
36th EuroForth Conference

September 4-6, 2020

(Preprint Proceedings)

Preface

EuroForth is an annual conference on the Forth programming language, stack
machines, and related topics, and has been held since 1985. The 36th EuroForth
finds us mostly at home, thanks to Covid19, and the conference is being held
on the Internet. The two previous EuroForths were held in Hamburg, Germany
(2019) and in Edinburgh, Scotland (2018). Information on earlier conferences
can be found at the EuroForth home page (http://www.euroforth.org/).

Since 1994, EuroForth has a refereed and a non-refereed track. This year
there have been no submissions to the refereed track. Nevertheless, I thank
the program committee for their willingness to review the papers. I thank the
authors for their papers.

Late papers will be included in the final proceedings (http://www.euroforth.
org/ef20/papers/).

These online proceedings also contain presentations that were too late to
be included in the proceedings available during the conference.

You can find these proceedings, as well as the individual papers and slides,
and links to the presentation videos on http://www.euroforth.org/ef20/

papers/.
Workshops and social events complement the program. This year’s Euro-

Forth is organized by Gerald Wodni.

Anton Ertl

Program committee

M. Anton Ertl, TU Wien (chair)
Ulrich Hoffmann, FH Wedel University of Applied Sciences
Matthias Koch, Institute of Quantum Optics, Leibniz University Hannover
Jaanus Pöial, Tallinn University of Technology
Bradford Rodriguez, T-Recursive Technology
Bill Stoddart
Reuben Thomas, SC3D Ltd.

3

http://www.euroforth.org/
http://www.euroforth.org/ef20/papers/
http://www.euroforth.org/ef20/papers/
http://www.euroforth.org/ef20/papers/
http://www.euroforth.org/ef20/papers/

Contents

Non-Refereed Papers
Ulrich Hoffmann and Andrew Read: Smart Stacks in VHDL 5
Nick J. Nelson: Extending the VALUE concept 10
Bernd Paysan and M. Anton Ertl: The Grand Recognizer Unification 19
Stephen Pelc: Dual words and Recognisers 23
Stephen Pelc: Porting VFX Forth to 64 bits 26
Klaus Schleisiek: µCore Overview . 30
Klaus Schleisiek: A Note on Parsing Source Code 36
Klaus Schleisiek: Poor Man’s Recognizer 37

Presentation Slides
Nick J. Nelson: A radical alternative to the Windows registry 42
Nick J. Nelson: Preparing for 64 bit 44
Philip Zembrod: cc64 — Small C on the C64 46
M. Anton Ertl: Forth and IDEs . 52

4

Smart Stacks in VHDL

Ulrich Hoffmann and Andrew Read

EuroForth 2020

Introduction

This work originates from our development of seedbed, a minimal VHDL implementation of the seedForth [1] target. A
softcore stack processor needs hardware implementations of stacks. Smart Stacks are an approach based on abstracted stack
operations rather than register level control . An innovation of smart stacks is that they offer built-in exception handling.

Stacks have been implemented countless times before in VHDL and whilst we are not aware of similar ideas in publication,
we do not claim originiality.

A stack as memory

The simplest stack is memory with a stack pointer. An illustrative VDHL entity is shown below:

(During this paper we present code snippets in VDHL which are intended to be self-explanatory. For readers not familiar with
VHDL, it suffices to note that VHDL design units are known as entities, and that each entity comprises an interface plus one
or more architectures. VHDL designs are hierachical, so that entities may instantiate other entities within their design.)

entity stack_1 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_pointer_n : in integer range 0 to depth - 1;

 write_enable : in std_logic;

 output : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1

);

end entity;

A VDHL module which instantiates this stack will be responsible for providing the new value of the stack pointer
stack_pointer_n and setting write-enable on each clock cycle. If stack_1 is coded with good-practice VHDL, then the

vendor synthesis tools will instantiate it efficiently as FPGA block RAM.

A stack with operations

The example above is simple and efficient, but perhaps not very scalable. We would prefer just to instruct the stack on each
clock cycle, and let it take care of write enable and the stack pointer by itself. stack_2 accomplishes just that by making the
stack_pointer an output only and adding a stack_op input:

5

entity stack_2 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_op : in stack_op_type;

 output : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1;

 err_under : out std_logic;

 err_over : out std_logic

);

end entity;

We have introduced a user-defined VHDL type

type stack_op_type is

 (s_nop, s_push, s_drop, s_replace, s_reset);

stack_2 knows what is should do with the stack pointer and write enable depending on the operation.

Beyond the expected s_push and s_drop , s_nop is necessary because synchronous hardware logic updates registers every
clock cycle. If no update is desired this must be specified. The s_replace operation completes the orthogonal set: register
write is enabled but the stack pointer remains unchanged. s_reset allows the stack to be reset (meaning the stack pointer
will be returned to its initialization value) without triggering rst <= '1' across the whole design.

Now that stack_2 is managing its own stack pointer, it must also handle stack overflow or underflow conditions and raise
exception signals. These are included in the port interface.

Implementing the stack with operations

stack_2 is implemented in a straightforward manner around a VHDL case statement, as the following except illustrates:

case stack_op is

 when s_push =>

 we <= '1'; sp_n <= sp_inc;

 -- other cases

 when s_nop =>

 we <= '0'; sp_n <= sp;

end case;

This VHDL coding format is very scalable. As we introduce further complexity into our stacks, we need just set the
appropriate signals for each operation in the case statement. VHDL synthesis tools handle case statements well and6

produce optimized and efficient logic from them.

A stack with smart operations

Consider the Forth word dup . We could implement dup by routing the output of stack_2 to the input and instructing
s_push . Only a little more logic is requried for ?dup , and drop is trivial. This stack seems to be quite useful!

But a moment's thought suggests that swap is going to be more difficult. We'll need a temporary register in the
instantiating entity and the operation will take two clock cycles... and we don't want to even think about rot . The problem is
that the underlying stack entity, which is built from simple memory, only outputs and inputs the top-of-stack item.

That entity can be modified such that it becomes possible to update the top three stack locations in the same clock cycle.
Writing behavioral VHDL code to accomplish this is not difficult, but it may not be straightforward (and is beyond the scope
of this memo) to write the VDHL code in such a way that the synthesis tools translate the design into an efficient
combination of registers and block RAM .

With that modification achieved our repetoire of stack operations expands greatly. stack_3 , our new entity, also outputs
both the top-of-stack and next-on-stack items tos and nos :

entity stack_3 is

 generic(width : natural;

 depth : natural);

 port(clk : in std_logic;

 rst : in std_logic;

 input : in std_logic_vector(width - 1 downto 0);

 stack_op : in stack_op_type;

 tos : out std_logic_vector(width - 1 downto 0);

 nos : out std_logic_vector(width - 1 downto 0);

 stack_pointer : out integer range 0 to depth - 1;

 err_under : out std_logic;

 err_over : out std_logic

);

end entity;

type stack_op_type is

 (s_nop, s_push, s_drop, s_replace, s_reset,

 s_nip, s_replaceAndNip, s_dup, s_ifDup,

 s_swap, s_rot, s_over,

 s_depth

);

stack 3 is responsible for its own stack maniputations and so we chose to call it a smart stack. Two further extensions:

1. s_depth writes the value of the stack pointer itself onto the stack

2. s_replanceAndNip supports arithmetic operations with the signature (x1 x2 -- x3)

7

Exception handling

Forth's catch and throw (Milendorf [2]) necessitate some special stack handling. For example, when a exception is thrown
the return stack should be appropriately restored so as to facilitate onward program flow after the exception.
Implementations of exception handling in Forth typically rely on hooks provided by the Forth virtual machine to read and
write stack pointers directly.

Such an approach is also possible in a softcore Forth processor, but there are reasons to hesitate:

1. If we allow software to update stack pointers we rupture the encapsulation that abstracts stacks as hardware entities
which ought to manage themselves.

2. Thinking from a hardware perspective might identify a better-performing and more efficient way to accomplish
exception handling.

A smart stack with an embedded exception stack

Let's bring two of our stacks together in a single module. We will instantiate stack_2 in parallel with stack_3 inside a new
entity, stack_4 , and expand our set of stack operations.

Here are the three new operations concerned with exception handling:

 s_saveSP, s_restoreSP, s_dropSP

1. s_saveSP sets up a new exception frame. The stack pointer of stack_3 is pushed onto stack_2 .
2. s_restoreSP throws an exception. The stack pointer of stack_3 is updated with the top-of-stack value from stack_2 ,

which is simultaneously popped off the stack.
3. s_dropSP completes exception handling when a subroutine exits normally. The top-of-stack value of stack_2 is

dropped but the stack pointer of stack_3 is not affected. In this way the exception frame is discarded.

The instantiation of stack 2 has taken the role of an embedded exception stack. stack_4 now encapsulates exception
handling through appropriate stack operations.

Exception handling is therefore fast (the stack pointer can be updated in a single clock cycle) and atomic (exception handling
is fundamental operation rather then being written in software which could itself be liable to exceptions).

Using smart stacks with exception handling

Our seedbed softcore processor utilizes a number of stacks, principally the parameter stack, the return stack and a
subroutine stack. Each of these has an embedded exception stack. The processor implements global exception handling by
passing a relevant exception instruction to all of the stacks, which in turn handle the exception locally.

Incidentally, mimicking the actual behavior of Forth's catch and throw requires a slightly expanded set of operations, for
example:

 s_saveSPAndPush, s_restoreSPAndPush, s_dropSPAndDrop

take care of requirements such as recyling the throw code to the top-of-stack after throwing an exception, or placing a zero
on stack after dropping an exception. Implementing these additional operations in the VHDL case statement is
straightforward since the instantiations of stack_2 and stack_3 are separate entities which can be controlled
independently.

seedbed is both a vehicle to extend experimentation with seedForth into hardware, and a successor to the N.I.G.E. Machine
[3]. The N.I.G.E. Machine incorporated hardware exception handling on a global level [4] but the approach described in this
paper is certainly more elegant.

Conclusion
8

We have developed a smart stack approach to hardware stacks in VDHL which focuses on abstraction and scalability.
Combining two smart stacks, encapsulated as a single entity, provides simple exception handling.

This work is a spin-off of our research and development in seedForth. We welcome correspondence.

Ulrich Hoffmann (FH Wedel University of Applied Sciences), uh@fh-wedel.de

Andrew Read, andrew81244@outlook.com

References

[1] http://www.complang.tuwien.ac.at/anton/euroforth/ef18/papers/

[2] http://www.euroforth.org/ef98.html/

[3] http://www.complang.tuwien.ac.at/anton/euroforth/ef12/papers/

[4] http://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/

9

EuroForth 2020
Extending the VALUE concept

Abstract

For many years, variables that return their addresses have been a standard part of
Forth. Some years ago, an alternative concept of values, that return their contents,
was introduced. This has proved to be so useful, that we have extended the concept to
elements of different size, arrays and structures.

