
Practical Considerations in a Static Stack Checker
M. Anton Ertl∗

TU Wien

Abstract
One difficulty in applying static checking to existing
Forth code (rather than accepting only programs
written with the checker in mind) is how to deal
with words with statically unknown stack effects,
such as execute. The work described in this paper
introduces the concept of an anchor to represent
the basis of the stack depth for a position in the
code. A new anchor is introduced after a word with
an unknown stack effect. Two anchors are synchro-
nized (if still unrelated) on control-flow joins (e.g.,
then), without reporting a stack imbalance (which
would probably be a false positive). For previously
synchronized anchors, such control flow words can
compare the stack depth and report a stack imbal-
ance (probably a mistake) if they do not match.
The introduction of anchors also allows to perform
the analysis in a single pass.

1 Introduction
Static type checking for Forth has been the subject
of research for a long time (see Section 7), but has
not resulted in type checkers usable for mainstream
Forth. Among the reasons for that are:

• In a statically checked language one typically
wants to report all programs that may be er-
roneous and designs the language and type
system for that. E.g., PAF [Ert13] (where
the stack depth must be statically known) re-
places execute with the statically checkable
exec.tag .
By contrast, for checking programs that incor-
porate significant parts that were developed
(and debugged) without checker, the checker
should report no or very few violations for
the presumably correct legacy parts (false pos-
itives), at the potential cost of more false neg-
atives.

• The stack effect comments in existing programs
are not quite standardized enough to allow au-
tomatic processing, so a type checker cannot
check against them, and also cannot use them

∗anton@mips.complang.tuwien.ac.at

to fill in holes in stack effect knowledge (e.g.,
for deferred words).

• It’s hard to specify a type system that is prac-
tically usable for mainstream Forth [Ert17b].

In the present paper I have chosen to bypass the
type system problem by implementing only stack
depth checking. I also bypass the stack-effect com-
ment problem by not making use of them. In this
paper I explore how to implement a static stack-
depth checker for mainstream Forth, and describe
the various design decisions along the way.

It treats statically unknown stack effects as
blanks to be filled in rather than as errors, reducing
the number of false positives.

The main idea is the introduction of anchors. An
anchor represents a base stack depth for a part of a
definition. Compiling a word with a statically un-
known stack effect introduces a new anchor; control
flow connecting previously disconnected anchors re-
sults in synchronizing them, while control flow con-
necting already-synchronized anchors allows check-
ing.

Section 2 shows a simple example of stack-depth
checking. Section 3 discusses how checking can deal
with the various time levels in Forth (interpreta-
tion, compilation, postpone): We decide to check
the run-time during compilation, and don’t try to
do other checking. Section 4 discusses stack-depth
checking at a conceptual level, while Section 5 dis-
cusses implementation issues, in particular, how to
perform the checking in a single pass.

2 Example
This section gives an example of how stack checking
could work. Consider the definition:

: min (n1 n2 -- n)
2dup < if drop else nip then ;

This definition contains a stack effect comment.
For stack depth checking the relevant information
from this comment is that on exit from this defini-
tion, the stack depth is one item less than on entry
(s = a−1), and that the deepest stack item accessed
is two items below the entry depth (d = a − 2),
where a (the anchor) is the depth on entry. Overall:

Ertl Static Stack Checker

-1/-2. We show the stack effect of words without
anchor, and the intermediate results with anchor.
We also know the stack depth effects of the con-

tained words:
word s d
2dup +2 −2
< −1 −2
if −1 −1
drop −1 −1
nip −1 −2

Let’s determine the overall stack depth effect of
min. We start before the first word, with the stack
effect from the start to this place being a + 0/a + 0.
Next we want to combine this stack depth ef-

fect s1/d1 with the stack effect s2/d2 of the first
word 2dup: The combined stack effect is s1 +
s2/ min(d1, s1 + d2) = a + 2/a− 2.
Using the same computation for the next words

results in the following stack effects:
sequence s d
2dup a + 2 a− 2
2dup < a + 1 a− 2
2dup < if a + 0 a− 2
2dup < if drop a− 1 a− 2

After the else control flow continues from after
the if:

sequence s d
2dup < if nip a− 1 a− 2

The two control flows join at then. The s values
of the two control flows have to agree, otherwise
we will see a statically unknown stack depth (Sec-
tion 4.4). The minimum of the joining d values is
the resulting d value. This leads to a−1/a−2 after
the then and thus at the end of min; after removing
the anchor we get −1/− 2.

