
Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 1 of 5

µForth is the cross compiler for µCore. When I started the project on top of gforth_062, I found a
simple and powerful solution to cross compilation by patching the way [and] behave. The
current version of gforth_079 uses Matthias Trute's recognizer mechanism and I gave them a try as
an alternative to patching.

The result of this endeavor was so complicated that I returned to the patch solution, which I regard
as much more readable. It can be implemented on all versions of gforth above 062 albeit minute
differences, because gforth's interpreter/compiler is a moving target. Alternatively, the patch
version can be implemented in a way that it reads like recognizer code, though drastically
simplified.

In order to clarify the issues, I will first present and discuss the patch solution, followed by the
gforth recognizer solution, and finally followed by the "Poor Man's Recognizer" solution.

µForth has two very different modes of operation:

1. host-compile compiles into the host's dictionary in order to add capabilities to µForth.

2. target-compile compiles into the target's dictionary in order to produce code for µCore.

These two modes require very different parsers, which are both different from the native gforth
parser, because µForth includes an OOP package for the sake of operator overloading (i.e. a @
may do very different things depending on the object that preceded it). This would be
straightforward, if [and] were deferred, but they are not and therefore, [and] have to be
patched instead. For the sake of argument, I will only discuss the target-compile mode.

1 Patching
The patch magic is done in a portable way by becomes, which takes an xt and the name of an
existing word:
: becomes (<word> new-xt --) \ make existing <word> behave as new-xt
 >r here ' >body dp !
 postpone AHEAD r> >body dp ! postpone THEN
 dp !
;
Variable 'interpreter ' interpreter 'interpreter !
Variable 'compiler ' compiler 'compiler !

:noname (--) 'interpreter @ IS parser state off ; becomes [
:noname (--) 'compiler @ IS parser state on ; becomes]

After patching, everything still works ok, because we initialized both 'interpreter and
'compiler with gforth's native code. Now we can define the new parser for the target.

First some lower level words:

d>target (d.host -- d.target) converts a host's double number into a double
number for µCore, because very often the data width of the host is greater than µCore's data width.

ClassContext, a variable, points to a linked list of methods. If it is zero, Forth's dictionary will
be searched. search-classes searches an object's list of methods down its inheritance order.

debugger-wordlist, a variable pointing to a wordlist of commands, which will be searched
with preference when interactively debugging the target system.

t_lit, (n --) compiles a number on the host's stack as a literal in the target system.

>t transfers a number on the host's stack to the target's stack.

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 2 of 5

not-found (addr len --) displays the string that didn't match and aborts.

Now we are prepared to define the target's interpreter/compiler classical style, everything in one
single definition:
: target-compiler (addr len --)
\ search for methods
 ClassContext @ IF 2dup search-classes ?dup
 IF nip nip name>int execute EXIT THEN
 not-found
 THEN
\ search for commands while debugging
 dbg? IF 2dup debugger-wordlist search-wordlist
 IF nip nip name>int execute EXIT THEN
 THEN
\ search the target's dictionary
 2dup find-name ?dup IF nip nip name>int execute EXIT THEN
\ try to convert to an integer number
 2dup 2>r snumber? ?dup 0= IF 2r> not-found THEN 2rdrop
 comp? IF 0> IF d>target swap t_lit, THEN t_lit, EXIT THEN
 dbg? IF 0> IF d>target swap >t THEN >t EXIT THEN
 drop
;

When an object has been compiled or executed, ClassContext will have been set to its
methods list to be searched. If a method is found, it will be executed producing target code and we
are done. If nothing was found, we display the not-found message and abort.

Otherwise, we check whether we are interactively debugging, in which case we will search
debugger-wordlist next. If it was a command, it will be executed and we are done. If it was
no command, we will search the target's dictionary. If it was a target word, it will be executed
producing target code and we are done.

If it was neither a command, nor a target word, snumber? will try to convert the string into a
number. When successful, we may be

1. compiling. In this case, we have to compile the number as literal(s) into the target code and we
are done.

2. debugging. In this case we transfer the number on the host's stack to the target's stack and we are
done.

3. interpreting. In this case we throw away the double number flag and we are done, leaving the
number on the host's stack.

You must admit, this is VERY different from what the native gforth compiler does.

Finally, we can define
: target-compile (--)
 ['] target-compiler dup 'interpreter ! dup 'compiler ! IS parser
 Targeting on Only Target also
;

that will activate the target-compiler, set Targeting to true and set the dictionary
search order for target words.

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 3 of 5

2 Recognizers
Ok, now gforth's recognizers. The lower level words we need have already been explained above.

The debugger words are handled separately, so we define our first recognizer:
: rec-debugger (addr u -- nt rectype | rectype-null)
 dbg? IF debugger-wordlist find-name-in
 dup IF rectype-name EXIT THEN dup
 THEN 2drop rectype-null
;

Hm, we see that we have to do more than just define a recognizer, we also have to define recognizer
types like rectype-name and rectype-null, which have been defined in gforth_079.

