *0 0 = 0 , 0 *0 1 = 0 , 1 *0 0 = 0 , 1 *0 1 = 1

so multiplication in this �eld is equivalent to logical AND. And with the
addition we have:

0 +0 0 = 0 , 0 +0 1 = 1 , 1 +0 0 = 1 , 1 +0 1 = 0

so addition in this �eld is equivalent to logical XOR. Also, subtraction modulo
2 is identical to addition modulo 2 so addition and subtraction in the �eld
are identical.

57

We now consider the polynomial arithmetic required to implement the �eld
G(8), whose elements are the polynomials of order 2 and below. Given that
the coe�cients of these polynomials are from G(2), i.e. take only the values
0 and 1, we have 8 such polynomials, which are:

0 , 1 , x , x +0 1 , x2 , x2 +0 1 , x2 +0 x , x2 +0 x +0 1

and these have coe�cients that can be encoded in 3 bits as:

000 , 001 , 010 , 011 , 100 , 101 , 110, 111

these polynomials, or more exactly the encoding of their coe�cients, will be
the members of our implementation of the �eld G(8). 1

An example of polynomial addition in this system is:

(x2 +0 1) +0 (x +0 1) = x2 +0 x +0 1 +0 1 = x2 +0 x

The bit encoded form of the same calculation, with ⊕ representing exclusive
or, is 101 ⊕ 011 = 110.

The Forth de�nition for addition in �eld G(8), or any �eld G(2n), will be

: +0 (n1 n2 -- n3 , n3 = n1 +0 n2) XOR ;

An example of polynomial multiplication is

(x2 +0 x +0 1) *0 (x
2 +0 x) = x

4 +0 x
3 +0 x

2 +0 x
3 +0 x

2 +0 x

= x4 +0 x

We note that the result x4 +0 x isn't one of the 8 polynomials of G(8), so
we can't use polynomial multiplication as the multiplication operator *0 of
our �eld. We have to reduce the result my taking its modulus relative to a
reduction polynomial. This is analogous to modular arithmetic where our
multiplication operator for modulus p arithmetic is de�ned as:

: *0 (n1 n2 -- n3, n3 = n1 *0 n2) * p MOD ;

1Mathematical note: we treat polynomials as mathematical objects, rather than as

expressions denoting mathematical objects. Considered as expressions, polynomials x

and x2 are identical, since with mod 2 arithmetic x = x2. Under the interpretation in

which polynomials are mathematical objects they correspond formally to sequences of

coe�cients 〈 0 , 1 , 0 〉 and 〈 1 , 0 , 0 〉 and polynomial arithmetic operations are de�ned on

such sequences of coe�cients. Representing such sequences of coe�cients as bit sequences

is an implementation technique.

58

Just as, for modular arithmetic to yield a �eld p must be prime, that is a
number without factors, our reduction polynomial must also not have factors.
It must also be higher order than the polynomials on the �eld. A suitable
polynomial is x3 +0 x +0 1.

The polynomial arithmetic we are performing is analogous to our numeric
arithmetic. Indeed, we write our numbers in an abbreviated polynomial form;
for example 406 is the value of 4x2 + 0x + 6 when x = 10. We might calculate
the quotient and modulus when dividing 406 by 123 as follows

3

123)406_
369 The calculation shows us that
37 406 = 123 * 3 + 37

Our division of x4 +0 1 by x3 +0 x +0 1 can be shown as follows (we explicitly
include the zero terms in x, x2 and x3)

x

x3 +0 x +0 1)x4 +0 0 +0 0 +0 0 +0 1

x4 +0 0 +0 x
2 +0 x

x2 +0 x +0 1

and shows us that x4 +0 1 = (x
3 +0 x +0 1) *0 x +0 x

2 +0 x +0 1

The term we are interested in here is the remainder x2 +0 x +0 1. this is the
result of our Galois �eld multiplication. In full:

(x2 +0 x +0 1) *0 (x
2 +0 x) =

((x2 +0 x +0 1) * (x
2 +0 x)) mod (x

3 +0 x +0 1) =
x2 +0 x +0 1

Multiplication in the �eld G(8) can be de�ned in Forth as:

: *0 (a b -- a *0 b, multiplication of elements from G(8))

(: a b :) 0 (the polynomial product a*b will be collected on the

stack, we note XOR being used for addition since we are using

modulo 2 arithmetic on our polynomial coefficients)

1 b AND IF a XOR THEN

a 2* to a

2 b AND IF a XOR THEN

a 2* to a

4 b AND IF a XOR THEN

(modulo 2 polynomial product now on stack, we now divide

it by our reduction polynomial x3+x+1)

59

DUP 16 AND IF 22 XOR THEN

DUP 8 AND IF 11 XOR THEN (11 ~ 10112 ~ x3+x+1) ;

The reduction polynomial is not unique (except in the case of G(4)). For
G(8) an alternative reduction polynomial is x3+x2+1, and we will use +1 and
*1 as the names for the corresponding �eld operations. We have the following
addition and multiplication tables.

+0 0 1 2 3 4 5 6 7 *0 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7

2 2 3 0 1 6 7 4 5 2 0 2 4 6 3 1 7 5

3 3 2 1 0 7 6 5 4 3 0 3 6 5 7 4 1 2

4 4 5 6 7 0 1 2 3 4 0 4 3 7 6 2 5 1

5 5 4 7 6 1 0 3 2 5 0 5 1 4 2 7 3 6

6 6 7 4 5 2 3 0 1 6 0 6 7 1 5 3 2 4

7 7 6 5 4 3 2 1 0 7 0 7 5 2 1 6 4 3

+1 0 1 2 3 4 5 6 7 *1 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 1 0 3 2 5 4 7 6 1 0 1 2 3 4 5 6 7

2 2 3 0 1 6 7 4 5 2 0 2 4 6 5 7 1 3

3 3 2 1 0 7 6 5 4 3 0 3 6 5 1 2 7 4

4 4 5 6 7 0 1 2 3 4 0 4 5 1 7 3 2 6

5 5 4 7 6 1 0 3 2 5 0 5 7 2 3 6 4 1

6 6 7 4 5 2 3 0 1 6 0 6 1 7 2 4 3 5

7 7 6 5 4 3 2 1 0 7 0 7 3 4 6 1 5 2

Although it is accepted usage to refer, in the singular, of �the �eld G(8)�
we clearly have two di�erent Galois �eld multiplication operators. However,
they may be seen as acting on di�erent encodings of the abstract elements
of the �eld G(8) rather than being operations from two di�erent �elds. The
following permutation relates the encodings used with reduction polynomial
x3 +0 x +0 1 to those used with reduction polynomial x3 +0 x

