
µCore Overview

Klaus Schleisiek - kschleisiek@freenet.de

µCore (pronounced "microCore") is a processor written in VHDL for synthesis into FPGAs. It is optimized
for embedded real time control. µCore is an embodiment of the virtual machine of the Forth programming
language [1] and hence Forth is µCore's assembler.

Characteristics
1. Dual stack (data stack & return stack)

2. Harvard architecture (8 bit program memory & independent data memory)

3. Configurable word width for data memory & stacks

4. Postfix instruction set architecture (literal operands/addresses precede rather than follow instructions
that need them in the instruction stream)

5. Single cycle execution, no pipelining

6. Interrupt & Pause traps

7. Multiple data and return stack areas for efficient multitasking

8. Deterministic program execution

9. Hardware/Software co-design environment

10. Malleable instruction set

11. Instantiation

µCore block diagram

µCore Overview

1 Dual Stack
µCore does not have general purpose registers, it has a "data stack" for numerical computations and a "return
stack" for program flow control.

The data stack resides in a private RAM area managed by the DataStackPointer (DSP). Its top two items are
held in registers (TopOfStack - TOS and NextOfStack - NOS).

The return stack is mapped into the data memory managed by the ReturnStackPointer (RSP). Its top item is
held in a register (TopOfReturnstack - TOR).

The pros-and-cons of a stack versus register architecture:

1) Parameter passing.
Both architectures quite often suffer from the fact that the arguments for a subroutine call are not in the
registers resp. not in the stack order, in which the subroutine expects them. As a result, registers have to
be re-shuffled resp. the stack has to be re-ordered.
The number of registers is finite and hence the number of arguments that may be passed to a subroutine.
The stack has a finite depth in hardware as well, but if needed, the bottom part of the stack may be
swapped out and in of data memory by a background process at runtime.

2) Interrupt processing
The stack architecture holds all arguments on stacks already and therefore, no registers need to be saved
and restored.

3) Code optimization
"Register allocation" became a research topic long ago whereas "stack allocation" is an esoteric topic. But
three generations of research happened and the results are already of production quality.

When µCore's assembler µForth is used, the programmer himself is responsible for stack allocation and
stack re-ordering.

4) Instruction set impact
A register architecture needs address bits in the instruction word whereas a stack architecture does
without. A subroutine always takes its arguments from the top of stack downwards and leaves its results
on the stack.

Looking at the technical merits, the stack architecture has several advantages especially for real time
applications. Its major disadvantage is its unfamiliarity.

2 Harvard Architecture
µCore's instructions and the program memory are 8 bits wide. The configurable width data memory (see
below) is independent of the fixed width program memory. Two instructions, which allow writing and
reading program memory, may or may not be instantiated and therefore, µCore can be made safe from
corrupting its program during runtime.

During cold boot, µCore may always write into program memory and therefore, it may fetch its program
from an external, non-volatile memory. The boot loader is a µForth program that has to be compiled before
synthesis.

3 Configurable Data Memory & Stack Word Width
In µCore the word width of the data memory and the stacks is configurable and must be defined before
synthesis as needed by the application. µCore does not deal with 8 bit "bytes". That is data memory is always
accessed in units of the instantiated data memory and stack width, which simplifies the memory interface
considerably.

The instantiated word width may be any odd or even number of bits. 12 bits is a practical minimum, because
it limits the program memory's address range to 4096 instructions. The maximum width is only limited by
the available FPGA resources. This configurability is rendered possible by µCore's postfix instruction set
architecture (see below).

µCore Overview

4 Postfix Instruction Set Architecture
µCore's postfix instruction set extends Forth's postfix syntax into the hardware realm. The principle has been
inherited from the Transputer, and it makes the configurable data word width possible.

When instructions include immediate numbers (literal, offset, address etc.), the number of bits needed for
these numbers depends on the processor's data word width. In µCore, literals and opcodes are kept separate
and literals precede rather than follow opcodes that need them. Numbers of any magnitude may be
constructed by a sequence of literal instructions.

µCore's instructions are 8 bits wide. An instruction's most significant bit determines whether it is interpreted
as an opcode (MSB not set) or as a literal (MSB set). A "lit flag" in the status register is set by literals and
reset by opcodes. This leads to four different cases for instruction interpretation:

lit flag MSB interpretation
0 0 An opcode that does not need a literal.
0 1 A literal following an opcode.