Now come the methods and the Forth dictionary. Remember, no matter whether we are in interpret
or compile mode, we always execute the command of the target code compiler. So we have to
define our first rectype, because the standard one, rectype-name, does not do what we need.
:noname name>int execute-;s ; \ interpret action
dup \ compile action, same as above
' lit, \ postpone action
rectype: rectype-target

Now we can define the recognizer for methods compilation,
: rec-methods (addr u -- nt rectype | rectype-null)
 ClassContext @ 0= IF 2drop rectype-null EXIT THEN
 2dup search-classes ?dup IF nip nip rectype-target EXIT THEN
 not-found
;

and the one for the Target's dictionary:
: rec-target (addr u -- nt rectype | rectype-null)
 find-name ?dup IF rectype-target EXIT THEN rectype-null
;

Ok that takes care of the methods and normal Forth words. Now we must turn to numbers. Again,
we can not use the normal rectype-num and rectype-dnum, because we are compiling
code for the target.
' noop
:noname (n --) comp? IF t_lit, EXIT THEN dbg? IF >t EXIT THEN drop ;
dup
rectype: rectype-tnum

' noop
:noname (d --) d>target swap
 comp? IF t_lit, t_lit, EXIT THEN
 dbg? IF >t >t EXIT THEN 2drop
;
dup
rectype: rectype-tdnum

: rec-tnum (addr u -- n/d table | rectype-null)
 snumber? ?dup 0= IF rectype-null EXIT THEN
 0> IF rectype-tdnum ELSE rectype-tnum THEN
;

Now we have a single/double integer recognizer for the target and we are prepared to define the
recognizer for target compilation consisting of four single recognizers:

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 4 of 5

$Variable target-recognizer
align here target-recognizer !
4 cells , ' rec-tnum A, ' rec-target A, ' rec-debugger A, ' rec-methods A,

 Finally we can define:
: target-compile (--)
 target-recognizer TO forth-recognizer
 Targeting on Only Target also
;

that will activate the target-recognizer, set Targeting to true and set the dictionary
search order for target words.

Frankly, I find the patch version of the first chapter a lot easier to read.

Why is this so?

In the patched version, everything is close together in one definition: From string through wordlist
lookup to the final execute. Therefore, you may modify everything when needed. We could even do
without patching, if [and] were deferred. Its drawback: Everything is merged into a single
definition with a more or less complex conditional structure.

The recognizer version gets rid of the complex conditional structure, but it has newly invented
complexities: Separation of the search action from semantic interpretation (rectypes), and the final
execute is completely hidden. Therefore, in order to understand the recognizer code, you must make
yourself a mental image that merges the search action and its semantic interpretation, and you better
understand the underlying recognizer machine that does the final execute for you. Let alone the
definition of the final -recognizer, which is not a colon definition but a data structure, which has to
be read backwards. Challenging conditions for reliable code that ought to be easy to understand.

3 Poor Man's Recognizer
As a compromise, here is a simplified version for a recognizer type construct, which does not need
all the overhead of gforth's recognizer mechanism.

Foremost, we want to get rid of the convoluted control structure of the patch version. I.e. we want to
be able to write down an easy to read specification for target-compiler, which behaves
identical to the patched version of the first chapter as follows:
: target-compiler (addr len --)
 method-find debugger-find target-find target-number not-found
;

In the Recognizer chapter we finally defined target-recognizer as a reverse list of simple
sub-recognizers, each of which only does a single string matching attempt.

Instead, the simplified version defines a colon definition, which basically does the same thing. It has
the limitation that it can not change its behaviour dynamically. But who needs this flexibility? After
all, the parser has a much lower change rate compared to the dictionary's search order.

Each sub-recognizer has identical stack behaviour:

It takes a counted string as input argument.

If there is no match, it leaves the counted string unchanged handing it over to the next sub-
recognizer.

If there is a match, the input arguments are dropped, the return address into target-compiler
is thrown away and therefore, we continue to execute the word that called target-compiler.

Poor Man's Recognizer

Klaus Schleisiek, 23-Jun-2020 Page 5 of 5

If none of our sub-recognizers did match, we bump into not-found.

These are the definitions of the sub-recognizers:
: method-find (addr len -- addr len | rdrop)
 ClassContext @ 0= ?EXIT
 2dup search-classes ?dup
 IF rdrop nip nip name>int execute EXIT THEN
 not-found
;
: debugger-find (addr len -- addr len | rdrop)
 dbg? 0= ?EXIT
 2dup debugger-wordlist search-wordlist
 IF rdrop nip nip name>int execute EXIT THEN
;
: target-find (addr len -- addr len | rdrop)
 2dup find-name ?dup IF rdrop nip nip name>int execute THEN
;
: target-number (addr len -- addr len | rdrop)
 2dup 2>r snumber? ?dup 0= IF 2r> EXIT THEN 2rdrop rdrop
 comp? IF 0> IF d>target swap t_lit, THEN t_lit, EXIT THEN
 dbg? IF 0> IF d>target swap >t THEN >t EXIT THEN
 drop
;

For completeness, here is the host's interpreter/compiler:
: host-find (addr len -- addr len | rdrop)
 2dup find-name ?dup 0= ?EXIT rdrop nip nip
 comp? IF name>comp ELSE name>int THEN execute
;
: host-number (addr len -- addr len | rdrop)
 2dup 2>r snumber? ?dup 0= IF 2r> EXIT THEN 2rdrop rdrop
 comp? IF 0> IF swap postpone Literal THEN postpone Literal EXIT THEN
 drop
;
: host-compiler (addr len --) host-find host-number not-found ;

4 Summary
I am sorry to say, but Matthias Trute's recognizer mechanism is over-engineered and therefore, it is
difficult to understand, explain, and extend. An indication for this is the sheer number of articles,
which try to explain it. In addition, it is more flexibel than actually needed.

The "Poor Man's Recognizer" had been a vague idea for several years. After writing the first two
chapters of this paper, I finally implemented it. It exceeded my expectations as far as complexity is
concerned and therefore, this is what I will add to my Forth toolbox.