2 +0 1

perm = { 0 7→ 0, 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 5, 5 7→ 4, 6 7→ 6, 7 7→ 7 }
Now for any a , b ∈ 0 .. 7 we have the following �automorphism� relating +0
to +1

perm(a +0 b) = perm(a) +1 perm(b)

60

and a similar automorphism relating *0 to *1

perm(a *0 b) = perm(a) *1 perm(b)

In Forth we can implement this permutation function as:

HERE 0 C, 1 C, 3 C, 2 C, 5 C, 4 C, 6 C, 7 C,

: PERM (8b -- 8b) LITERAL + C@ ;

and the checks we must do to establish the automorphisms are that for
arbitrary I and J from the �eld

I J +0 PERM I PERM J PERM +1 =

I J *0 PERM I PERM J PERM *1 = AND

5 Galois �elds and encryption

All unary Galois �eld operations (add x, subtract x, multiply by x, divide
by x, additive inverse, multiplicative inverse) have inverses. Thus if such
operations are used to encode data, we can always rely on there being inverse
operations that can decode it. Also, there are unary operations to take any
point in the �eld to any other point in the �eld. These properties make
Galois �eld operations useful for scrambling bits during encryption.

The �eld G(256), with reduction polynomial x8 + x4 + x3 + x + 1 is mandated
for use in the Advanced Encryption Standard, which (Wikipedia tells us)
is �currently the only publicly accessible cipher approved by the National
Security Agency (NSA) for top secret information when used in an NSA
approved cryptographic module�.

An implementation of G(256) operations is given below. They follow the
same form of polynomial addition and multiplication as we saw for G(8).

(Our reduction polynomial x8+x4+x3+x+1 encodes to 1000110112)

2 BASE ! 100011011 CONSTANT poly HEX

: +_ XOR ;

: *_ (: a b :) 0

1 b AND IF a XOR THEN

61

a 2* to a

2 b AND IF a XOR THEN

a 2* to a

4 b AND IF a XOR THEN

a 2* to a

8 b AND IF a XOR THEN

a 2* to a

10 b AND IF a XOR THEN

a 2* to a

20 b AND IF a XOR THEN

a 2* to a

40 b AND IF a XOR THEN

a 2* to a

80 b AND IF a XOR THEN

(modulus 2 polynomial product now on stack, its

max possible value is < 8000 hex)

DUP 4000 AND IF [poly 40 *] LITERAL XOR THEN

DUP 2000 AND IF [poly 20 *] LITERAL XOR THEN

DUP 1000 AND IF [poly 10 *] LITERAL XOR THEN

DUP 800 AND IF [poly 8 *] LITERAL XOR THEN

DUP 400 AND IF [poly 4 *] LITERAL XOR THEN

DUP 200 AND IF [poly 2 *] LITERAL XOR THEN

DUP 100 AND IF poly XOR THEN ;

DECIMAL

6 Dobble

Dobble is a card game in which 8 symbols appear on each card, and any two
cards have exactly one symbol in common.

We can generalise this to n symbols per card, so long as n-1 is the power of a
prime. We illustrate the construction of a Dobble pack using 5 symbols per
card, represented by digits 0..9 and letters A , B .. K

We begin by writing down the cards that contain the symbol 0. To see how
many such cards there, it will help if we write down at the same time the
cards that contain 1. As we write down each 0 card we distribute its symbols
between the 1 cards. After we have added the card 0 5 6 7 8 we have the
following situation, which shows us we need 4 cards that contain 1 (but not

62

0) in order to distribute the symbols 5, 6 7 and 8 between them, and thus
avoid having a card with more than 1 symbol in common with 0 5 6 7 8

0 1 2 3 4

0 5 6 7 8 1 5 ? ? ?

1 6 ? ? ?

1 7 ? ? ?

1 8 ? ? ?

continuing in this way and adding blocks for cards containing 2, 3 and 4 we
arrive at.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 9 A B C 1 6 A E I 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 D E F G 1 7 B F J 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

0 H I J K 1 8 C G K 2 ? ? ? ? 3 ? ? ? ? 4 ? ? ? ?

At this point we can see that for a pack with 5 symbols per card we need
21 di�erent symbols and that our pack will contain 5 + 4 * 4 = 21 cards. In
general a Dobble pack with N symbols per card will use N +(N-1)2 symbols
and have N +(N-1)2 cards.

The sub-matrices for the 0 and 1 blocks are complete, and the sub-matrix for
the 1 block is the transpose of that for the 0 block (rows of the 0 block have
become columns of the 1 block). Now we use the orthogonal Latin squares
of the Galois �eld G(4) to position the elements of the sub-matrix of block 1
in each of the remaining sub-matrices. These Latin squares are:

0 1 2 3 0 1 2 3 0 1 2 3

1 0 3 2 2 3 0 1 3 2 1 0

2 3 0 1 3 2 1 0 1 0 3 2

3 2 1 0 1 0 3 2 2 3 0 1

The top rows of these Latin squares tell us how to share the row 5 9 D H of
sub-matrix 1 between the sub-matrices 2, 3 and 4.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 ? ? ? 3 5 ? ? ? 4 5 ? ? ?

63

0 9 A B C 1 6 A E I 2 ? 9 ? ? 3 ? 9 ? ? 4 ? 9 ? ?

0 D E F G 1 7 B F J 2 ? ? D ? 3 ? ? D ? 4 ? ? D ?

0 H I J K 1 8 C G K 2 ? ? ? H 3 ? ? ? H 4 ? ? ? H

The second rows of the Latin squares tell us how to share the row 6 A E I.

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 A ? ? 3 5 ? E ? 4 5 ? ? I

0 9 A B C 1 6 A E I 2 6 9 ? ? 3 ? 9 ? I 4 ? 9 E ?

0 D E F G 1 7 B F J 2 ? ? D I 3 6 ? D ? 4 ? A D ?

0 H I J K 1 8 C G K 2 ? ? E H 3 ? A ? H 4 6 ? ? H

the third and forth rows of the Latin squares tell us how to share the the
rows 7 B F J and 8 C G K. We have now shared the symbols 5 to K between the
rows of the 2 3 and 4 sub-matrices in such a way that we have one symbol in
common between any two rows, and because the 0 sub-matrix is the transpose
of the 1 sub-matrix, we also have one symbol in common between the rows
of the 0 sub-matrix and the rows of the 2 3 and 4 matrices, and we have
completed our solution:

0 1 2 3 4

0 5 6 7 8 1 5 9 D H 2 5 A F K 3 5 C E J 4 5 B G I

0 9 A B C 1 6 A E I 2 6 9 G J 3 8 9 F I 4 7 9 E K

0 D E F G 1 7 B F J 2 7 C D I 3 6 B D K 4 8 A D J

0 H I J K 1 8 C G K 2 8 B E H 3 7 A G H 4 6 C F H

7 Implementing the construction of a Dobble

pack in Forth

Given a Galois �eld G(p), we consider how to implement the construction a
Dobble pack with N=p+1 symbols per card, as outlined above. We allocate
space for the Dobble pack, with 1 byte used to represent each symbol. Each
run of p+1 bytes records the symbols on a particular card. Initially we �ll
the pack with a value that would print as to show an unassigned symbol. 2

2Though not shown here, for printing a pack we set BASE to 72, and character ∼,
which is the highest allocated ascii code, corresponds to 71 in this base. This can be

veri�ed with: 71 72 BASE ! . DECIMAL

64

p 1+ CONSTANT N (no. of symbols per card)

N N 1 - DUP * + CONSTANT #PACK (cards in pack,

and also no. of different symbols used in pack)

CREATE PACK #PACK N * ALLOT

PACK #PACK N * 71 FILL (fill with a value that will display as ~)

: CARD (n -- a, a is addr of card n in PACK) N * PACK + ;

On the same space we impose a di�erent interpretation which allows us to
easily access the column vectors and sub-matrices.

: V (i j -- addr) (: i j :) PACK N + N N 1- * i * + j N * + ;

: M (i j k -- addr,

addr is address of element (j,k) in matrix i of PACK)

(: i j k :) PACK N 1+ + N N 1- * i * + j N * + k + ;

We require an implementation of the Latin squares associated with the �eld.

: LAT (n i j -- k, k is i,jth element of fields nth Latin square)

>R *0 R> +0 ;

We de�ne operations to build the pack. These �ll in the �rst card, store the
elements 0 to p onto the cards (completing the constant column vectors),
�ll in sub-matrix 0, copy the transpose of sub-matrix 0 to matrix 1, and
complete the remaining sub matrices using their associated Latin squares.

: !CARD0 N 0 DO I PACK I + C! LOOP ;

: !0..p (store symbols 0 to p onto cards)

N 0 DO p 0 DO J J I V C! LOOP LOOP ;

: !M0 (--, Set elements of matrix 0 of pack) N

N 1- 0 DO N 1- 0 DO

DUP 0 J I M C! 1+

LOOP LOOP DROP ;

: M0_Trans_toM1 (assign transpose of M0 to M1)

N 1- 0 DO N 1- 0 DO

0 I J M C@ 1 J I M C!

65

LOOP LOOP ;

: LATINISE

N 1- 1 DO

N 1- 0 DO

N 1- 0 DO

1 I J M C@ K 1+ K I J LAT J M C!

LOOP

LOOP

LOOP ;

We now have everything we need to build a pack.

: BUILD-PACK !CARD0 !0..p !M0 M0_Trans_toM1 LATINISE ;

A quickly implemented debug aid that allows us to look at the memory
where the Dobble pack is being constructed is a �Dobble dump", i.e. a DUMP

modi�ed to use the number of symbols in the pack as its output base.

: DDUMP BASE @ >R #PACK BASE ! DUMP R> BASE ! ;

To verify our pack we �rst need an operation to check how many symbols
are shared by a pair of cards.

: SHARED (card1 card2 -- n, pre: card1 <> card2

post: n is no of symbols shared by card1 and card2 of pack)

(: card1 card2 :) 0

N 0 DO

N 0 DO card1 CARD I + C@ card2 CARD J + C@ =

IF 1+ THEN

LOOP

LOOP ;

To check the pack we look at every pair of cards and verify that they share
exactly one symbol.

: CHECK-PACK (--, report first pair of cards found to differ

by anything other than one symbol)

66

0 #PACK 0 DO #PACK 0 DO

I J > IF

I J SHARED 1 <> IF

CR ." Cards " I . J . ." differ in" I J SHARED . ." symbols"

CR ." Cards are " I .CARD ." and " J .CARD ABORT

ELSE

." ." 1+

THEN

THEN

LOOP LOOP CR . ." Checks, pack validated " ;

8 Conclusions

Galois �elds are rich �nite algebraic structures based on modular and polyno-
mial arithmetic and are useful in many applications. Here we have described
their properties and shown how they can be implemented. Mathematical
properties relating to the existence of such �elds and their associated sets of
orthogonal Latin squares are are proved in the appendix. We have looked in
detail at how the orthogonal Latin squares associated with each Galois �eld
can be used to construct a Dobble pack. Forth proved a versatile program-
ming tool, able to model the complexities of the Dobble pack by overlaying
alternative interpretations of the data in a block of memory in a transparent
and simple way. Forth's ability to work in a number of bases was made use
of: we used binary for representing encodings of polynomials with modulo 2
coe�cients, hexadecimal for the compact encoding higher order polynomials,
and base 72 output to print the symbols on our cards. This last was useful
as it allows us to print the symbols on our cards as numbers, with numbers
up to 71 appearing as 71 di�erent single output symbols. This allowed us to
concentrate on the theory underlying the implementation, and this is where
the beauty of this example lies, rather than in spending time making the
representation of cards more attractive. The 71 ascii symbols used were per-
fectly su�cient to verify our code. We would note, however, that using such
a high number base does not work well for input, since it produces con�icts
between numbers and the names of Forth operations.

67

Mathematical Appendix

Modulo p arithmetic where p is not prime.

Arithmetic modulo p yields a Galois Field if and only if p is prime. To see
why suppose (in order to obtain a contradiction) that modulo p arithmetic
does yield a Galois Field F when p is non-prime. When p is non-prime it
has factors, u and v say such that u, v ∈ F and u ∗0 v = p. Now recall that
u ∗0 v = (u ∗ v) mod p and since u ∗ v = p we have u ∗0 v = p mod p = 0:

But if u, v ∈ F they have inverses u−1 and v−1 and so:

(u ∗0 u−1) ∗0 (v ∗0 v−1) = 1 ∗0 1 = 1

But on the other hand:, by the commutativity and associativity laws of a
Galois Field:

(u ∗0 u−1) ∗0 (v ∗0 v−1) = �by comm and ass laws�
(u ∗0 v) ∗0 (u−1 ∗0 v−1) = �since u *0 v = 0�
0 ∗0 (u−1 ∗0 v−1) = �by multiplicative property of 0�
0

and the contradiction is established.

Latin square properties

Given a Galois �eld F of size n with elements 0 .. n − 1 there are n − 1

mutually orthogonal Latin squares of size n × n such that the value in row
j and column k of the ith such square is given by i ∗0 j +0 k where
i ∈ 1 .. n− 1 and j, k ∈ 0 .. n− 1 .

Proof that each square is a Latin square

By closure properties i ∗0 j +0 k ∈ F which leaves us to prove that for an
arbitrary square i the same element cannot occur twice in any row, or twice
in any column.

