
Smart Stacks in VHDL

Ulrich Hoffmann and Andrew Read

EuroForth 2020

Introduction

This work originates from our development of seedbed, a minimal VHDL implementation of the seedForth [1] target. A
softcore stack processor needs hardware implementations of stacks. Smart Stacks are an approach based on abstracted stack
operations rather than register level control . An innovation of smart stacks is that they offer built-in exception handling.

Stacks have been implemented countless times before in VHDL and whilst we are not aware of similar ideas in publication,
we do not claim originiality.

A stack as memory

The simplest stack is memory with a stack pointer. An illustrative VDHL entity is shown below:

(During this paper we present code snippets in VDHL which are intended to be self-explanatory. For readers not familiar with
VHDL, it suffices to note that VHDL design units are known as entities, and that each entity comprises an interface plus one
or more architectures. VHDL designs are hierachical, so that entities may instantiate other entities within their design.)

entity stack_1 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_pointer_n : in integer range 0 to depth - 1;

 write_enable : in std_logic;

 output : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1

);

end entity;

A VDHL module which instantiates this stack will be responsible for providing the new value of the stack pointer
stack_pointer_n and setting write-enable on each clock cycle. If stack_1 is coded with good-practice VHDL, then the

vendor synthesis tools will instantiate it efficiently as FPGA block RAM.

A stack with operations

The example above is simple and efficient, but perhaps not very scalable. We would prefer just to instruct the stack on each
clock cycle, and let it take care of write enable and the stack pointer by itself. stack_2 accomplishes just that by making the
stack_pointer an output only and adding a stack_op input:

http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/

entity stack_2 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_op : in stack_op_type;

 output : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1;

 err_under : out std_logic;

 err_over : out std_logic

);

end entity;

We have introduced a user-defined VHDL type

type stack_op_type is

 (s_nop, s_push, s_drop, s_replace, s_reset);

stack_2 knows what is should do with the stack pointer and write enable depending on the operation.

Beyond the expected s_push and s_drop , s_nop is necessary because synchronous hardware logic updates registers every
clock cycle. If no update is desired this must be specified. The s_replace operation completes the orthogonal set: register
write is enabled but the stack pointer remains unchanged. s_reset allows the stack to be reset (meaning the stack pointer
will be returned to its initialization value) without triggering rst <= '1' across the whole design.

Now that stack_2 is managing its own stack pointer, it must also handle stack overflow or underflow conditions and raise
exception signals. These are included in the port interface.

Implementing the stack with operations

stack_2 is implemented in a straightforward manner around a VHDL case statement, as the following except illustrates:

case stack_op is

 when s_push =>

 we <= '1'; sp_n <= sp_inc;

 -- other cases

 when s_nop =>

 we <= '0'; sp_n <= sp;

end case;

This VHDL coding format is very scalable. As we introduce further complexity into our stacks, we need just set the
appropriate signals for each operation in the case statement. VHDL synthesis tools handle case statements well and

produce optimized and efficient logic from them.

A stack with smart operations

Consider the Forth word dup . We could implement dup by routing the output of stack_2 to the input and instructing
s_push . Only a little more logic is requried for ?dup , and drop is trivial. This stack seems to be quite useful!

But a moment's thought suggests that swap is going to be more difficult. We'll need a temporary register in the
instantiating entity and the operation will take two clock cycles... and we don't want to even think about rot . The problem is
that the underlying stack entity, which is built from simple memory, only outputs and inputs the top-of-stack item.

That entity can be modified such that it becomes possible to update the top three stack locations in the same clock cycle.
Writing behavioral VHDL code to accomplish this is not difficult, but it may not be straightforward (and is beyond the scope
of this memo) to write the VDHL code in such a way that the synthesis tools translate the design into an efficient
combination of registers and block RAM .