N.J. Nelson B.Sc. C. Eng. M.I.E.T.
Micross Automation Systems
Unit 6, Ashburton Industrial Estate
Ross-on-Wye, Herefordshire
HR9 7BW UK
Tel. +44 1989 768080
Email njn@micross.co.uk

1. Introduction

We were all brought up with VARIABLEs, and for many years we were perfectly
happy with them. Their operators @ (fetch) and ! (store) were placed after the
variable, in the proper Forth-like way. Then along came VALUEs, which turn out to
be rather useful, especially if you think about them in a Forth-like way too. It turns
out that they get really very useful if their concept is extended to other types of data
storage.

2. Why VARIABLEs are not so great

It's not VARIABLEs themselves, it's their operators. If @ and ! were used only for
VARIABLEs, that would be fine. But they're also used to access elements in
structures and arrays. And the problem is, you don't feel you know exactly what they
do. Actually, what you know is, they fetch and store data that is the same size as the
version of Forth (note: not necessarily the size of the operating system). But what if
you are trying to write code that works in different sizes of Forth? Suddenly there are
horrible problems. The access of structure elements of fixed sizes doesn't work any
more.

10

3. Why VALUEs are great

I list the reasons from least important to most important.

a) VALUEs return their content, not their address. It is easy to observe in most
applications that there are far more fetches than stores. Therefore, using a VALUE
instead of a VARIABLE results in a small simplification of the code. There is a direct
correlation between code complexity and bug infestation! So, VALUEs should result
in fewer bugs.

b) VALUEs are initialised at compilation time.
In theory this saves explicit initialisation in the code, but in practice we find that one
does not often know an appropriate initialisation value at coding time.

c) If all VARIABLES are replaced by VALUEs, you don't need @ and ! any more.
For those cases where you still need to fetch and store from arrays or structures, you
can use words that specify the size that you need explicitly, such as C@, W!, I@, L!
etc.

d) VALUEs work in just the same way as locals. Note that to avoid confusion, I never
refer to "local variables" precisely because locals do not act like VARIABLEs. We are
great believers in locals, because they improve code readability.

11

4. Operators or Modifiers?

VALUEs on their own, just returning their content, are quite happy in Forth. They
behave just like CONSTANTs. However, when you need to store, or do other things
to a VALUE, it seems at first to look un-Forth-like.

123 -> MYVALUE

The "operator" appears before the VALUE. To a brain steeped in Forth, this looks all
wrong. However, if you decompile the result, you will find no sign of the word "->".
What this has actually done is to modify the compilation action for the following
VALUE.

As soon as you stop referring to words like "->" as operators, and start calling them
"modifiers" instead, then all your Forth instincts are satisfied again.

As a further improvement, rather than fill our code with "magic numbers" we have
also used an enumeration to describe all the modifiers.

ENUM VALMODS {
 VMOD@ \ Fetch
 VMOD! \ Store
 VMODADDR \ Address
 VMODINC \ Increment
 VMODDEC \ Decrement
 VMOD+! \ Add
 VMODOFF \ Zero
 VMOD-! \ Subtract
 VMODSIZE \ Size of
 VMODSET \ Set
};

12

5. Extending the concept to different data sizes

In my opinion, only one additional size is needed - for floating point values.
This is already provided, along with its local equivalent, in some compilers but not
others.

1.2E3 FVALUE MYFVAL ok
MYFVAL F. 1200. ok
4.56E7 -> MYFVAL ok

6. Extending the concept to arrays

In my opinion, this is where things get really useful.

a) VINDEX

I propose VINDEX to create an indexed array of values.

: VINDEX nsize "name" -- ;
Exec: (unmodified) nindex -- ncontents

All the modifiers that can be used with VALUES are available.

10 VINDEX MYINDEX ok
12 1 -> MYINDEX ok
34 2 -> MYINDEX ok
1 MYINDEX . 12 ok
2 MYINDEX . 34 ok
1 SIZEOF MYINDEX . 4 ok

Note that the SIZEOF applies to the individual element, not to the number of
elements in the array.

Because we have not found value initialisation to be very useful, no initial value is
specified for VINDEX. All elements are initialised to zero.

There seems to be no consensus about whether array indices should be zero based (to
keep programmers happy) or one based (to keep "normal" people happy). Therefore,
my implementation of VINDEX actually creates space for both possibilities.

10 0 -> MYINDEX ok
100 10 -> MYINDEX ok
0 MYINDEX . 10 ok
10 MYINDEX . 100 ok

13

Because -> is a modifier, not an operator, then the statements
12 1 -> MYINDEX
and
12 -> 1 MYINDEX
have the same effect.
However, in practice, the index itself is often a VALUE, and the statements
12 MYVAL -> MYINDEX
and
12 -> MYVAL MYINDEX
do not have the same effect.
Therefore, we have started as good programming practice always placing the
modifier immediately before the word that it is modifying, even when the index is not
a VALUE.

An interesting possibility now presents itself. We have seen that incorrect calculation
of an index is a very common software bug, and can be very hard to trace.

It is now easy to constrain the index value applied to a VINDEX, and report the error.

1 11 -> MYINDEX
Invalid index 11 for MYINDEX length 10
 ok

The error message is reported on the terminal window, if in debug mode, or added to
a log file if in normal run mode.

b) VMATRIX

I propose VMATRIX to create a two dimensional indexed array of values.

: VMATRIX nsizex nsizey "name" -- ;
Exec: (unmodified) nindexx nindexy -- ncontents

This operates in exactly the same way as VINDEX but with two indices.

10 20 VMATRIX MYMATRIX ok
12 3 4 -> MYMATRIX ok
3 4 MYMATRIX . 12 ok

It also checks for valid indices:

1 10 21 -> MYMATRIX
Invalid index 10 21 for MYMATRIX length 10 20
 ok

14

7. String indices

Following on from the use of VINDEX, I realised that the same concept could easily
be used to create arrays of strings.

: STRINDEX narraysize nmaxlen "name" -- ;
Exec: (unmodified) nindex -- addr

In this case, being a string, the use of the unmodified name simply returns the string
address. However, for a nice compatibility, -> does the string store.

10 100 STRINDEX MYSTRS ok
Z" abc" 1 -> MYSTRS ok
Z" xyz" 2 -> MYSTRS ok
1 MYSTRS Z$. abc ok
2 MYSTRS Z$. xyz ok
1 SIZEOF MYSTRS . 100 ok

A possible security enhancement, not yet implemented, would be to constrain the
length of the string during a store, and report errors in the same way as an indexing
error.

8. Structures with values

Forth structures can have elements of any size - byte, word, int, cell, string etc.
Normally, the word that defines the element returns a calculated address. A frequent
problem for the programmer is to use the correct operator (C@. W@ etc.) for the size
of the element. Mistakes happen, are often disastrous and can be very hard to find.

It occurred to me that if the elements of a structure were like values, then this type of
mistake could be eliminated.

: VFIELD structlen size "name" -- structlen' ; ??? -- ???

defines a value type field of arbitrary length.

The following words are added for all standard sizes:

: VBYTE _BYTE VFIELD ; \ Value type byte field
: VWORD _WORD VFIELD ; \ Value type word field
: VINT _INT VFIELD ; \ Value type int field
: VLONGLONG _LONGLONG VFIELD ; \ Value type longlong field

15

A demonstration:

STRUCT MYSTRUCT
 VINT my1
 VWORD myword
 VBYTE mybyte
 100 VFIELD mystring
END-STRUCT

MYSTRUCT BUFFER: MYSTR

: TESTER
 123 MYSTR -> my1
 45 MYSTR -> myword
 67 MYSTR -> mybyte
 Z" qwerty" MYSTR -> mystring
 MYSTR my1 .
 MYSTR myword .
 MYSTR mybyte .
 MYSTR MYSTRing z$. SPACE
 MYSTR SIZEOF my1 .
 MYSTR SIZEOF myword .
 MYSTR SIZEOF mybyte .
 MYSTR SIZEOF MYSTRing .
;

tester 123 45 67 qwerty 4 2 1 100 ok

16

9. Dynamic creation of value arrays

In a previous paper, I explained how VALUEs were created automatically when an
XML file, created by the GTK visual design program GLADE, was loaded. Creating
VALUEs programmatically requires a different form:

: ZVALUE z$name ival -- ; Exec: (unmodified) -- val

It is also very useful to be able to create arrays of different elements sizes
programatically. Therefore, alternative forms for these are also provided, such as:

: ZVINDEX nsize z$name -- ; Exec: (unmodified) nindex -- ncontents

These are used when creating system configuration settings directly from an SQL
table, as I will explain in another paper.

17

10. Future ideas

In my continued search for ways to make code more concise and readable, I am
always looking for how the best features of other languages can be adapted to Forth.

The PHP language is particularly good in its use of the results of an SQL query. The
column names of the query result are useable in the code.

It should be possible to do something similar in Forth by dynamically creating locals,
and loading them automatically with the values of the results. All SQL results are in
string form, and numbers have to be converted. But by looking up the data type of a
column in the result, it should be possible to convert automatically.

It might look something like this:

MAXOPERATORS VINDEX OPNUMS
MAXOPERATORS STRINDEX OPNAMES

: GETOPS (---) \ Get operator names & nos. from SQL into memory
 SQL| SELECT opnum,opname FROM OPERATORS |SQL> IF \ Run query
 PROWS 0 DOROW \ Each row
 ropnum I -> OPNUMS \ Save no.
 ropname I -> OPNAMES \ Save name
 LOOP
 THEN
;

Here I imagine that ropnum and ropname are automatically created locals, named by
adding a prefix to the column name of the result. "ropnum" returns a number, because
it has looked up the column type, and because it is a numeric type, it has done the
conversion from a string. "ropname" returns an address because the column type is
some sort of string.

As yet, I have not figured out how to create locals dynamically!

11. Conclusion

The concept of VALUEs instead of VARIABLEs is quite useful on its own. When
extended to include arrays and structures, it becomes very useful indeed.

18

The Grand Recognizer Unification
Bernd Paysan

net2o
M. Anton Ertl∗

TU Wien

Abstract

There is an obvious similarity between the
search order and a recognizer sequence, which
has led to similarities in proposed words (e.g.,
get-recognizer is modeled on get-order). By
turning word lists into recognizers, we unify these
concepts. We also turn recognizer sequences (and
be extension the search order) into a recognizer,
which allows nestable recognizer sequences and
wordlist sequences in the search order. The imple-
mentation becomes simpler, too.