The least significant 7 bits are pushed on the stack as a 2s-complement number in the
range -64 .. 63, and the lit flag is set.

1 0 An opcode following a literal. If it is just a noop, the literal remains on the stack as a
number. The lit flag is reset.

1 1 A literal following another literal.
The literal in TOS is shifted 7 bit positions to the left and the 7 least significant bits of
the instruction are appended. This covers the following number ranges:
1 lit -64 .. 63
2 lits -8192 .. 8191
3 lits -1048576 .. 1048575
 etc.
This way numbers of any magnitude can be constructed.

Opcodes do neither include literal information nor register addresses due to the stack. Therefore, each of the
remaining 127 opcodes can be used for different semantics. This is plenty. The "core" opcode set has 47, the
"extended" and "float" set another 29 opcodes. This leaves room for 42 application specific opcodes.

Opcodes like branch and call do even have different semantics depending on the lit flag. When it is set, they
take the number in TOS as a branch offset. Otherwise, they take it as an absolute target address.

Instructions (literals as well as opcodes) are always self-contained and therefore, interrupts can be accepted
after each instruction.

5 Single Cycle Execution, No Pipelining
In general, a single instruction needs one active clock transition to execute.

On a hardware level (VHDL), µCore's registers have a clock and a clock enable input. The enable input
allows embedding µCore into environments with a clock frequency that is above µCore's timing
requirements. Constant cycles in architecture_pkg.vhd defines the number of clock cycles, which are needed
to execute one instruction. In addition, the top-level enable input may be used to temporarily halt µCore.
Typically, µCore's worst-case asynchronous signal delay is less than 40 ns (25 MHz) for Xilinc, Altera, and
Lattice FPGAs.

Reading the FPGA's internal blockRAM memories requires the execution of a sequence of two
uninterruptible instructions. The first instruction latches the memory address inside the blockRAM, the
second instruction pushes the memory's data output on the stack.

To this end a general mechanism allows to chain sequences of uninterruptible instructions. It can also be
used for read-modify-write instructions.

µCore Overview

6 Interrupt & Pause Traps
Interrupts are a well known concept in computing and almost every existing processor implements it. Hardly
known is its Janus-faced sibling, the Pause, another inheritance from the Transputer. A Pause will e.g. be
raised by a UART, when the processor intends to read a character, which has not been received yet. The
difference between interrupts and pauses is as follows:

Interrupt: An event did happen that was not expected by the software.

On an interrupt the processor pushes the status register on the data stack, raises the InterruptInService (IIS)
status bit that disables further interrupts, and executes a call to the interrupt trap location. The status register
is a collection of single bit flags that characterize the processor state besides the PC.

Globally, interrupts may be enabled or disabled via the "InterruptEnable" (IE) status bit. Individual interrupts
sources are enabled or disabled writing the Intflags register, which holds a flag for each interrupt source.
Reading Intflags allows locating an interrupt's source(s).

Interrupt processing is terminated by the IRET instruction, which returns from the interrupt service routine
and restores the status register from the data stack, thereby resetting the IIS bit again.

Pause: An event did not happen that was expected by the software.

On a pause the processor aborts the current instruction, which caused the pause signal to be raised, does not
increment the Program Counter (PC), and executes a call to the pause trap location.

In a single task system, the pause trap would immediately execute an EXIT (return from subroutine), thereby
returning to the instruction that caused the pause previously. This loop repeats until the pause signal will no
longer be raised.

In a multitask system, the pause trap would call the scheduler, and another task can be given the opportunity
to run. Eventually, the task that caused the pause will be activated again and continue normal execution as
soon as the reason for raising the pause signal has vanished, i.e. the missing event did happen.

Using the pause mechanism, resource locking can be completely realized in hardware. E.g. an ADC with an
integrated 8-channel multiplexer in a multitasking environment can then be programmed in µForth:
<channel_number> ADC !
ADC @ Sample !

or in C1 as follows:
ADC = <channel_number>;
Sample = ADC;

Storing the <channel_number> into the memory mapped ADC interface will initiate conversion of that
channel and set the ADC's semaphor flag in the flags register. Should the ADC be in use by another task, the
semaphor will have been set and a pause will be raised until eventually the semaphor will have been reset. In
the next line, the conversion result will be read from the ADC, stored in varable Sample, and the semaphor
will be reset. Should the ADC be still busy converting when a read attempt is made, pause will be raised
until eventually the ADC has finished conversion.