With that modification achieved our repetoire of stack operations expands greatly. stack_3 , our new entity, also outputs
both the top-of-stack and next-on-stack items tos and nos :

entity stack_3 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_op : in stack_op_type;

 tos : out std_logic_vector(width - 1 downto 0);

 nos : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1;

 err_under : out std_logic;

 err_over : out std_logic

);

end entity;

type stack_op_type is

 (s_nop, s_push, s_drop, s_replace, s_reset,

 s_nip, s_replaceAndNip, s_dup, s_ifDup,

 s_swap, s_rot, s_over,

 s_depth

);

stack 3 is responsible for its own stack maniputations and so we chose to call it a smart stack. Two further extensions:

1. s_depth writes the value of the stack pointer itself onto the stack

2. s_replanceAndNip supports arithmetic operations with the signature (x1 x2 -- x3)

Exception handling

Forth's catch and throw (Milendorf [2]) necessitate some special stack handling. For example, when a exception is thrown
the return stack should be appropriately restored so as to facilitate onward program flow after the exception.
Implementations of exception handling in Forth typically rely on hooks provided by the Forth virtual machine to read and
write stack pointers directly.

Such an approach is also possible in a softcore Forth processor, but there are reasons to hesitate:

1. If we allow software to update stack pointers we rupture the encapsulation that abstracts stacks as hardware entities
which ought to manage themselves.

2. Thinking from a hardware perspective might identify a better-performing and more efficient way to accomplish
exception handling.

A smart stack with an embedded exception stack

Let's bring two of our stacks together in a single module. We will instantiate stack_2 in parallel with stack_3 inside a new
entity, stack_4 , and expand our set of stack operations.

Here are the three new operations concerned with exception handling:

 s_saveSP, s_restoreSP, s_dropSP

1. s_saveSP sets up a new exception frame. The stack pointer of stack_3 is pushed onto stack_2 .
2. s_restoreSP throws an exception. The stack pointer of stack_3 is updated with the top-of-stack value from stack_2 ,

which is simultaneously popped off the stack.
3. s_dropSP completes exception handling when a subroutine exits normally. The top-of-stack value of stack_2 is

dropped but the stack pointer of stack_3 is not affected. In this way the exception frame is discarded.

The instantiation of stack 2 has taken the role of an embedded exception stack. stack_4 now encapsulates exception
handling through appropriate stack operations.

Exception handling is therefore fast (the stack pointer can be updated in a single clock cycle) and atomic (exception handling
is fundamental operation rather then being written in software which could itself be liable to exceptions).

Using smart stacks with exception handling

Our seedbed softcore processor utilizes a number of stacks, principally the parameter stack, the return stack and a
subroutine stack. Each of these has an embedded exception stack. The processor implements global exception handling by
passing a relevant exception instruction to all of the stacks, which in turn handle the exception locally.

Incidentally, mimicking the actual behavior of Forth's catch and throw requires a slightly expanded set of operations, for
example:

 s_saveSPAndPush, s_restoreSPAndPush, s_dropSPAndDrop

take care of requirements such as recyling the throw code to the top-of-stack after throwing an exception, or placing a zero
on stack after dropping an exception. Implementing these additional operations in the VHDL case statement is
straightforward since the instantiations of stack_2 and stack_3 are separate entities which can be controlled
independently.

seedbed is both a vehicle to extend experimentation with seedForth into hardware, and a successor to the N.I.G.E. Machine
[3]. The N.I.G.E. Machine incorporated hardware exception handling on a global level [4] but the approach described in this
paper is certainly more elegant.

Conclusion

http://www.euroforth.org/ef98.html
http://www.euroforth.org/ef98.html
http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/

We have developed a smart stack approach to hardware stacks in VDHL which focuses on abstraction and scalability.
Combining two smart stacks, encapsulated as a single entity, provides simple exception handling.

This work is a spin-off of our research and development in seedForth. We welcome correspondence.

Ulrich Hoffmann (FH Wedel University of Applied Sciences), uh@fh-wedel.de

Andrew Read, andrew81244@outlook.com

References

[1] http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/

[2] http://www.euroforth.org/ef98.html/

[3] http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/

[4] http://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/

mailto:uh@fh-wedel.de
mailto:andrew81244@outlook.com
http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/
http://www.euroforth.org/ef98.html
http://www.euroforth.org/ef98.html/
http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/
http://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/