1 Introduction

Data uniformity is a useful principle in program-
ming, because it means that we can use the same
program on more different data. Examples of uni-
formity are Unix’s principles of 1) accessing many
different kinds of things (files, devices, pipes) as file
(using open, close, read and write) and 2) to or-
ganize files as sequences of bytes. Object-oriented
programming allows to treat, e.g., circles and tri-
angles uniformly as graphical objects, with higher-
level code being able to e.g., draw graphical objects.
In the Forth world, examples of uniformity are

words encompassing colon definitions, constants,
variables, etc., and cells encompassing addresses,
signed and unsigned integers.
Different types of data can be usefully unified if

they have commonalities. In this paper we unify
four things: recognizers, wordlists, recognizer se-
quences, and the search order. Their commonality
is that you pass a string to them, and they either
recognize it (and produce some data representing
the string), or not (and produce a not-found result);
see Fig. 1.
Section 2 gives examples of how each of the three

other concepts works as recognizer, how you can im-
plement existing interfaces, and in some cases how
you can implement the concept. Section 3 describes
the implementation of wordlists as recognizers in
Gforth. In Section 4 we discuss related work.

∗anton@mips.complang.tuwien.ac.at

wordlist recognizer
one wordlist recognizer

find-name-in execute
many search order recognizer sequence

find-name recognize

Figure 1: Similar concepts and searching words for
recognizing a string

2 Grand Unified Recognizers
2.1 Wordlists as recognizers
We start by generalizing wordlists to also be rec-
ognizers: The wid is implemented as the xt of a
rec-nt-like1 recognizer that recognizes the words in
the wordlist. Note that this requires changes pretty
deep in the the Forth system (see Section 3), that’s
why we do not propose this change for standard-
ization. The resulting wordlist recognizers have the
stack effect

(c-addr u -- nt rectype-nt | rectype-null)

The benefit is that we can now use wordlists
wherever recognizers are expected, e.g., in recog-
nizer sequences (see Section 2.3).

But first, how can we use it as a wordlist? You
can implement find-name-in as follows:

: find-name-in (c-addr u wid -- nt | 0)
execute rectype-nt <> if 0 then ;

2.2 Recognizer sequences as recog-
nizers

This part has been proposed2 as a potential part of
the recognizer proposal.

It is straightforward to implement a recognizer
sequence as recognizer:

1https://forth-standard.org/proposals/recognizer
2https://forth-standard.org/proposals/

nestable-recognizer-sequences

19

Paysan, Ertl Recognizer Unification

: rec-sequence (xt1 .. xtn n "name" --)
create dup , dup , 0 ?do , loop

does> (c-addr u -- ... rectype)
{: c-addr u addr :}
addr cell+ @ cells addr 2 cells +
dup >r + r> ?do
c-addr u i @ execute
dup rectype-null <> if
unloop exit then

1 cells +loop
rectype-null ;

This implementation stores the maximum size in
the first cell, and the current size in the second cell,
followed by the recognizers in the sequence.
The benefit of having recognizer sequences as rec-

ognizers is that we can, e.g., put it in another rec-
ognizer sequence, i.e., recognizer sequences become
nestable. So even if each sequence is short, a se-
quence can contain an unlimited number of basic
recognizers.
We have the following accessor words for recog-

nizer sequences:

\ we expect the following words
\ is-defer? (xt -- f)
\ is-rec-sequence? (xt -- f)

\ helper word
: follow-defers (xt1 -- xt2)
begin
dup is-defer? while
defer@

repeat ;

: get-rec-sequence (xt -- xt1 .. xtn n)
follow-defers dup is-rec-sequence? 0= if
drop 0 exit then

>body cell+ dup cell+ over @
dup >r cells rot + ?do
i @ -1 cells +loop

r> ;

: set-rec-sequence (xt1 .. xtu u xt --)
follow-defers
dup is-rec-sequence? 0= -12 and throw
>body {: u addr :}
u addr @ > -49 and throw
u addr cell+ !
addr 2 cells + dup u cells + rot ?do
i !

1 cells +loop ;

2.3 Search order as recognizer
With wordlists as recognizers, we can implement
the search order as a recognizer sequence:

: rec-nothing (c-addr u -- rectype-null)
\ recognizer that recognizes nothing
2drop rectype-null ;

’ rec-nothing dup 2dup 2dup 2dup 2dup
2dup 2dup 2dup 16 rec-sequence rec-nt0

: get-order (-- wid1 ... widu u)
[’] rec-nt0 get-rec-sequence ;

wordlist constant root-wordlist

: only (--)
root-wordlist 1 rec-nt0 set-rec-sequence ;

: set-order (wid1 ... widn n --)
dup -1 = if drop only exit then
[’] rec-nt0 set-rec-sequence ;

You can put non-wordlist recognizers in the
search order, if they have the stack effect

(c-addr u -- nt rectype-nt | rectype-null)

In particular, you can put recognizer sequences
containing wordlists in the search order. Putting
other kinds recognizers in the search order will re-
sult in find-name not working properly.

Locals

One issue in implementing standard Forth is how to
find locals. The standard does not really specify the
details, but the text interpreter certainly has to find
them when they are in scope, they probably should
not be in the search order, and whether find-name
(or find) should find them is not entirely clear and
has been answered differently by different systems.3
I think that find-name should find locals, and

here I show how that can be done. I assume that
there is a system-specific rec-loc that recognizes
locals and behaves like rec-nt (it can be imple-
mented as a temporary wordlist, or with a separate
mechanism). First, we implement rec-nt:

defer rec-nt

’ rec-nt0 ’ rec-loc 2 rec-sequence rec-locals

: activate-locals (--)
[’] rec-locals is rec-nt ;

: deactivate-locals (--)
[’] rec-nt0 is rec-nt ;

deactivate-locals

With that, find-name is easy to implement:
3https://forth-standard.org/standard/locals#

reply-426

20

Paysan, Ertl Recognizer Unification

vt=wordlist-map
code field (dodoes)

wordlist-id
wordlist-link

wordlist-extend

xt=wid
compile,

(to)
defer@

does/extra
name>interpret
name>compile

name>string
name>link

wordlist-map
wordlist-id

wordlist-link
wordlist-extend

find
reveal
rehash
hash

reveal!
initvoc
rec

Old New
wid

Figure 2: Wordlist implementations in Gforth

: find-name (c-addr u -- nt|0)
[’] rec-nt find-name-in ;

3 Wordlist Implementation
The previous section shows possible implementa-
tions of recognizer sequences and the search or-
der. This section discusses the implementation of
wordlists.
Figure 2 shows two implementations of a wordlist

in Gforth. We look at the old implementation first,
because the new implementation is based on it.

3.1 Old wordlist implementation
In the old implementation a wordlist is a structure
with the following fields:

wordlist-map This field points to a virtual
method table (map) of methods for the
wordlist; the methods will be explained below.

wordlist-id This (badly named) field contains the
start of the linked-list representation of the
wordlist. In hashed wordlists the linked-list
representation is not used for searching (for
performance reasons), but it is used for words
and traverse-wordlist. For hashed wordlists
it is also used as persistent representation of
the wordlist, from which the hashed represen-
tation can be recreated whenever it is conve-
nient.

wordlist-link This field points to the next wordlist
in the linked list of wordlists (voclink), used in
various places where all wordlists or all words
are needed.

wordlist-extend This field may contain addi-
tional data. In hashed wordlists it contains a
unique number for the wordlist, which is used
to ensure that two words with the same name,
but in different wordlists are sorted into differ-
ent hash table buckets.

The method fields in the wordlist-map contain
the xts of the method implementations. In the
old implementation, methods were invoked with se-
quences like

dup wordlist-map @ reveal-method perform

instead of with separate words. The method fields
are:

find-method (addr len wid – nt|0)
find-name-in for the wordlist; E.g., for
a normal wordlist, this implements a
case-insensitive hashed lookup.

reveal-method (nt wid –) inserts nt into the
wordlist.

rehash-method (wid –)

hash-method (wid –) Both the hash and the
rehash methods are used nowadays for putting
all the entries of a hashed wordlist into the hash
table (do nothing for a linked-list wordlist).
There used to be a difference between the
methods in earlier times.

3.2 New wordlist implementation
The new wordlist implementation is a nameless
recognizer word (cf. Figure 3 of [PE19]). The
fields are essentially the same as in the old im-
plementation: wordlist-id, wordlist-link and
wordlist-extend are exactly the same; they reside
in the parameter field of the nameless word.

A new field is added: the code field of the
word; the wordlist recognizers are implemented as
create...does> words, so the code field contains
dodoes4.
Both wordlists and (with the new Gforth header

[PE19]) words have a virtual method table, pointed
to by wordlist-map in wordlists, and by vt in word
headers. We chose to use the vt as wordlist-map.

4Dodoes is the code address of a piece of native code that
pushes the parameter field address and then executes the xt
in the does/extra field

21

Paysan, Ertl Recognizer Unification

find-method (addr len wid -- nt|0)

is replaced by

rec-method (addr len wid --
nt rectype-nt | rectype-null)

This rec-method must be invoked by executeing
the wid, so the does/extra method serves as the
rec-method.
The other methods now have invocation words:

reveal! for reveal-method, and initwl for what
used to be rehash-method/hash-method5.

For the reveal! and initwl methods there are
no natural places in the word header. We reused
the (to) (aka defer!) entry for reveal! and the
defer@ entry for initwl. This means that users
who apply defer@ and defer! to a wid will not get
an error message, but some other behaviour that
is probably unexpected; but then, it is typical of
Forth’s approach to type-checking that the caller
of a word only passes parameters of the right type
(i.e., only the xts of deferred words to defer@), and
gets arbitrary behaviour otherwise.
Alternative approaches would have been to 1) ap-

pend additional entries for the reveal! and initwl
methods to the virtual method table; or to 2) have
a wordlist-map field separate from the vt, which
points to a method table containing the reveal!
and initwl method xts.
Implementing wordlists as Gforth words also of-

fers other options that we have not implemented
(yet): Name>string could return the name of the
vocabulary or the constant associated with the
wordlist (if there is one), making it easier to im-
plement, e.g., order. Name>link could follow
wordlist-link, allowing to implement voclink
(the list of wordlists) as a wordlist itself.

4 Related work
Matthias Trute developed the idea of recognizers
into a real, workable implementation [Tru11] and
proposal for standardization [Tru15].
Ertl [Ert15, Section 4.1, 5.1] has presented other

unifying approaches: A variant of recognizers that
generate temporary (or permanent) words, with
find-name to find them. The paper also discusses
the disadvantages of these approaches, and these
have eventually led to deciding against these and
for the RfD approach.
Ertl mentioned the idea of a “virtual wordlist

consisting of a changeable search order of sub-
wordlists” in 20036.

5There has been no difference between these methods in
recent years, so they have been combined into one; also, we
have not given this method a field name.

6<2003Apr18.141759@a0.complang.tuwien.ac.at>

5 Conclusion
By unifying recognizers, wordlists, recognizer se-
quences, and the search order we can write words
which can deal with all these things. The ben-
efits already start when implementing these con-
cepts: the search order becomes just another recog-
nizer sequence, simplifying the implementation of
find-name, get-order and set-order.