To show an element cannot occur twice in a row, note that the element at
row j column k of square i is i ∗0 j +0 k. Assume that the element at row
j′ in the same column has the same value, and assume j 6= j′. Then

68

i ∗0 j +0 k = i ∗0 j′ +0 k ≡ �subtracting k from both sides�
i ∗0 j = i ∗0 j′ ≡ �dividing both sides by i �
j = j′ �contradicting our assumption�

So the only way the element at row j and col k of an arbitrary square can
be equal to the element at row j and col k′ of that square is if j = j′, i.e. if
they are the same square.

To show an element cannot occur twice in a column, assume that the element
at row j and col k of square i is the same as that at rowj and col k′, and
assume k 6= k′. Then

i ∗0 j +0 k = i ∗0 j +0 k′ ≡ �subtracting i ∗0 j from both sides�
k = k′ �contradicting our assumption�

Proof that any two distinct squares are orthogonal.

For the squares i and i′ to be orthogonal we need the pair of values:

(i ∗0 j +0 k , i′ ∗0 j +0 k)

to be distinct from

(i ∗0 j′ +0 k′ , i′ ∗0 j′ +0 k′).

To obtain a contradiction we will assume these pairs of values are not distinct,
i.e.

i ∗0 j +0 k = i ∗0 j′ +0 k′ (1) and i′ ∗0 j +0 k = i′ ∗0 j′ +0 k′ (2).
Then from (1)

i ∗0 j +0 k −0 i ∗0 j′ −0 k′ = 0 ≡ �subtracting i ∗0 j′ +0 k′ from each side of (1)�
i ∗0 (j −0 j′) +0 k −0 k′ = 0 (3)

�also similarly from (2)�
i′ ∗0 (j −0 j′) +0 k −0 k′ = 0 (4)
�Now subtracting (4) from (3) and factorising�
(i −0 i′) ∗0 (j −0 j′) = 0 ≡ �since i 6= i′ �
j = j′

Now substituting j for j′ in (1) we obtain

i ∗0 j +0 k = i ∗0 j +0 k′ ≡ �subtracting i ∗0 j from each side
k = k′

69

Square Roots

In section 4 we give multiplication tables for possible implementations of
G(8), and it can be seen from these that every element has an exact square
root.

More generally this is true for any �eld G(2n), and this comes from the ob-
servation that since, in modulo 2 arithmetic, addition is synonymous with
subtraction, this property will also hold for polynomial arithmetic on poly-
nomials with modulo 2 coe�ecients.

To ensure that every element of such a �eld has a square root it is su�cient
to show that for any p, q in the �eld: p2 = q2 ⇒ p = q

Proof. We begin with the assumption that p2 = q2

p2 = q2 ≡ �subtracting q2 from each size�
p2 −0 q2 = 0 ≡ �factorising�
(p −0 q) ∗0 (p +0 q) = 0 ≡ �since p +0 q = p −0 q �
(p −0 q) ∗0 (p −0 q) = 0 ≡ �property of additive inverse�
p = q �

Proof of �eld properties

We don't attempt a mathematical proof that the polynomial arithmetic we
have described yields the operations of a Galois �eld. However, for any
particular �eld that we implement we can prove the axioms hold by verifying
them for all combinations of values in the �eld. The code for this veri�cation
just needs a single parameter, p, which gives the size of the �eld.

For these tests we use +_ and *_ as our operation names. The names of our
actual �eld operations might be +0 and *0 or +1 and *1, so we use these to
de�ne +_ and *_ before loading the �eld tests.

The most complex tests are to establish the existence and uniqueness of
inverses. Here is the code for checking the multiplicative inverse axiom.

: (*INV) (n -- f, pre: n ∈ 1 .. p-1

post: f true iff n has a unique multiplicative inverse)

(: n :) 0 (count of inverses)

p 1 DO I n *_ 1 = IF 1+ THEN LOOP 1 = ;

: *INV-TEST (-- f, true if every element of 1 .. p-1 has a unique

70

multiplicative inverse in arithmetic modular p)

TRUE p 1 DO

I (*INV) NOT IF DROP FALSE LEAVE THEN

LOOP ;

Given that we already know, from established mathematical results, that the
�eld axioms will hold, the real bene�t of verifying them is as a check that
our �eld operations have been correctly implemented.

71

Forth Projectional Editing

Ulrich Hoffmann <uh@fh-wedel.de>

Abstract

Projectional editing is an alternative way to handle programs and data. Instead of
starting with text based source code it is centered around internal program/data struc-
tures and so called projections create editable representations that allow to modify the
internal structures. In the Forth context memory seems to be the appropriate internal
data structure. Different editors interpret memory content in specific ways and allow the
user to modify it in an appropriate fashion. A hex and a stack editor are described and
other editors are proposed. The idea of Forth projectional editing gives a general view
to program and data handling that allows to classify techniques used in different Forth
systems.

1 Introduction

Projectional editing [1] is an approach to edit
programs in a programming language that does
not rely on manipulating source code and then
scan, parse, translate it to object code. Instead
a projectional editor presents a pleasantly ed-
itable representation of some internal structure
(often an abstract syntax tree). Editing this
representation results in appropriate modifica-
tion of the internal data structure, see figure
1. Instead of source code, the internal abstract
representation is the original artifact and all
other representations are produced from it: To
persist a storage representation, to run an exe-
cutable representation is generated. For editing

appropriate editable representations are cre-
ated.

The process of building editable representa-
tions from internal data is called projection
as it might only extract some important as-
pects of the internal data structure while leav-
ing others untouched. Different projections for
the same structure can exist, allowing to edit
it in different ways. As an example, a decision
table could be edited in a textual representa-
tion as an array initialization or it could be
presented to the user in tabular form visualiz-
ing a decision table similar to those used in a
design document.

Projectional editing can be used with great
benefit when using domain specific languages

generate

project

internal data structure
abstract representation

editable representation

object
code

executable representation

code
store

storage representationstore/
retrieve

project

editor

editor

Figure 1: Projectional Editing

72

(DSLs). They often deal with specific aspects
of a problem domain that might have special
visual representations. Projectional editing can
provide familiar visualization for (parts of) the
DSL.

2 Forth Projectional

Editing

Forth is especially strong when creating DSLs.
Its approach however is not the traditional one
building an abstract syntax tree for the inter-
nal representation of programs and generate
code from this. Instead code generation — even
native code generation — typically takes place
in a single pass directly starting from Forth
source code. This is to support the Forth’s in-
teractive nature.