This way the hardware takes care of both mutual exclusion of the ADC resource as well as waiting for the
AD-conversion to finish without having to probe flags in software loops.

7 Multiple Data- and Return-Stack Areas for Efficient Multitasking
The number of data- and return-stack memory areas can be configured so that each task has its own set of
stacks. This speeds up task scheduling, because only internal registers TOS, NOS, TOR, DSP, and RSP need
to be redirected. A task switch @ 25 MHz takes 7 µsec to put the current task to sleep and start another one.

1 A µCore back-end for the LCC C compiler has been implemented for an earlier 32 bit version of µCore. In addition,
LCC itself has been modified for stack- rather than register-allocation. This work has been done at Fachhochschule
Aargau, Windisch (CH), supported by the Hasler Foundation.

µCore Overview

8 Deterministic Program Execution
µCore's program execution is fully deterministic. There is no pipeline. There is no cache memory that may
have to be loaded before the next instruction can be executed. Therefore, µCore's time to execute a certain
sequence of instructions is predictable, which is a prerequisite for verifyable real-time systems.

9 Hardware/Software Co-Design Environment
µCore's design environment consists of the following elements:

• VHDL source code for µCore on a target system,

• the µForth cross-compiler and debugger running on a host computer,

• an RS232 umbilical link that connects host and target,

• an interactive command line interpreter to inspect and control the target,

• a disassembler,

• and a single-step tracer.

Both the VHDL hardware description as well as the µForth cross-compiler share a common file
architecture_pkg.vhd, which characterizes µCore's architecture and opcodes. Therefore, the cross-compiler
will always be in-sync with the hardware description.

The cross-compiler is able to produce program memory initialization code for the VHDL simulator and
therefore, µForth program execution can be observed in the VHDL simulator.

A umbilical link consisting of a 2-wire UART (rxd, txd) connects µCore's debugger with the mating
debugger on the host and allows to

• load object code into µCore for execution,

• control µCore interactively from a command line (Forth style),

• display the data stack and dump data memory to the host's display,

• upload/download data memory areas without delaying µCore's program execution,

• single step code on a subroutine level displaying the data stack at each step.

10 Malleable Instruction Set
µCore's instruction set consists of 47 "core", 24 "extended", and 5 "float" instructions. In addition, 26
"software traps" are available, which do a single cycle call to fixed program memory locations.
42 opcodes are unused or software traps. They may be used for application specific instructions.

In the core version, the extended instructions will be emulated by macros or subroutines. Therefore, a core
version has the same functionality as the extended version but it runs slower consuming fewer FPGA
resources.

Adding a new opcode to µCore is rather simple and consists of three steps:

1. Define the binary code for op_newname as a constant in architecture_pkg.vhd.

2. Add a new when clause to the instruction decoder case statement in uCntrl.vhd for the semantics of
op_newname.

3. Define a name for op_newname in opcodes.fs to make it known to µForth.

µCore Overview

The core instruction set
Data stack: drop, dup, ?dup, swap, over, rot, -rot

Return stack: >r, r>, r@

Branches: branch, 0=branch, next, call, exit, iret

Data memory: ld, st

Unary arithmetic: not, 0=, 0<, shift, ashift, c2/, c2*

Binary arithmetic: +, +c, -, swap-, and, or, xor, um*, *, um/mod

Flags: status-set, ovfl?, carry?, time?, <

Traps: reset, interrupt, pause, break

11 Instantiation
µCore has been instantiated on these FPGA families:
Xilinx (XC2S), Lattice (XP2), Altera (EP2), and Actel/Microsemi (A3PE).

Reference implementations on a Lattice LFXP2-8 prototyping board with minimal external IO and hardware
multiplier have been made with different µCore configurations. The clock's timing constraint in the
synthesizer and in the place-and-route tool had been set to 25 MHz.

Instruction set word
width

SLICES data
memory

program
memory

maximum
clock

core 16 988 6k 8k 33 MHz
extended 16 1199 6k 8k 30 MHz
core 27 1259 4k 8k 33 MHz
extended 27 1608 4k 8k 28 MHz
extended and floating point 27 1808 4k 8k 26 MHz
core 32 1432 3k 8k 33 MHz

Literature
[1] Leo Brodie: "Thinking Forth", http://thinking-forth.sourceforge.net/