References
[Ert15] M. Anton Ertl. Recognizers — why and

how. In 31st EuroForth Conference, pages
77–78, 2015. 4

[PE19] Bernd Paysan and M. Anton Ertl. The new
Gforth header. In 35th EuroForth Confer-
ence, pages 5–20, 2019. 3.2

[Tru11] Matthias Trute. Recognizer — interpreter
dynamisch verändern. Vierte Dimension,
27(2):14–16, 2011. 4

[Tru15] Matthias Trute. Forth recognizer — re-
quest for discussion. 3rd RfD, Forth200x,
2015. 4

22

Dual words and Recognisers Stephen Pelc 1

Stephen Pelc

MicroProcessor Engineering Ltd

133 Hill Lane

Southampton SO155AF

UK

http://www.mpeforth.com

stephen@mpeforth.com

The VFX Forthv5.1 kernel incorporates dual-behaviour words and recog-
nisers. This talk discusses our experience over the last year with these
changes. Dual-behaviour words are a standards-compliant solution to need-
ing words that have separate interpretation and compilation behaviour.
Previous papers called these words NDCS words (non-default compilation
semantics). Recognisers are a fashionable solution to providing a user-ex-
tensible text interpreter. Our experience converting two OOP packages to
use recognisers is discussed, together with problems involved in support-
ing two floating point formats.

Introduction
VFX Forth v5.1 contains a different approach to compilation semantics in Forth and it incorporates re-
cognisers.

Other Forths have different approaches to handling the general problem first defined in ANS Forth, that of
“non-default compilation semantics” (NDCS) but in general the solutions involve defining separate ac-
tions for the interpret and compile time actions. For example, the definition of DO is:

: DO \ Run: n1|u1 n2|u2 -- ; R: -- loop-sys ; 6.1.1240
 NoInterp ;
ndcs: (--) s_do, 3 ;
Our approach to this problem has been described in EuroForth 2018 and 2019 papers.

Recognisers are this decades’s solution to the problem of providing a text interpreter that is extensible by
the application.VFX Forth uses them for installing two different floating point handlers (NDP and SSE) and
for handling two different OOP packages (ClassVFX and CIAO).

Dual behaviour words
The definition below shown how the separate interpretation and compilation actions do not in-
terfere with each other.

: ." \ "ccc<quote>" --
\ *G Output the text up to the closing double-quotes character.
 [char] " word $. ;
ndcs: (--) compile (.") ", ;

Since we introduced this notation, we have had no problems with it and the code passes all the tests we
have tried.

Recognisers
The text interpreter in VFX Forth is basically as below. It is assumed that recognize returns the ad-
dress of a type structure holding the interpret, compile and postpone actions of the returned type.

23

Dual words and Recognisers Stephen Pelc 2

: interpret \ --
 begin ?stack parse-name dup
 while forth-recognizer recognize state @ abs cells + @ execute
 repeat
 2drop
;

: postpone \ "<name>" -- ; POSTPONE <name> ; 6.1.2033
 parse-name forth-recognizer recognize 2 cells + @ execute
; immediate
For us, the big benefit of recognisers is to be able have fine grain control of the parsing. For ex-
ample, NDP and SSE floats require different handlers; SSE is limited to 64 bit floats whereas
NDP can handle 80 bit floats. In an environment which uses Forth source libraries, we may
need to be able to switch between OOP packages. When switching to a new OOP package, we
have to be able to remove float package notations completely. To do this we need vocabulary
search order control as well as recogniser order control.

Recogniser order control is a relatively new idea, but we have been using wordlist search order
control for decades. ANS Forth introduced a clumsy pair or words.

: GET-ORDER \ -- widn...wid1 n ; 16.6.1.1647
\ *G Return the list of WIDs which make up the current search-order.
\ ** The last value returned on top-of-stack is the number of WIDs
\ ** returned.

: SET-ORDER \ widn...wid1 n -- ; unless n = -1 ; 16.6.1.2197
\ *G Set the new search-order. The top-of-stack is the number of WIDs
\ ** to place in the search-order. If N is -1 then the minimum search
\ ** order is inserted.

A more useful pair (invented at Forth Inc.) for daily use is:

: -ORDER \ wid --
\ *G Remove all instances of the given wordlist from the *\fo{CONTEXT}
search order.

: +ORDER \ wid --
\ *G The given wordlist becomes the top of the search order. Duplicate
\ ** entries are removed.

A similar pair can easily be designed for recognisers. I’m not going to get into the naming arguments that
recognisers have suffered from for several years. Later recogniser proposals seem to have adopted the
idea of a recogniser “stack” which is really just an ordered array. It is possible to use the same structure
mechanism for both recognisers and wordlist search order control.

At present, most systems that use recognisers do it in very similar ways. However, the recogniser man-
agement words as present in most proposals are inadequate or ugly. For full use of recognisers, wordlist
control is equally necessary. For example, if I have to switch between NDP and SSE floats as I may have
to do when interfacing to macOS or Linux, I may need to select

 NDPfloats (—)
 SSEfloats (—)
 integers (—)
These three words need to manipulate both recognisers and wordlists. Once we can do this in a sane
way, we can then use the same techniques to switch between OOP packages. In turn this enables us to
compile libraries that use different OOP packages without conflict. MPE supported five OOP packages in
VFX Forth 32. It’s a dreadful position to be in. Since none of the OOP designers in the Forth world seem
prepared to compromise on a standard notation, the only solution I can see is for their parsers and com-
pilers to be removable and installable at will. For MPE, this aspect of recognisers is the convincing use
case; recognisers for literals did nothing for us as we already supported the common notations.

24

Dual words and Recognisers Stephen Pelc 3

From the user’s point of view, nobody really notices recognisers and they have caused no technical sup-
port except for the one or two users who wanted to expand notations. Once explained, they went away
happy.

From a standards point of view, the original simple set of words has proven to be enough. We (MPE) are
firmly convinced that trying to automate the postpone behaviour is potentially dangerous as we have no
idea what clever Forth programmers will get up to with recognisers. The difficult part of recognisers is the
set of recogniser management words.

Converting two OOP packages to recognisers

There are two OOP packages in VFX that needed to be rock-solid with recognisers. CIAO (C Inspired
Active Objects) was written over 20 years ago by a long-departed programmer to ease interfacing to C+
+. The package has its fans.

ClassVFX was designed by and is used by Construction Computer Software at the heart of a large ap-
plication of 1.4 million lines of Forth source code.

As with many other complex and capable OOP systems in Forth, both packages take over 1000 lines of
source code and contain ugly code. As a result, the original code was not thrown away for a new version,
but the code was hacked to fit the parser and action model of recognisers. The parser actually performs
all the required interpretation and compilation actions - yes, it remains state-smart as it always has been,
and the action structure contains NOOPs for the interpretation and compilation actions, and a THROW for
the POSTPONE action.

This rather brutal approach to code conversion was somewhat regrettable, but did prove the robustness
and flexibility of recognisers. People with time on their hands are welcome to design a new implementa-
tion that manages to fully separate the parsing and action parts, but I haven’t found a way yet.

CIAO previously used a hook in the text interpreter loop and took full advantage. To provide the same
behaviour with recognisers, two parsers and action tables are required. One parser runs first in the re-
cogniser sequence, and the other runs last.

Full source code is provided in the downloadable versions of VFX Forth.

Acknowledgements
Gerald Wodni persuaded me that recognisers have merit.

Anton Ertl convinced me that all standards have bugs.

Willem Botha taught me about big Forth applications.

Pat Gillespie has tolerated my apparent refusal to retire.

25

Porting VFX Forth to 64 bits Stephen Pelc 1

Stephen Pelc

MicroProcessor Engineering Ltd

133 Hill Lane

Southampton SO155AF

UK

http://www.mpeforth.com

stephen@mpeforth.com

Introduction
Since its first release in 1998, all versions of VFX Forth have been 32 bit Forth implementations. Although
there has been almost no customer demand for a 64 bit version, two events have conspired to force the
decision to move to 64 bits.

1) Fashion - never to be underestimated in software choices.

2) Operating system reluctance to host 32 bit applications. 

Apple have already dropped support for 32 bit applications from macOS Catalina and iOS 11. 
Linux distributions are increasingly shipping without the 32 bit library support.

Beta test versions of VFX Forth 64 are now (August 2020) available for macOS and x64/amd64 Linux
from 
 http://soton.mpeforth.com/downloads/VfxCommunity

Windows and ARM64 Linux will follow in due course.

Process
 All MPE Forths have a cross-compiled kernel, which is used to produce further builds. The first stage is
thus to select a host for the cross compiler. We attempted to use a well-known 64 bit FOSS compiler as
a host, but for commercial reasons, we needed to support macOS first, and that Forth treated macOS as
a second-class citizen. Somewhat reluctantly, we decided to use VFX Forth 32 for macOS as the first
host.

Once the first 64 bit target was stable, the assembler, disassembler and code generator were ported to
VFX Forth 64, and the x64 cross compiler was ported.

By customer demand, we then ported the ARM/Cortex cross compiler to the 64 bit host.

We can split the jobs into

1) x64 assembler and disassembler

2) code generator

3) shared library interface

4) Floating point

5) porting 32 bit code to 64 bit code

6) testing

x64 Asm and Dasm

Although the AMD64 instruction set is said to be “upward compatible” with x86, the compatibility level
still leads to an impact on assembler code. There are three areas that cause trouble or code expansion.

1) I’m dreaming of a REX byte - used to select 64 bit data and R8..R15

2) Not all instructions have 8, 16, 32 and 64 bit operations because of

3) Special cases

The REX byte rules are mostly consistent, but cause problems when byte register selection is affected by
whether a REX byte is present - goodbye AH, BH, CH and DH.

26

Porting VFX Forth to 64 bits Stephen Pelc 2

There are no POP 32 bit operations. PUSH and POP default to 64 bits and only have 16 and 64 bit forms.
Dealing with data size caused the most problems in both the assembler and the disassembler. I was
wrong in a design decision made early on, but was too tired to change it! Bad design decisions make you
bleed even if the system appears to work sooner.

There’s also a peculiarity in that the SIB byte fully decodes all four bits of a register field, but the MODR/
M byte does not. In consequence, R12 and R13 are a bit special.

Because the 64 bit operating systems take floating point arguments in XMM registers, you have to ex-
tend the assembler and disassembler to support at least a subset of the SSE2 instructions. The base
AMD64 instruction set is much more than x86 with 16 registers. There is a 64 bit literal form to load a re-
gister, but it’s a big instruction and not needed very much if you accept the zero and sign extension rules
- some of the redundant addressing modes using the MODR/M byte come back into use.

In order to aid code portability, we chose to treat all literals as 32 bit items in the 32 bit hosted cross
compiler. This worked with a few exceptions, and a simple 64 bit literal specifier was portable into the 64
bit hosted cross compiler.

Code Generator

The code generator was in many ways the least of our problems. The existing x86 code generator uses
tables for mosts of its CPU definition operations. Converting these to AMD64 was mostly just tedious
rather than difficult. The major changes were in defensive programming - far more defining of data size
rather than accepting the default.