In order to apply projectional editing ideas
to Forth a suitable internal representation has
to be identified. As Forth is strongly memory
oriented (@ ! , ALLOT MOVE . . .) it seems to
be reasonable to use memory as the internal
data structure and start different projections
from there. Forth programmers are used to
take some memory area, represent their data
structures in this memory and later on inter-
pret (project) the memory area in this specific
way by using only suitable operators on it.1

The classical Forth block editor already inter-
prets memory in a specific way: BLOCK returns
a memory address of a typically 1 KB large

memory area that is interpreted as 16 lines of
64 characters without line breaks. Forth pro-
grammers edit their source code in these blocks
using the block editor and the system inter-
prets and compiles that program by means of
the LOAD operator. (The block/buffer subsys-
tem transparently handles storing and retriev-
ing blocks.)

2.1 Hex editor

The first projection to look at is a very gen-
eral one that interprets data in memory as just
bytes. This leads to a hex editor. This editor is
similar to the DUMP utility that can be found in
many systems but in addition memory is not
just displayed but the hex dump becomes ed-
itable. The hex editor and dump utility have
the same interface (c-addr u --) and the
editor is just a Forth word that can be invoked
both interactively and also from within a run-
ning program. It returns to the calling word
when the editor is exited. Figure 2 shows a
sample hex editor session: The editor view is
split into two main parts: the hex dump and
the character dump. The TAB key switches be-
tween the two. The cursor is initially placed in
the hex dump and can move by means of the
cursor keys. Appropriate data can be entered
and directly modifies the represented memory.

A binary editor for Forth blocks can simply be
defined as

: hedit (u --)

block 1024 hex-edit update ;

1Type safety is assured by the programmer not the compiler.

$ sf hexedit.fs

(hex-editor loaded. Usage: c-addr u HEX-EDIT) ok

Create conference ’E’ c, ’u’ c, ’r’ c, ’o’ c, ’F’ c, ’o’ c, ’r’ c, ’t’ c, ’h’ c,

conference 30 hex-edit

00003CB44 45 75 72 6F 46 6F 72 74 68 08 68 65 78 2D 65 64 EuroForth.hex-ed

00003CB54 69 74 63 65 2A 00 0F 00 4F 14 00 00 2A 00 itce*...O...*.

Figure 2: A sample hex-editor session

73

If a Forth system implements its stacks in main
memory then the stacks also become editable
using the hex editor, e.g.:

10 20 30 40 sp@ 4 cells hex-edit

will start the hex editor on the top most 4 stack
items:

0BFFFFA80 28 00 00 00 1E 00 00 00 14

00 00 00 0A 00 00 00 (...............

The exact layout of the stack in memory is of
course system specific.

For this however a different projection of mem-
ory might be more appropriate. This leads to
the stack editor.

2.2 Stack Editor

The stack editor (sample session in figure 3)
displays an editable stack representation with
each stack item on a line of its own and al-
lows to interactively modify the stack. Each
item ist shown in its character, unsigned hex-
adecimal, unsigned decimal and signed decimal
representation. The stack editor items can be
cut/copied and pasted (Ctrl-X, -C, -V) or re-
placed by items that are the result of a Forth
fragment entered on the items line.

Like the hex editor also the stack editor is just
a word that can be invoked when appropriate
and resumes execution of the caller when ex-
ited. So it can be inserted in source where ap-
propriate and be used as an interactive alter-
native for .S debugging.

2.3 Other editors

Adopting the idea of Forth Projectional Edit-
ing (i.e. projections from memory to editable
representations) in other areas would enable
a large selection of possible editors. Examples
might be:

• A Variable Editor
This could represent a VARIABLE defined
word similar to the stack editor in dif-
ferent ways and interactively allow for
appropriate changes. Depending on the
programmer intended variable type dif-
ferent representations might be reason-
able. For example a flag might be shown
as a toggle that can be flipped or enu-
meration data could show and allow to
select one of the possible values.

• A User Area Editor
In a multi tasking system the user area
is a collection of task specific variables.
The idea of the variable editor could be
extended to editing the entire user area
along with the user variable name and its
content.

• A Structure Editor
While a variable editor would allow for
editing just a single cell, a structure
editor could project an editable repre-
sentation of an entire structure defined
by BEGIN-STRUCTURE, FIELD:, etc. By
introspection it could display the field
names and provide appropriate variable
editors for each of the fields in the struc-
ture.

> gforth stackedit.fs

10 20 30 40 50 -1 stack-edit

0: ’?’ $FFFFFFFFFFFFFFFF #18446744073709551615 -1

1: ’2’ $32 #50 50

2: ’(’ $28 #40 40 42

3: ’.’ $1E #30 30

4: ’.’ $14 #20 20

5: ’.’ $A #10 10

up/down: select line DEL Ctrl-X, -C , -V Forth words leaving one item

Figure 3: A sample stack-editor session

74

• A Wordlist Editor or Dictionary
Editor
Forth systems typically use a system spe-
cific way to organize their dictionary. A
projectional editor for the dictionary or
a single word list would allow to ma-
nipulate the dictionary, i.e. change the
order of definitions, adapt spelling or
word names, change immediacy of words,
possible removing definitions, and oth-
ers. This way the dictionary becomes the
central internal data structure. Also the
search-order could be subject of a Search
Order Editor.

• A Word Definition Editor
A Forth decompiler typically recreates
Forth source code from the memory rep-
resentation of a definition in the Forth
dictionary. A Word Definition Editor
could based on a decompiler project a
definition in dictionary to an editable
representation in source code (tokens or
text) and so allow for changing defini-
tions directly in the dictionary.

• A Screen Editor with line and
screen terminators
As mentioned before the traditional way
to represent Forth source code in mem-
ory is 16 by 64 characters in blocks.
Source code could be represented in dif-
ferent ways with handling of line termi-
nators (and possible screen terminators)
and a screen editor would perform the
appropriate projection to user editable
source code.

Editors for other data structures seem very
well to be possible. The main idea here is to
see all of theses editors as a projection from
their memory representation to an appropriate
editable representation.

3 Related work

Since Martin Fowler’s blog article [1] in 2008
some systems have been developed around pro-

jectional editing for DSLs. Most prominent is
Jetbrain’s Meta Programming Systems (MPS)
[2] that allows for defining domain specific
languages along with appropriate projectional
editors. It also supports projectional editing
for (parts of) contemporary languages (Java,
Javascript, XML, C, . . .).

In Forth context the Jupiter Ace [3] home com-
puter includes a Word Definition Editor and
follows the code is the source paradigm.

The ForthOS [4] system uses 4 KB screens with
a source representation of 80 x 25. The Enth [5]
system has a screen editor (CodeEd) that han-
dles line terminated source code in fixed sized
1 KB blocks.

HolonForth [6] stores word definitions along
with meta data in a database and includes
an integrated editing environment that struc-
tures projects in a hierarchical way. For editing
source code is projected to a full screen editor.
Machine code is generated from the internal
data base representation.

ColorForth tokenizes word names on entry to
32 bit items and stores these in screens. The
colorForth editor generates an editable rep-
resentation of this token sequence and allow
for interactive manipulation of the tokenized
source code. The colorForth compiler used the
token sequence to generate machine code.

4 Conclusion and future

work

Projectional editing gives a different view of
programming language editing based on in-
ternal abstract representations. It opens addi-
tional possibilities for handling programs.

Although Forth systems have never explic-
itly used projectional editing its ideas are
well present in several Forth systems and the
idea of projecting memory to specific editors
has many interesting applications that comple-
ment Forths interactive nature.

Hex- and Stack editors have been implemented
as Forth-200x standard programs. Other edi-

75

tors as mentioned in section 2.3 seem not to be
more difficult to implement but some of them
probably need system specific details. Among
the proposed editors a Structure Editor seems

to be the most useful. One can also envision
mixed editors that use different editors for dif-
ferent parts of memory.
Is the map the territory? You decide.

Forth is stacks, words, and blocks; start there.
Jeff Fox [8]

References

[1] ProjectionalEditing, M. Fowler, martinfowler.com/bliki/ProjectionalEditing.html, 2008

[2] Meta Programming System, Jetbrains, jetbrains.com/mps

[3] Jupiter Ace, Wikipedia, en.wikipedia.org/wiki/Jupiter_Ace

[4] ForthOS, Wikipedia, sources.vsta.org/forthos/

[5] Enth Flux aha colorForth, Sean Pringle, www.ultratechnology.com/enthflux.htm, 2000

[6] Holonforth, Wolf Wejgaard, holonforth.com

[7] ColorForth, Charles Moore, colorforth.github.io

[8] Forth is stacks, words, blocks, Jeff Fox, www.ultratechnology.com/forth2.htm

76

Experience with dual words and recognisers EuroForth 2019

Stephen Pelc
MicroProcessor Engineering
133 Hill Lane
Southampton SO15 5AF
England
t: +44 (0)23 8063 1441
e: sfp@mpeforth.com
w: www.mpeforth.com

Abstract
The VFX Forthv5.1 kernel incorporates dual-behaviour words and recognisers. This paper
discusses our experience over the last year with these changes. Dual-behaviour words are a
standards-compliant solution to needing words that have separate interpretation and
compilation behaviour. Previous papers called these words NDCS words (non-default
compilation semantics). Recognisers are a fashionable solution to providing a user-extensible
text interpreter. Our experience converting two OOP packages to use recognisers is
discussed.

Introduction
VFX Forth v5.1 was the first VFX version to provide dual-behaviour words and recognisers.
An application of 1.34 million lines of Forth source code was converted to VFX 5.1 in 3.5
days and ran first time.

We adopted dual-behaviour words because they fix the problems previously solved by state-
smart words. As implemented in VFX, dual-behaviour words are standard-compliant. The
vast majority of the application conversion involved rewriting state-smart string-defining
words. The application is a commercial one, and uses a large number of string types.

We adopted recognisers because they are fashionable and have one technical possibility that is
important in large applications. It is currently impossible to persuade Forth programmers to
use just one OOP package. Thus, if we are to reuse library code, we must learn how to
manage multiple OOP packages. Recognisers provide a partial solution to this problem, but
considerable attention to wordlist and naming is also required.

Dual-behaviour words
The classical Forth interpreter loop below is replaced by a new loop whose essential change is
to distinguish between words with dual behaviour, defined in the ANS and Forth-2012
standards as “Non-Default Compilation Semantics” (NDCS for short). The term NDCS was
liked by nobody, and words with this behaviour are now referred to as dual-behaviour words.

1
77

Experience with dual words and recognisers EuroForth 2019

Traditional FIG-Forth interpreter

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate?
 if execute else compile, then
 then
;
The classical Forth interpreter loop has been used to describe the operation of Forth for over
three decades now. It has been a useful model for many people. People regularly claim that
they need to write a custom interpreter and that not all Forth systems permit this in a portable
manner. We will see that a minor change to the loop and its associated structures brings it in
line with Forth 2012 and expands the interpreter’s facilities to take advantage of the Forth
2012 description of Forth words’ action or behaviour or semantics. What we now call DUAL
words are words such as IF that have separate interpretation and compilation behaviour,
referred to in the standard as “non-default compilation semantics”.

2

Illustration 1: Classical Forth interpreter loop

78

Experience with dual words and recognisers EuroForth 2019

Dual-behaviour loop

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup immediate? if
 execute
 else
 dual?
 if dual, else compile, then
 then
;
The picture illustrates a Forth interpreter/compiler loop that has been modified to cope with
separated interpretation and compilation actions.

We also need a small number of new words that enable the loop to be constructed portably:
IMMEDIATE? Xt -- flag ; return true if the word is immediate
DUAL? Xt -- flag ; return true if the word has non-default compilation semantics
DUAL, i*x xt -- j*x ; like COMPILE, but may parse.

In order to finish up, we need to understand what the word labelled DUAL, actually does. It
finds the word that performs the non-default compilation semantics and then EXECUTEs it.
The next picture shows the loop using the definition of IMMEDIATE words as having the
same interpretation and compilation semantics.

The significant change is the introduction of a dictionary header flag, DUAL, which indicates
that a word has non-default compilation semantics.

3
79

Experience with dual words and recognisers EuroForth 2019

Since IMMEDIATE words are dual-behaviour words by definition, the interpreter processing
of an xt can in theory be reduced to the one below

: process-xt \ i*x xt -- j*x
 state @ 0 = if
 execute
 else
 dup dual?
 if dual, else compile, then
 then
;

The immediate flag has disappeared because all immediate words have non-default
compilation semantics. They are immediate if the DUAL xt is the same as the for
interpretation xt. The definition of immediate is more complicated in standards-speak, but
comes to the same thing. An alternative implementation strategy may be to keep a separate
immediate flag, but we should not hide the basic idea that immediate words have non-default
compilation semantics.

The conventional immediate flag in a word’s header becomes the DUAL flag, set for all
words that have non-default compilation semantics. Comparison of the interpretation xt and
the DUAL xt gives us a basis for the word IMMEDIATE? The word DUAL, just hides the
system-specific action of obtaining the DUAL action from an xt.

Here’s a potential way of building DUAL words. They illustrate a conventional IF … THEN
pair. The word DUAL: modifies the previous word to have the following non-default
compilation semantics – it defines a nameless word and sets system-specific flags and data.

: IF \ C: -- orig ; Run: x --
\ This is the traditional interpretation behaviour
 NoInterp ;
dual: (-- orig) s_?br>, ; \ conditional forward branch

: THEN \ C: orig -- ; Run: --
\ This is the traditional interpretation behaviour
 NoInterp ;
dual: (orig --) s_res_br>, ; \ resolve forward branch

To produce an interpreted version, the interpretation behaviour is simply replaced by the new
version. The next example shows how a contentious notation such as S” and friends becomes
non-contentious.