The biggest changes come from dealing with absolute addresses and literals. Unless you use one of the
new instructions with 64 bit absolute addresses, absolute addressing is replaced at the CPU level by PC
relative addressing with 32 bit offsets. Making literals work reliably on both 32 bit and 64 bit hosts was
tedious, but probably beneficial in that it forced us to convert to a 64 host as soon as possible.

Literal handling changes infected the rest of the code generator in that the x86 code generator can
handle literals with very few special cases; whereas the AMD64 needs decisions depending on 32 or 64
bit literal handling.

Other topics that cause problems are sign and zero extension because the instruction set is not regular
and the need to bring the floating point stack pointer and top of float stack into the VM register set.

A few changes were made to take advantage of the extra registers. An additional eight registers is more
than the code generator can use regularly. Two registers are dedicated to DO … LOOP handling. One be-
comes the float stack pointer. A few more will become shared between the data and return stack models.

The code generator is a work in progress and will improve significantly over the next year or so. What has
been important to us is to achieve both a suitable base-line performance and sufficient reliability to port
existing code easily.

Shared library interface

In the 32 bit world, macOS, Windows and Linux use essentially the same assembly level interface to ex-
ternal functions in shared libraries. In the 64 bit world, macOS and Linux use the same interface, and
Windows goes its own way again. Naturally, the list of callee-saved registers is quite different. The follow-
ing discussion is only for macOS and Linux, which both use the System V AMD64 ABI.

There is a big emphasis on calling through registers, six integer and eight XMM registers being reserved
for parameter passing. Unlike the 32 bit world, return values of up to 128 bits may be returned in re-
gisters. This particularly affects the macOS Cocoa interface, which uses many co-ordinate pairs of 64 bit
floats. These are returned in two XMM registers.

27

Porting VFX Forth to 64 bits Stephen Pelc 3

To add a little extra excitement, the person in charge of the Cocoa interface decided that he wanted a
more “Forth-like” interface to Cocoa and Objective-C. Explaining that the MPE EXTERN: interface was
the way it was to avoid the nastinesses caused by primitive notations, we now have a “more Forth-like”
interface as well. It will work up to a point, but can still be fooled in admittedly rare circumstances.

FUNCTION: CGContextGetPathCurrentPoint (cgcontext --) (F: -- x y)
FUNCTION: CGContextMoveToPoint (cgcontext --) (F: x y --)

Extern: CGPoint CGContextGetPathCurrentPoint(CGContextRef c);
Extern: void CGContextMoveToPoint(CGContextRef c, CGFloat x, CGFloat y);

Floating point

As an implementer, I dislike floating point. It is a substantial cause of technical support issues that are
really mathematical issues. You really need a “mathmo” to write, maintain and support floating point
packages. A good “mathmo” is a rare beast.

In the 64 bit world, SSE is the default interface to the outside world. SSE However, SSE is limited to IEEE
64 bit floats and multiple 64 bit items. We really notice the lack of precision compared to the NDP’s 80 bit
format. We then have some choices to make.

SSE code is supposed to be faster than NDP code. Until we have finished an SSE2 optimiser I cannot
comment, but unoptimised SSE code is substantially slower than optimised NDP code. The advantage of
SSE arises when we can use the SIMD instructions. Given lack of practice in doing this in Forth, a signi-
ficant development path opens up. Our options seem to be:

1) Go straight to optimised SSE and suffer the loss of precision in favour of potential future enhance-

ments,

2) Stick with NDP and provide conversion operators,

3) Stay with NDP but allow the EXTERN: interface to select between an SSE float stack and an NDP

system that converts to SSE on the fly.

At present option 3 is looking like a good solution as it preserves the precision of 80 bit floats while leav-
ing the door open for SSE extensions. Option 3 is also a good test of search order and recogniser order
management issues.

Porting 32 bit code to 64 bits

Somewhat to my surprise, the vast majority of our 32 bit code ported to 64 bits with little or no change.
However, we have been scrupulous in ensuring that structures and addresses are manipulated by words
such as CELL+ rather than 4+.

The biggest set of problems stemmed from C’s decision to leave int as 32 bit, long changes to 64 bit,
and so on. This also influenced many structure declarations and their alignments. We also noted that
whereas MacOS structures were in the main relatively easy to convert, the Linux people had gone to
town on wholesale changes. If you are going to break code, just break it properly.

Whereas the macOS 64 bit signal interface was fairly straightforward to port from 32 bits, the Linux 64 bit
interface required many changes to structure definitions, much reading of obscure C header files and a
lot of swearing. I was thankful that alcohol is cheap in Spain.

Overall, checking operating system structure definitions has taken longer than porting Forth directly. The
only real Forth problem we had was in porting the AAPCS (Arm Advanced Procedure Call Standard) for
Cortex CPUs from a 32 bit hosted cross compiler to a 64 bit hosted cross compiler. One portion of the
code used the same alignment words for host and target navigation rather than using the (already)
provided target navigation words. This bug broke a mission-critical test application until it was fixed.

28

Porting VFX Forth to 64 bits Stephen Pelc 4

Testing

As the section above indicates, testing is vital.

We did reasonably well with the assembler testing. However, testing an assembler before you really know
how it is going to be used just leads to testing without exploring the important corner cases. That’s why
good testers have a mentality of their own that has to be respected.

Testing a code generator is hard. You end up with a set of regression tests that simply protect against
repeating the same mistakes.

The Gerry Jackson test suite is a life-saver.

Results
We now have a stable 64 bit for AMD64/x86_64 CPUs. Roelf Toxopeus has ported his Cocoa interface to
VFX Forth 64. An application is shown.

Acknowledgements
This software exists because of the efforts of

	 Robert Sexton

	 Roelf Toxopeus

	 Ward McFarland

	 Bruno Degazio

	 Gerald Wodni

29

µCore Overview

Klaus Schleisiek - kschleisiek@freenet.de

µCore (pronounced "microCore") is a processor written in VHDL for synthesis into FPGAs. It is optimized
for embedded real time control. µCore is an embodiment of the virtual machine of the Forth programming
language [1] and hence Forth is µCore's assembler.

Characteristics
1. Dual stack (data stack & return stack)

2. Harvard architecture (8 bit program memory & independent data memory)

3. Configurable word width for data memory & stacks

4. Postfix instruction set architecture (literal operands/addresses precede rather than follow instructions
that need them in the instruction stream)

5. Single cycle execution, no pipelining

6. Interrupt & Pause traps

7. Multiple data and return stack areas for efficient multitasking

8. Deterministic program execution

9. Hardware/Software co-design environment

10. Malleable instruction set

11. Instantiation

µCore block diagram

30

µCore Overview

1 Dual Stack
µCore does not have general purpose registers, it has a "data stack" for numerical computations and a "return
stack" for program flow control.

The data stack resides in a private RAM area managed by the DataStackPointer (DSP). Its top two items are
held in registers (TopOfStack - TOS and NextOfStack - NOS).

The return stack is mapped into the data memory managed by the ReturnStackPointer (RSP). Its top item is
held in a register (TopOfReturnstack - TOR).

The pros-and-cons of a stack versus register architecture:

1) Parameter passing.
Both architectures quite often suffer from the fact that the arguments for a subroutine call are not in the
registers resp. not in the stack order, in which the subroutine expects them. As a result, registers have to
be re-shuffled resp. the stack has to be re-ordered.
The number of registers is finite and hence the number of arguments that may be passed to a subroutine.
The stack has a finite depth in hardware as well, but if needed, the bottom part of the stack may be
swapped out and in of data memory by a background process at runtime.

2) Interrupt processing
The stack architecture holds all arguments on stacks already and therefore, no registers need to be saved
and restored.

3) Code optimization
"Register allocation" became a research topic long ago whereas "stack allocation" is an esoteric topic. But
three generations of research happened and the results are already of production quality.

When µCore's assembler µForth is used, the programmer himself is responsible for stack allocation and
stack re-ordering.

4) Instruction set impact
A register architecture needs address bits in the instruction word whereas a stack architecture does
without. A subroutine always takes its arguments from the top of stack downwards and leaves its results
on the stack.

Looking at the technical merits, the stack architecture has several advantages especially for real time
applications. Its major disadvantage is its unfamiliarity.

2 Harvard Architecture
µCore's instructions and the program memory are 8 bits wide. The configurable width data memory (see
below) is independent of the fixed width program memory. Two instructions, which allow writing and
reading program memory, may or may not be instantiated and therefore, µCore can be made safe from
corrupting its program during runtime.

During cold boot, µCore may always write into program memory and therefore, it may fetch its program
from an external, non-volatile memory. The boot loader is a µForth program that has to be compiled before
synthesis.

3 Configurable Data Memory & Stack Word Width
In µCore the word width of the data memory and the stacks is configurable and must be defined before
synthesis as needed by the application. µCore does not deal with 8 bit "bytes". That is data memory is always
accessed in units of the instantiated data memory and stack width, which simplifies the memory interface
considerably.

The instantiated word width may be any odd or even number of bits. 12 bits is a practical minimum, because
it limits the program memory's address range to 4096 instructions. The maximum width is only limited by
the available FPGA resources. This configurability is rendered possible by µCore's postfix instruction set
architecture (see below).

31

µCore Overview

4 Postfix Instruction Set Architecture
µCore's postfix instruction set extends Forth's postfix syntax into the hardware realm. The principle has been
inherited from the Transputer, and it makes the configurable data word width possible.

When instructions include immediate numbers (literal, offset, address etc.), the number of bits needed for
these numbers depends on the processor's data word width. In µCore, literals and opcodes are kept separate
and literals precede rather than follow opcodes that need them. Numbers of any magnitude may be
constructed by a sequence of literal instructions.

µCore's instructions are 8 bits wide. An instruction's most significant bit determines whether it is interpreted
as an opcode (MSB not set) or as a literal (MSB set). A "lit flag" in the status register is set by literals and
reset by opcodes. This leads to four different cases for instruction interpretation:

lit flag MSB interpretation
0 0 An opcode that does not need a literal.
0 1 A literal following an opcode.

The least significant 7 bits are pushed on the stack as a 2s-complement number in the
range -64 .. 63, and the lit flag is set.

1 0 An opcode following a literal. If it is just a noop, the literal remains on the stack as a
number. The lit flag is reset.

1 1 A literal following another literal.
The literal in TOS is shifted 7 bit positions to the left and the 7 least significant bits of
the instruction are appended. This covers the following number ranges:
1 lit -64 .. 63
2 lits -8192 .. 8191
3 lits -1048576 .. 1048575
 etc.
This way numbers of any magnitude can be constructed.

Opcodes do neither include literal information nor register addresses due to the stack. Therefore, each of the
remaining 127 opcodes can be used for different semantics. This is plenty. The "core" opcode set has 47, the
"extended" and "float" set another 29 opcodes. This leaves room for 42 application specific opcodes.

Opcodes like branch and call do even have different semantics depending on the lit flag. When it is set, they
take the number in TOS as a branch offset. Otherwise, they take it as an absolute target address.