: S" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
\ Describe a string. Text is taken up to the next double-quote
\ character. The address and length of the string are
\ returned.
 [char] " parse >syspad
;
dual: (--) postpone (s") ", ;

Dual-behaviour words are discussed in more detail in my EuroForth 2018 paper
“Implementing DUAL words”

4
80

Experience with dual words and recognisers EuroForth 2019

Experience
While building the VFX kernel and system, we had few problems because we knew what we
were looking for. When recompiling the CCS application, the majority of the conversion
effort went into converting the many, many string-type handling words to the new dual-
behaviour format. None of it was difficult, only tedious.

Recognisers
Recognisers are currently being promoted as a way to provide a user-extensible and user-
definable text interpreter. While this is a worthy goal, it isn’t enough on its own for systems
that already provide a good set of facilities. However, realising that software development
tools are not part of the tech industry but of the fashion industry, we bowed to the wind. The
recogniser proposals are fluid and not enough people have implemented a heavy application
using them.

Instead of treating an interpreter as a tool for finding words, numbers and undefined actions,
recognisers provide a list or table or chain of parsers that identify a particular type of element.
Once the type has been identified, type data is passed to one of three processing elements for
interpretation, compilation or postponing.

The parser may return more than one form of type data. For example, a word recogniser can
return separate type data for normal, immediate and dual-behaviour words. In the example
below the words starting with r: are three-element type tables holding the interpretation,
compilation and postpone xts.

: rec-find \ addr u -- xt r:word | r:fail
\ *G Searches a word in the search order (wordlist stack).
\ ** The xref utility code is contained inside the dictionary
\ ** search code.
 search-context dup 0= if
 drop r:fail
 else
 0< if \ -- xt
 dup ndcs?
 if r:ndcs else r:word then
 else
 r:immediate
 then
 then ;

Similarly, you can provide one or more parsers for numeric literals. It’s a matter of taste and
existing code. If the list of parsers is made extensible, additional word types and literal types
can be added at will, and just as importantly, can be removed at will. This facility, together
with disciplined use of wordlists and vocabularies is important to enable us to cope with
multiple OOP package.

The various recogniser proposals can be found at:
 http://amforth.sourceforge.net/pr/Recognizer-rfc-D.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc-C.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc-B.pdf
 http://amforth.sourceforge.net/pr/Recognizer-rfc.pdf

5
81

Experience with dual words and recognisers EuroForth 2019

Experience
In the build of VFX Forth, the only issue was the partitioning of the returned type data.
Because we already had an integrated integer handler, we made no distinction between integer
types. However, the various floating point packages are installed separately.

We then converted two of the OOP packages supported by MPE. CIAO (C Inspired Active
Objects) was the MPE OOP package designed to ease integration with Windows and C++.
ClassVFX is the OOP package used by Construction Computer Software in their Candy
application:
 https://constructioncomputersoftware.com/solutions/solution-candy
The Candy application consists of 1.34 million lines of Forth source code.

The OOP ports revealed that I do not yet understand how to apply POSTPONE actions to the
result of the dotted notations used by both packages. The most recent set of proposals RFC-D
above proposes that the postpone action can be formalised so that the same action can be used
by all POSTPONE actions. It is just too early to believe that all compound parsers will be able
to work this way. One claim for this approach is that it saves memory. We tested this in the
VFX kernel and found that the unified action implementation saved 50 bytes in a system of
250k bytes and more. With base-level desktop systems starting with 1Gb of RAM, saving 50
bytes is not a good rationale for standardisation of implementation. We have not yet moved
recognisers into our embedded kernel.

The latest recogniser proposal depends on a “stack” proposal that crept in late. That proposal
is inadequate for MPE’s OOP requirements as we need to add new parsers at both ends of the
tables.

In our recogniser experience to date, recognisers have caused no problems at all and have
enabled us to remove a hook or two.

Conclusions
Dual-behaviour words have caused us no problems except for finally having to get rid of any
state-smart words in all applications. We have found the notation described in past papers to
be easy to use and understand.

Recognisers do enable user-extension of the text interpreter, but the proposals are not yet
ready for standardisation. The main reason for this is that although a considerable number of
systems have implemented what has been in the proposals, very few systems have pushed the
boundaries beyond words and numeric literals. A few string literal proposals have been made,
but these little more than handling address and length pairs.

Acknowledgements
Anton Ertl has tested my understanding of Forth standards for many years.

Bernd Paysan has confirmed my belief that the ingenuity of Forth programmers to break
common belief must never be underestimated.

My belief that all standards contain bugs has sustained me over many years.

Construction Computer Software encouraged and sponsored the Community edition of VFX
v5.

6
82

UI5 History Flink Container HTML5 Source Demo Future

UI5
a robust HTML5-based user interface for VFX5

Gerald Wodni
gerald.wodni@gmail.com

13.09.2019

UI5 History Flink Container HTML5 Source Demo Future

Outlook

1 History

2 Flink

3 Container

4 HTML5

5 Source

6 Demo

7 Future

UI5 History Flink Container HTML5 Source Demo Future

History

• 2013 FATE “Forth Advanced Template Engine”

UI5 History Flink Container HTML5 Source Demo Future

History

• 2013 FATE “Forth Advanced Template Engine”

• 2014 Flink “Forth Link”

UI5 History Flink Container HTML5 Source Demo Future

History

• 2013 FATE “Forth Advanced Template Engine”

• 2014 Flink “Forth Link”

• 2016 f - packages

UI5 History Flink Container HTML5 Source Demo Future

History

• 2013 FATE “Forth Advanced Template Engine”

• 2014 Flink “Forth Link”

• 2016 f - packages

• 2018 redis

UI5 History Flink Container HTML5 Source Demo Future

History

• 2013 FATE “Forth Advanced Template Engine”

• 2014 Flink “Forth Link”