Instructions (literals as well as opcodes) are always self-contained and therefore, interrupts can be accepted
after each instruction.

5 Single Cycle Execution, No Pipelining
In general, a single instruction needs one active clock transition to execute.

On a hardware level (VHDL), µCore's registers have a clock and a clock enable input. The enable input
allows embedding µCore into environments with a clock frequency that is above µCore's timing
requirements. Constant cycles in architecture_pkg.vhd defines the number of clock cycles, which are needed
to execute one instruction. In addition, the top-level enable input may be used to temporarily halt µCore.
Typically, µCore's worst-case asynchronous signal delay is less than 40 ns (25 MHz) for Xilinc, Altera, and
Lattice FPGAs.

Reading the FPGA's internal blockRAM memories requires the execution of a sequence of two
uninterruptible instructions. The first instruction latches the memory address inside the blockRAM, the
second instruction pushes the memory's data output on the stack.

To this end a general mechanism allows to chain sequences of uninterruptible instructions. It can also be
used for read-modify-write instructions.

32

µCore Overview

6 Interrupt & Pause Traps
Interrupts are a well known concept in computing and almost every existing processor implements it. Hardly
known is its Janus-faced sibling, the Pause, another inheritance from the Transputer. A Pause will e.g. be
raised by a UART, when the processor intends to read a character, which has not been received yet. The
difference between interrupts and pauses is as follows:

Interrupt: An event did happen that was not expected by the software.

On an interrupt the processor pushes the status register on the data stack, raises the InterruptInService (IIS)
status bit that disables further interrupts, and executes a call to the interrupt trap location. The status register
is a collection of single bit flags that characterize the processor state besides the PC.

Globally, interrupts may be enabled or disabled via the "InterruptEnable" (IE) status bit. Individual interrupts
sources are enabled or disabled writing the Intflags register, which holds a flag for each interrupt source.
Reading Intflags allows locating an interrupt's source(s).

Interrupt processing is terminated by the IRET instruction, which returns from the interrupt service routine
and restores the status register from the data stack, thereby resetting the IIS bit again.

Pause: An event did not happen that was expected by the software.

On a pause the processor aborts the current instruction, which caused the pause signal to be raised, does not
increment the Program Counter (PC), and executes a call to the pause trap location.

In a single task system, the pause trap would immediately execute an EXIT (return from subroutine), thereby
returning to the instruction that caused the pause previously. This loop repeats until the pause signal will no
longer be raised.

In a multitask system, the pause trap would call the scheduler, and another task can be given the opportunity
to run. Eventually, the task that caused the pause will be activated again and continue normal execution as
soon as the reason for raising the pause signal has vanished, i.e. the missing event did happen.

Using the pause mechanism, resource locking can be completely realized in hardware. E.g. an ADC with an
integrated 8-channel multiplexer in a multitasking environment can then be programmed in µForth:
<channel_number> ADC !
ADC @ Sample !

or in C1 as follows:
ADC = <channel_number>;
Sample = ADC;

Storing the <channel_number> into the memory mapped ADC interface will initiate conversion of that
channel and set the ADC's semaphor flag in the flags register. Should the ADC be in use by another task, the
semaphor will have been set and a pause will be raised until eventually the semaphor will have been reset. In
the next line, the conversion result will be read from the ADC, stored in varable Sample, and the semaphor
will be reset. Should the ADC be still busy converting when a read attempt is made, pause will be raised
until eventually the ADC has finished conversion.

This way the hardware takes care of both mutual exclusion of the ADC resource as well as waiting for the
AD-conversion to finish without having to probe flags in software loops.

7 Multiple Data- and Return-Stack Areas for Efficient Multitasking
The number of data- and return-stack memory areas can be configured so that each task has its own set of
stacks. This speeds up task scheduling, because only internal registers TOS, NOS, TOR, DSP, and RSP need
to be redirected. A task switch @ 25 MHz takes 7 µsec to put the current task to sleep and start another one.

1 A µCore back-end for the LCC C compiler has been implemented for an earlier 32 bit version of µCore. In addition,
LCC itself has been modified for stack- rather than register-allocation. This work has been done at Fachhochschule
Aargau, Windisch (CH), supported by the Hasler Foundation.

33

µCore Overview

8 Deterministic Program Execution
µCore's program execution is fully deterministic. There is no pipeline. There is no cache memory that may
have to be loaded before the next instruction can be executed. Therefore, µCore's time to execute a certain
sequence of instructions is predictable, which is a prerequisite for verifyable real-time systems.

9 Hardware/Software Co-Design Environment
µCore's design environment consists of the following elements:

• VHDL source code for µCore on a target system,

• the µForth cross-compiler and debugger running on a host computer,

• an RS232 umbilical link that connects host and target,

• an interactive command line interpreter to inspect and control the target,

• a disassembler,

• and a single-step tracer.

Both the VHDL hardware description as well as the µForth cross-compiler share a common file
architecture_pkg.vhd, which characterizes µCore's architecture and opcodes. Therefore, the cross-compiler
will always be in-sync with the hardware description.

The cross-compiler is able to produce program memory initialization code for the VHDL simulator and
therefore, µForth program execution can be observed in the VHDL simulator.

A umbilical link consisting of a 2-wire UART (rxd, txd) connects µCore's debugger with the mating
debugger on the host and allows to

• load object code into µCore for execution,

• control µCore interactively from a command line (Forth style),

• display the data stack and dump data memory to the host's display,

• upload/download data memory areas without delaying µCore's program execution,

• single step code on a subroutine level displaying the data stack at each step.

10 Malleable Instruction Set
µCore's instruction set consists of 47 "core", 24 "extended", and 5 "float" instructions. In addition, 26
"software traps" are available, which do a single cycle call to fixed program memory locations.
42 opcodes are unused or software traps. They may be used for application specific instructions.

In the core version, the extended instructions will be emulated by macros or subroutines. Therefore, a core
version has the same functionality as the extended version but it runs slower consuming fewer FPGA
resources.

Adding a new opcode to µCore is rather simple and consists of three steps:

1. Define the binary code for op_newname as a constant in architecture_pkg.vhd.

2. Add a new when clause to the instruction decoder case statement in uCntrl.vhd for the semantics of
op_newname.

3. Define a name for op_newname in opcodes.fs to make it known to µForth.

34

µCore Overview

The core instruction set
Data stack: drop, dup, ?dup, swap, over, rot, -rot

Return stack: >r, r>, r@

Branches: branch, 0=branch, next, call, exit, iret

Data memory: ld, st

Unary arithmetic: not, 0=, 0<, shift, ashift, c2/, c2*

Binary arithmetic: +, +c, -, swap-, and, or, xor, um*, *, um/mod

Flags: status-set, ovfl?, carry?, time?, <

Traps: reset, interrupt, pause, break

11 Instantiation
µCore has been instantiated on these FPGA families:
Xilinx (XC2S), Lattice (XP2), Altera (EP2), and Actel/Microsemi (A3PE).

Reference implementations on a Lattice LFXP2-8 prototyping board with minimal external IO and hardware
multiplier have been made with different µCore configurations. The clock's timing constraint in the
synthesizer and in the place-and-route tool had been set to 25 MHz.

Instruction set word
width

SLICES data
memory

program
memory

maximum
clock

core 16 988 6k 8k 33 MHz
extended 16 1199 6k 8k 30 MHz
core 27 1259 4k 8k 33 MHz
extended 27 1608 4k 8k 28 MHz
extended and floating point 27 1808 4k 8k 26 MHz
core 32 1432 3k 8k 33 MHz

Literature
[1] Leo Brodie: "Thinking Forth", http://thinking-forth.sourceforge.net/

35

A Note on Parsing Source Code
Corrolary to "Poor Man's Recognizer"

I pondered some more on the relationship between gforth's [,], and parser.

When the Forth system is used for cross compilation, we must be able to switch back and forth
between interpreting and compiling using [and] - just the same as in a normal host only
system. But the parser action will be different depending on whether we want to produce code
for the host or for the target system.

In gforth, parser is deferred, which is already a good starting point for differences in host or
target code production, and [and] are defined as follows:
:] (--) ['] compiler is parser 1 state ! ;

: [(--) ['] interpreter is parser 0 state ! ;

Bad luck if I have to modify parser depending on my cross compiler's needs, because [and
] will overwrite whatever I may have assigned to parser. Actually, I invented this almost 40
years ago in volksForth. It seemed a good idea at the time but it was clearly a mistake.

This was one of my bad ideas, which I

 A more useful implementation will look like this:
:] (--) 1 state ! ;

: [(--) 0 state ! ;

: host-parser (c_addr u --)
 state @ IF compiler ELSE interpreter THEN ;

' host-parser IS parser

8-Sep-2020, Klaus Schleisiek

36

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 1 of 5

µForth is the cross compiler for µCore. When I started the project on top of gforth_062, I found a
simple and powerful solution to cross compilation by patching the way [and] behave. The
current version of gforth_079 uses Matthias Trute's recognizer mechanism and I gave them a try as
an alternative to patching.

The result of this endeavor was so complicated that I returned to the patch solution, which I regard
as much more readable. It can be implemented on all versions of gforth above 062 albeit minute
differences, because gforth's interpreter/compiler is a moving target. Alternatively, the patch
version can be implemented in a way that it reads like recognizer code, though drastically
simplified.

In order to clarify the issues, I will first present and discuss the patch solution, followed by the
gforth recognizer solution, and finally followed by the "Poor Man's Recognizer" solution.

µForth has two very different modes of operation:

1. host-compile compiles into the host's dictionary in order to add capabilities to µForth.

2. target-compile compiles into the target's dictionary in order to produce code for µCore.

These two modes require very different parsers, which are both different from the native gforth
parser, because µForth includes an OOP package for the sake of operator overloading (i.e. a @
may do very different things depending on the object that preceded it). This would be
straightforward, if [and] were deferred, but they are not and therefore, [and] have to be
patched instead. For the sake of argument, I will only discuss the target-compile mode.

1 Patching
The patch magic is done in a portable way by becomes, which takes an xt and the name of an
existing word:
: becomes (<word> new-xt --) \ make existing <word> behave as new-xt
 >r here ' >body dp !
 postpone AHEAD r> >body dp ! postpone THEN
 dp !
;
Variable 'interpreter ' interpreter 'interpreter !
Variable 'compiler ' compiler 'compiler !

:noname (--) 'interpreter @ IS parser state off ; becomes [
:noname (--) 'compiler @ IS parser state on ; becomes]

After patching, everything still works ok, because we initialized both 'interpreter and
'compiler with gforth's native code. Now we can define the new parser for the target.

First some lower level words:

d>target (d.host -- d.target) converts a host's double number into a double
number for µCore, because very often the data width of the host is greater than µCore's data width.

ClassContext, a variable, points to a linked list of methods. If it is zero, Forth's dictionary will
be searched. search-classes searches an object's list of methods down its inheritance order.

debugger-wordlist, a variable pointing to a wordlist of commands, which will be searched
with preference when interactively debugging the target system.

t_lit, (n --) compiles a number on the host's stack as a literal in the target system.

>t transfers a number on the host's stack to the target's stack.

37

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 2 of 5

not-found (addr len --) displays the string that didn't match and aborts.

Now we are prepared to define the target's interpreter/compiler classical style, everything in one
single definition:
: target-compiler (addr len --)
\ search for methods
 ClassContext @ IF 2dup search-classes ?dup
 IF nip nip name>int execute EXIT THEN
 not-found
 THEN
\ search for commands while debugging
 dbg? IF 2dup debugger-wordlist search-wordlist
 IF nip nip name>int execute EXIT THEN
 THEN
\ search the target's dictionary
 2dup find-name ?dup IF nip nip name>int execute EXIT THEN
\ try to convert to an integer number
 2dup 2>r snumber? ?dup 0= IF 2r> not-found THEN 2rdrop
 comp? IF 0> IF d>target swap t_lit, THEN t_lit, EXIT THEN
 dbg? IF 0> IF d>target swap >t THEN >t EXIT THEN
 drop
;

When an object has been compiled or executed, ClassContext will have been set to its
methods list to be searched. If a method is found, it will be executed producing target code and we
are done. If nothing was found, we display the not-found message and abort.

Otherwise, we check whether we are interactively debugging, in which case we will search
debugger-wordlist next. If it was a command, it will be executed and we are done. If it was
no command, we will search the target's dictionary. If it was a target word, it will be executed
producing target code and we are done.

If it was neither a command, nor a target word, snumber? will try to convert the string into a
number. When successful, we may be

1. compiling. In this case, we have to compile the number as literal(s) into the target code and we
are done.

2. debugging. In this case we transfer the number on the host's stack to the target's stack and we are
done.

3. interpreting. In this case we throw away the double number flag and we are done, leaving the
number on the host's stack.

You must admit, this is VERY different from what the native gforth compiler does.

Finally, we can define
: target-compile (--)
 ['] target-compiler dup 'interpreter ! dup 'compiler ! IS parser
 Targeting on Only Target also
;

that will activate the target-compiler, set Targeting to true and set the dictionary
search order for target words.

38

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 3 of 5

2 Recognizers
Ok, now gforth's recognizers. The lower level words we need have already been explained above.

The debugger words are handled separately, so we define our first recognizer:
: rec-debugger (addr u -- nt rectype | rectype-null)
 dbg? IF debugger-wordlist find-name-in
 dup IF rectype-name EXIT THEN dup
 THEN 2drop rectype-null
;

Hm, we see that we have to do more than just define a recognizer, we also have to define recognizer
types like rectype-name and rectype-null, which have been defined in gforth_079.

Now come the methods and the Forth dictionary. Remember, no matter whether we are in interpret
or compile mode, we always execute the command of the target code compiler. So we have to
define our first rectype, because the standard one, rectype-name, does not do what we need.
:noname name>int execute-;s ; \ interpret action
dup \ compile action, same as above
' lit, \ postpone action
rectype: rectype-target

Now we can define the recognizer for methods compilation,
: rec-methods (addr u -- nt rectype | rectype-null)
 ClassContext @ 0= IF 2drop rectype-null EXIT THEN
 2dup search-classes ?dup IF nip nip rectype-target EXIT THEN
 not-found
;

and the one for the Target's dictionary:
: rec-target (addr u -- nt rectype | rectype-null)
 find-name ?dup IF rectype-target EXIT THEN rectype-null
;

Ok that takes care of the methods and normal Forth words. Now we must turn to numbers. Again,
we can not use the normal rectype-num and rectype-dnum, because we are compiling
code for the target.
' noop
:noname (n --) comp? IF t_lit, EXIT THEN dbg? IF >t EXIT THEN drop ;
dup
rectype: rectype-tnum

' noop
:noname (d --) d>target swap
 comp? IF t_lit, t_lit, EXIT THEN
 dbg? IF >t >t EXIT THEN 2drop
;
dup
rectype: rectype-tdnum

: rec-tnum (addr u -- n/d table | rectype-null)
 snumber? ?dup 0= IF rectype-null EXIT THEN
 0> IF rectype-tdnum ELSE rectype-tnum THEN
;

Now we have a single/double integer recognizer for the target and we are prepared to define the
recognizer for target compilation consisting of four single recognizers:

39

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 4 of 5

$Variable target-recognizer
align here target-recognizer !
4 cells , ' rec-tnum A, ' rec-target A, ' rec-debugger A, ' rec-methods A,

 Finally we can define:
: target-compile (--)
 target-recognizer TO forth-recognizer
 Targeting on Only Target also
;

that will activate the target-recognizer, set Targeting to true and set the dictionary
search order for target words.

Frankly, I find the patch version of the first chapter a lot easier to read.

Why is this so?

In the patched version, everything is close together in one definition: From string through wordlist
lookup to the final execute. Therefore, you may modify everything when needed. We could even do
without patching, if [and] were deferred. Its drawback: Everything is merged into a single
definition with a more or less complex conditional structure.

The recognizer version gets rid of the complex conditional structure, but it has newly invented
complexities: Separation of the search action from semantic interpretation (rectypes), and the final
execute is completely hidden. Therefore, in order to understand the recognizer code, you must make
yourself a mental image that merges the search action and its semantic interpretation, and you better
understand the underlying recognizer machine that does the final execute for you. Let alone the
definition of the final -recognizer, which is not a colon definition but a data structure, which has to
be read backwards. Challenging conditions for reliable code that ought to be easy to understand.

3 Poor Man's Recognizer
As a compromise, here is a simplified version for a recognizer type construct, which does not need
all the overhead of gforth's recognizer mechanism.

Foremost, we want to get rid of the convoluted control structure of the patch version. I.e. we want to
be able to write down an easy to read specification for target-compiler, which behaves
identical to the patched version of the first chapter as follows:
: target-compiler (addr len --)
 method-find debugger-find target-find target-number not-found
;

In the Recognizer chapter we finally defined target-recognizer as a reverse list of simple
sub-recognizers, each of which only does a single string matching attempt.

Instead, the simplified version defines a colon definition, which basically does the same thing. It has
the limitation that it can not change its behaviour dynamically. But who needs this flexibility? After
all, the parser has a much lower change rate compared to the dictionary's search order.

Each sub-recognizer has identical stack behaviour:

It takes a counted string as input argument.

If there is no match, it leaves the counted string unchanged handing it over to the next sub-
recognizer.

If there is a match, the input arguments are dropped, the return address into target-compiler
is thrown away and therefore, we continue to execute the word that called target-compiler.

40

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 5 of 5

If none of our sub-recognizers did match, we bump into not-found.

These are the definitions of the sub-recognizers:
: method-find (addr len -- addr len | rdrop)
 ClassContext @ 0= ?EXIT
 2dup search-classes ?dup
 IF rdrop nip nip name>int execute EXIT THEN
 not-found
;
: debugger-find (addr len -- addr len | rdrop)
 dbg? 0= ?EXIT
 2dup debugger-wordlist search-wordlist
 IF rdrop nip nip name>int execute EXIT THEN
;
: target-find (addr len -- addr len | rdrop)
 2dup find-name ?dup IF rdrop nip nip name>int execute THEN
;
: target-number (addr len -- addr len | rdrop)
 2dup 2>r snumber? ?dup 0= IF 2r> EXIT THEN 2rdrop rdrop
 comp? IF 0> IF d>target swap t_lit, THEN t_lit, EXIT THEN
 dbg? IF 0> IF d>target swap >t THEN >t EXIT THEN
 drop
;

For completeness, here is the host's interpreter/compiler:
: host-find (addr len -- addr len | rdrop)
 2dup find-name ?dup 0= ?EXIT rdrop nip nip
 comp? IF name>comp ELSE name>int THEN execute
;
: host-number (addr len -- addr len | rdrop)
 2dup 2>r snumber? ?dup 0= IF 2r> EXIT THEN 2rdrop rdrop
 comp? IF 0> IF swap postpone Literal THEN postpone Literal EXIT THEN
 drop
;
: host-compiler (addr len --) host-find host-number not-found ;

4 Summary
I am sorry to say, but Matthias Trute's recognizer mechanism is over-engineered and therefore, it is
difficult to understand, explain, and extend. An indication for this is the sheer number of articles,
which try to explain it. In addition, it is more flexibel than actually needed.

The "Poor Man's Recognizer" had been a vague idea for several years. After writing the first two
chapters of this paper, I finally implemented it. It exceeded my expectations as far as complexity is
concerned and therefore, this is what I will add to my Forth toolbox.

41

Euroforth 2020 “Rome”

A radical alternative to the Windows registry

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

THE GOOD OLD REGISTRY

* One of the best bits of Windows

* Gradually made less and less useful over the years

* Essentially, a hierarchical database

* Amazingly, there is no really good alternative in Linux

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

We used it for:

a) Basic configuration data A BIT OF THIS
e.g. Where to find the database

b) System configuration data LOTS OF THIS
e.g. How many Kgs do you put in a washing machine?

c) Per PC configuration data A BIT OF THIS
e.g. On this PC, are you allowed access to this dialog?

d) Small amounts of persistent data A BIT OF THIS
e.g. Go back to the same report that you selected last time

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

HOW TO EDIT THE DATA?

a) Basic configuration data A BIT OF THIS
Need to set this manually, before the program will run

b) System configuration data LOTS OF THIS
Dialog boxes ESSENTIAL for managing the complexity

c) Per PC configuration data A BIT OF THIS
SIMPLE, so could be set manually

d) Small amounts of persistent data A BIT OF THIS
Never needs setting

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

REPLACE THE REGISTRY WITH WHAT?

a) Basic configuration data A BIT OF THIS
Configuration file

b) System configuration data LOTS OF THIS
PROBLEM

c) Per PC configuration data A BIT OF THIS
Configuration file

d) Small amounts of persistent data A BIT OF THIS
Configuration file

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

Configuration files – easy
Lots of possibilities
Libconfig is our favourite

Typical FORTH interface to Libconfig

: DATABASECONF (---) \ Database settings
 Z" Database" CONFKEY
\ <length> <address> <Name> <Default> <action>
 HOST_NAME_MAX ZDBHOST Z" IP_address_of_normal_database" Z" 192.168.0.10" CONF$
 HOST_NAME_MAX ZDBCENTRAL Z" IP_address_of_central_database" Z" 192.168.0.100" CONF$
 MAX_DB_USER DBUSER Z" Database_user" Z" Nick" CONF$
 MAX_DB_PASS DBPASS Z" Database_password" Z$SECRET CONF$
 MAX_DB_NAME DBNAME Z" Database_name" Z" Tracknet" CONF$
 ADDR DBPORT Z" Database_port_number" 3306 CONFVAR
;

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

WHAT TO DO ABOUT SYSTEM CONFIGURATION DATA?