• 2016 f - packages

• 2018 redis

• 2019 UI5 ← you are here

UI5 History Flink Container HTML5 Source Demo Future

Flink

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server

Highly customizeable compiler with bare metal access

• Protect host from Forth

• Secure other instances

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server

Highly customizeable compiler with bare metal access

• Protect host from Forth ✗

• Secure other instances

83

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server

Highly customizeable compiler with bare metal access

• Protect host from Forth ✗

• Secure other instances ✗

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server in a container

Highly customizeable compiler with bare metal access on a server in a container

• Protect host from Forth

• Secure other instances

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server in a container

Highly customizeable compiler with bare metal access on a server in a container

• Protect host from Forth ✓

• Secure other instances

UI5 History Flink Container HTML5 Source Demo Future

Forth on a Server in a container

Highly customizeable compiler with bare metal access on a server in a container

• Protect host from Forth ✓

• Secure other instances ✓

UI5 History Flink Container HTML5 Source Demo Future

Original Flink

UI5 History Flink Container HTML5 Source Demo Future

VFX Forth Cloud

UI5 History Flink Container HTML5 Source Demo Future

HTML5

• HTML Elements

• CSS Styling

• JS Interaction

UI5 History Flink Container HTML5 Source Demo Future

index.html

1 <main>
2 <section id="terminal">
3 <vfx−terminal></vfx−terminal>
4 </section>
5 <section id="help">
6 <h2>Help</h2>
7 <p>
8 There is help, that needs to be found ;)
9 </p>

10 </section>
11 </main>

UI5 History Flink Container HTML5 Source Demo Future

ui5.css - theming

1 :root {
2 −−main−color: #333;
3 −−main−background: #FFF;
4 }
5
6 body.theme−night {
7 −−main−color: #FFF;
8 −−main−background: #333;
9 }

10
11 main {
12 color: var(−−main−color);
13 background: var(−−main−background);
14 }

UI5 History Flink Container HTML5 Source Demo Future

ui5.css - scaffolding

1 /∗ +−−−−−−−−−−−−−−−−−+
2 ∗ | | HEADER |
3 ∗ | +−−−−−−−−−+
4 ∗ | ASIDE | CONTENT |
5 ∗ | +−−−−−−−−−+
6 ∗ | | FOOTER |
7 ∗ +−−−−−−−+−−−−−−−−−+
8 ∗/
9 body {

10 grid−template−columns: var(−−aside−width) 1fr;
11 grid−template−rows: var(−−header−height) 1fr var(−−footer−height);
12 grid−template−areas: /∗ note how this text documents the layout ∗/
13 ’aside header’
14 ’aside main’
15 ’aside footer’;
16 }

84

UI5 History Flink Container HTML5 Source Demo Future

js/main.js - modules

1 /∗ navigation by hash ∗/
2 import ’./vfx−navigation.js’;
3
4 /∗ websocket connector ∗/
5 import ’./vfx−connector.js’;
6
7 /∗ custom elements ∗/
8 import ’./vfx−terminal.js’;
9

10 /∗ application specific ∗/
11 import ’./night−theme.js’;

UI5 History Flink Container HTML5 Source Demo Future

js/night-theme.js

1 /∗ before interacting with the DOM wait for it to be fully parsed ∗/
2 document.addEventListener("DOMContentLoaded", () => {
3
4 /∗ querySelector works by getting the first match of a CSS path ∗/
5 document.querySelector("header button[name=’night−mode’]")
6 .addEventListener("click", (evt) => {
7
8 /∗ toggles theme−night class, all else is done by CSS ∗/
9 document.body.classList.toggle("theme−night");

10
11 });
12
13 });

UI5 History Flink Container HTML5 Source Demo Future

js/vfx-terminal.js
1 const template = document.createElement(’template’);
2 template.innerHTML = ‘
3 <style>
4 .terminalWrapper .input { color: var(−−input−color, #FFF); }
5 </style>
6 <div class="terminalWrapper">
7 VFX Terminal <button>Connect</button>
8 <input name="source" type="text" autofocus/>
9 </div>‘;

10 class VfxTerminal extends HTMLElement {
11 constructor() {
12 const shadow = this.attachShadow({ mode: ’open’ });
13 shadow.appendChild(template.content.cloneNode(true));
14 shadow.querySelector("button").addEventListener("click", ...);
15 }
16 write(text) { this.source.insertAdjacentHTML(’beforebegin’, text); }
17 }
18 customElements.define(’vfx−terminal’, VfxTerminal);

UI5 History Flink Container HTML5 Source Demo Future

app.fth - routing

1 : app−home
2 s" %APP%/index.html" s" text/html;encoding=utf8" http−file−type ;
3 ’ app−home add−route−get /
4
5 : app−css
6 s" %APP%/ui5.css" s" text/css" http−file−type ;
7 ’ app−css add−route−get /ui5.css
8
9 : app−favicon

10 s" %APP%/favicon.ico" s" image/x−icon" http−file−type ;
11 ’ app−favicon add−route−get /favicon.ico

UI5 History Flink Container HTML5 Source Demo Future

app.fth - chunked

1 : app−chunked
2 s" 200 OK" http−status
3 s" Transfer−Encoding: chunked" http−header
4 s" Content−Type: text/plain;encoding=utf8" http−header
5 crlf
6 s\" Hallo du\n" http−chunk
7 s" Wie geht’s?" http−chunk
8 http−chunk−end ;
9 ’ app−chunked add−route−get /chunked

UI5 History Flink Container HTML5 Source Demo Future

app.fth - websocket

1 : app−ws
2 s" 101 Switching Protocols" http−status
3 s" Upgrade: websocket" http−header
4 s" Connection: Upgrade" http−header
5 SVIdata Get−Sec−WebSocket−Accept
6 s" Sec−WebSocket−Accept" http−header−value
7 s" Sec−WebSocket−Protocol: ui5" http−header
8 crlf
9

10 mysid gen−handle @ mywss open−gio \ open
11 [io mywss setio
12 (.cold)
13 [’] websocket−quit catch >r
14 s0 @ sp! r>
15 io] ;
16 ’ app−ws add−route−get /ws

UI5 History Flink Container HTML5 Source Demo Future

Demo

http://cloud.vfxforth.com

UI5 History Flink Container HTML5 Source Demo Future

Future

• Provide more than the full VFX-“Window”-Experience in UI5

• Migrate AIDE to UI5

UI5 History Flink Container HTML5 Source Demo Future

Participate!

85

1

86

2

87

	Preface
	Contents
	Bernd Paysan and M. Anton Ertl: The new Gforth Header
	Ulrich Hoffmann and Andrew Read: Simple-Tester, a Testing Tool for Embedded Forth Systems
	Nick J. Nelson: Internationalisation — A new Approach in Forth
	Nick J. Nelson: Forth Returns to the Automotive Industry
	Howard Oakford: colorForth in Black & White
	Klaus Schleisiek: MUTEX (MUTual EXclusion) Mechanism in Hardware
	Klaus Schleisiek: Getting Rid of Core's 2-phase Execution Cycle
	Bill Stoddart and John Goldman: Galois Fields and Forth
	Ulrich Hoffmann: Forth Projectional Editing
	Stephen Pelc: Experience with dual words and recognisers
	Gerald Wodni: UI5: a robust HTML5-based user interface for VFX5
	Bernd Paysan: CloudCalypse: building a social network on top of net2o, and importing your existing data