* Lots of it
* Needs to be easily editable

(But only by the configuration engineer)
* Needs to be structured
* Needs to be accessible from all devices on the control network
* Needs to be very flexible, and easily extensible

THIS SUGGESTS
a) A database table
b) A tabbed dialog box
c) The dialog box to be dynamically generated

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

QLCE = Quad Loadcell to Ethernet

42

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

Database table columns

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

Tying the DB table to the dialog

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

Specify Forth VALUE types in the DB

Valname
Name of Forth value type word

Valindex
0= it’s a single Forth VALUE
0<> = it’s indexed value
(VINDEX, STRINDEX etc.)

Type
bool, int, string etc.

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

NOW FOR THE RADICAL BIT

DURING COMPILATION, AT AN EARLY STAGE…

1. Read in the database config file
Now you know how to get to the DB

2. Read in the DB settings table

3. For every Valname…

a) Does it exist as a Forth word?
b) If not, dynamically create a VALUE, VINDEX or STRINDEX,

according to Valindex and Type
c) Set the value from Setting

4. You are then free to use these new words in the rest of the compilation process

Euroforth 2020 “Rome”
A radical alternative to the Windows registry

SUMMARY

New Forth words are created, not in code, but from entries in a database table.

43

Euroforth 2020 “Rome”

Preparing for 64 bit

(Praeparatio ad LXIV frenos)

Nick Nelson Slide 1

-1.0 0 UD.R
340282366920938463463374607431768211446 ok

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 2

Why 64 bit anyway?

Numerical accuracy?

Addressing range?

Numerical accuracy?Numerical accuracy?

Interface with:
a) Operating system
b) Libraries

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 3

Previous experience?

16 bit to 32 bit

FIG-like 16 bit

MPE Forth on WIN32S

1993

Can’t remember a thing about it!

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 4

Critical differences

A CELL is no longer an int

Int is still 32 bits

Therefore, @ and ! don’t work with ints any more

1

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 5

Critical differences

Careless Extern: declarations don’t work any more

e.g. Enumerations are not ints

2

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 6

Critical differences

Anything ending with a _t

The good news is, the Linux 2038 problem goes away!

3

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 7

Solutions

A bit radical, this…..

Get rid of @ and !

1

a) Use VALUEs instead of VARIABLEs

b) Fetch / store ints in structures using L@ and L!

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 8

Solutions

Even more radical...

Access structure elements like VALUEs

1

See my main paper

Get rid of fetch & store completely

44

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 9

Solutions

a) Go through every Extern: and ensure prototypes match exactly

b) Go through every type definition and ensure size is correct

2

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 10

Solutions

Check every access to to things that end in _t

3

Euroforth 2020 “Rome”

Preparing for 64 bit

Nick Nelson Slide 11

Did it work?

Bit early to tell!

45

cc64 - Small C on the C64
EuroForth 2020

Philip Zembrod - pzembrod@gmail.com

Why write a C compiler on the C64 in 1989?
I thought I could.

Long-standing interest in compilers

Inspirations: Dragon book +
Ron Cain’s and James E. Hendrix’
8080 Small-C compiler

Existing C64 C & Pascal compilers
felt slow, opaque, impractical.

ASSI/M macros
“s65+”: macros + string functions
+ conditional assembly

Functions, local and global vars,
recursion, arrays, pointers

Syntax still assembly-ish
Next: real compiler

 function findloc
 char name^/start^
 getargs name/start
 char cptr^
 move locptr,cptr
 decr cptr
 while "comp start,cptr",lt
 sub cptr^,cptr
 test stracmp(name/cptr/#maxnamlen)
 if eq

sub #of_name,cptr
return cptr

 endif
 sub #of_name+1,cptr
 endwhile
 return 0
 endfunc

46

Why write it in Forth?
Why not in s65+? macro-expanding 100x: assembling slow

Encountered UltraForth

● compact code
● transparent, fast enough, practical
● fascinating
● … the known advantages of Forth ...

Typical classic C compiler

preprocessor scanner

optimizer assembler linker

source expanded source tokens
parser

abstract syntax tree

object code

code
generator

assembly

executable

assembly

abstract syntax tree

cc64 simplifications

preprocessor scanner

optimizer assembler mini
linker

source expanded source tokens
parser

object code

code
generator

assembly

executable

assembly

runtime
module

new runtime
module

47

cc64 parser
● Parsers

○ top-down vs bottom-up
○ hand-written vs grammar-generated
○ en.wikipedia.org/wiki/Comparison_of_parser_generators
○ Forth-generating parser generators are rare

● cc64: top-down recursive-descent parser
○ + easy to understand
○ - needs deep rstack
○ hand-crafted: more fun

● Limitations
○ K&R, int & char only, only 1 pointer level
○ not supported: unsigned, long, floats, void, struct, union, typedef, type casts, goto

Example: || and &&
: l-or (-- obj)
 l-and
 BEGIN <l-or> #oper# comes? WHILE
 do-l-or.1 l-and
 do-l-or.2 REPEAT ;

: l-and (-- obj)
 bit-or
 BEGIN <l-and> #oper# comes? WHILE
 do-l-and.1 bit-or
 do-l-and.2 REPEAT ;

Defining word

 <or> ' do-or
 1 ' bit-xor binary bit-or

 <xor> ' do-xor
 1 ' bit-and binary bit-xor

 <and> ' do-and
 1 ' equal binary bit-and

 <==> ' do-eq
 <!=> ' do-ne
 2 ' comp binary equal

 <<> ' do-lt
 <<=> ' do-le
 <>> ' do-gt
 <>=> ' do-ge
 4 ' shift binary comp

 <<<> ' do-shl
 <>>> ' do-shr
 2 ' sum binary shift

 <+> ' do-add
 <-> ' do-sub
 2 ' product binary sum

 <*> ' do-mult
 </> ' do-div
 <%> ' do-mod
 3 ' unary binary product

48

Challenge: 6502
Only 3 registers: a, x, y, all 8 bit. 256 bytes hardware stack.
High-level languages be like :-(

Approach: virtual 16 bit stack machine with virtual a in 6502 a/x:

a&: .lda# <& # lda >& # ldx ;a

a: .pha pha txa pha ;a

a: .sta-zp $zp sta $zp+1 stx ;a

Soft stack for local variables

Codegen do-xyz using code templates .xyz
 ' / ' .#div ' .div# ' .div
binop do-div

 ' mod ' .#mod ' .mod# ' .mod
binop do-mod

 ' * ' .mult# ' .mult# ' .mult
binop do-mult

\ divide a by zp, remainder in zp
a: (.divmod $divmod jsr ;a

: .div# .ldzp# (.divmod ;
: .#div .sta-zp .lda# (.divmod ;
: .div .sta-zp .pla (.divmod ;

: .mod# .div# .lda-zp ;
: .#mod .#div .lda-zp ;
: .mod .div .lda-zp ;

Code templates
a&: .ldzp# tay
 <& # lda $zp sta
 >& # lda $zp+1 sta tya ;a

: (a: (-- sys)
 create here 0 c, 20
 assembler ;

: ;a (sys --)
 20 ?pairs
 current @ context !
 here over - 1- swap c! ;

: a, (par I b -- step)
 dup $f and $7 =
 IF 2/ 2/ 2/ 2/ 2*
 atab + @ execute
 ELSE b, 2drop 1 THEN ;

: a&: (a: does> (par pfa --)
 count bounds DO
 dup I dup c@ a, +LOOP drop ;

: a: (a: does> (pfa --)
 count bounds
 DO 0 I dup c@ a, +LOOP ;

49

Other challenges
● Memory size
● Keep overview of source code

○ 3 disks 170 kB each
○ -> many printouts, 12 screens per page

● Moving screens around
● C64 charset: \^_{|}~ missing
● Text editor: missing
● Testing … 😓

… graduation … pause 1996-2019 ...

Restart with emulator
● From screen to stream sources

○ ufscr2file.c, ascii2petscii.c, petscii2ascii.c
○ Simple INCLUDE implementation

● VICE emulator with 4 disk drives
○ 1 Linux-dir-backed
○ 3 d64 disk images

● Automate build & tests
○ Script VICE with --keybuf param
○ Terminate VICE when file “notdone” deleted
○ Re-learn GnuMake

● Tests, tests, tests, some fixes, release ... github.com/pzembrod/cc64

VolksForth cross-pollination
● Ported to C64/C16 VolksForth:

○ VICE automation infra
○ INCLUDE

● Automated tests
● Automated target compile
● Integrated INCLUDE into core
● Binary flavours full and lite: with and without block words
● Fixed C16-32k
● Took lite binaries back to cc64

○ -> cc64 on c16-64k/Plus4!

50

Further ideas
● Port to Commander x16
● Port to Linux (host)
● cc64 unit/component tests
● ANSI function param syntax
● Profile memory and CPU. Why is so slow?
● Output assembler source
● Relocating symbolic linker
● C library

Thank you for listening!

Questions?

51

Forth and IDEs

M. Anton Ertl, TU Wien

Integrated Development Environment (IDE)

• Editor (aka IDE) is the hub
Invokes compiler
Processes error messages
Runs program
Debugging interface
Crossreferencing

• Language-specific: Smalltalk-80, Turbo Pascal (1983), HolonForth (1989)

• No choice of editor

• Cross-language: Eclipse, IntelliJ IDEA, Visual Studio Code

• Gforth supports Emacs (and vi) as IDE

Language Server Protocol (LSP)

• Interface between language systems and IDEs

• Traditional development: O(|languages| × |IDEs|)

• LSP development: O(|languages|+ |IDEs|)

• Editor choice: any editor that supports LSP

• Future work: Add LSP support to Forth systems

52

Traditional Forth approach

• Forth command line is the hub

• Show source code of word

or edit it with your favourite editor

Load program

Run program

Debugging

Crossreferencing

Documentation

Show generated code

Show other system state

Demo

Implementation Cost

64-bit Gforth right after startup
size (KB)

dictionary 548
native code 751

locate 32
where 619

backtrace 548

53

Conclusion

• Many languages: editor as hub

• Forth: command line as hub

works with your favourite editor

• locate

where

backtrace

help

see

• also covers system code

54

	Preface
	Contents
	Ulrich Hoffmann and Andrew Read: Smart Stacks in VHDL
	Nick J. Nelson: Extending the VALUE concept
	Bernd Paysan and M. Anton Ertl: The Grand Recognizer Unification
	Stephen Pelc: Dual words and Recognisers
	Stephen Pelc: Porting VFX Forth to 64 bits
	Klaus Schleisiek: Core Overview
	Klaus Schleisiek: A Note on Parsing Source Code
	Klaus Schleisiek: Poor Man's Recognizer
	Nick J. Nelson: A radical alternative to the Windows registry
	Nick J. Nelson: Preparing for 64 bit
	Philip Zembrod: cc64 — Small C on the C64
	M. Anton Ertl: Forth and IDEs