We can compare this result of static analysis
sa/da with the stack depth effect sc/dc described
by the programmer in the stack effect comment.
We check that sa = sc and da = dc.1 In the present
example this works out.

3 Time levels
3.1 Immediate
In Forth we have immediate stack effects, e.g., when
text-interpreting + in interpretation state. These
stack effects are not interesting for our checker, for
two reasons:

• There is usually little information telling us
what stack depth the programmer intended.

• Where there is such information, Forth systems
tend to check already, using run-time checking:
No stack underflow should happen. And the

1Or da ≤ dc to allow having a stack effect comment that
reflects the intended interface rather than the implementa-
tion.

stack depth at the end of a colon definition is
the same as at the start.

If more checking is desired, it’s easy to add run-
time checking:

: expect-depth (u --)
depth 1- <> if

.s true abort" unexpected stack depth"
then ;

\ usage example:
0 expect-depth

I am unaware that Forth programmers use this
kind of checking, so maybe the reason checkers are
not used more is not related to the easyness or dif-
ficulty of designing and implementing them.

3.2 Compilation
When compiling a word, it has a run-time stack
effect in addition to its immediate (i.e., compile-
time) stack effect. E.g., when compiling if, the run-
time stack effect is (f --), while the immediate
(compile-time) stack effect is (-- orig).

The primary interest of static stack depth check-
ing is to check whether a colon definition behaves at
run-time as intended (with respect to stack depth).
In this case, we have the stack effect comment of
a colon definition that tells us the intended stack
effect.

3.3 Higher levels
Forth allows to write words that compile code, us-
ing postpone, compile,, literal etc. Such words
have three levels of stack effects: Their immediate
stack effect, the stack effect when these words are
executed, and the stack effect when the code com-
piled by these words is executed.

E.g., the parser generator Gray2 contains the fol-
lowing words:

: compile-test (set --)
postpone literal
test-vector @ compile, ;

: generate-alternative1 (--)
operand1 get-first compile-test
postpone if
operand1 generate
postpone else
operand2 generate
postpone endif ;

The use of compile-test in
generate-alternative1 has the immediate

2http://www.complang.tuwien.ac.at/forth/gray.zip

http://www.complang.tuwien.ac.at/forth/gray.zip

Ertl Static Stack Checker

stack effect (--) (compiling it does not change
the stack), the stack effect (set --) when
generate-alternative1 runs, and the stack
effect (--) when the code generated by running
compile-test runs. Of these stack effects, only
one is documented (and I have seen this also for
cases where an undocumented stack effect other
than (--) exists).

It is possible to postpone a word like
compile-test, leading to an additional time level
with its stack effect. While I don’t remember seeing
such code in the wild, it still has to be taken into
account.

3.4 Checking at which level?
One approach is be to check at all levels (in particu-
lar, including more postponed time levels). If possi-
ble, the advantage would be that stack mistakes in
code involving postpone could be pointed out right
at the source code level. The difficulty here is that
you often have nothing to check against.
A alternative approach is to only check the run-

time stack effect during compilation. There you can
compare on control-flow joins (which are more fre-
quent than at other levels), and optionally compare
with the stack-effect comment (which typically doc-
uments the run-time stack effect of a colon defini-
tion, but rarely the other levels). In the present
paper we only check at this level, and only whether
the stack effects agree on control flow joins.

4 Principles
This section outlines general principles of stack-
depth checking, without discussing implementation
issues.
In order to perform stack depth checking of a

colon definition, we need the stack depth effect of
the constituent words, and we need something to
compare against: we can compare with the stack
effect comment, but we can also compare with the
result of stack depth checking of other paths on
control-flow joins.

4.1 Straight-line code
As outlined above, if we have a straight-line se-
quence S consisting of two subsequences S1S2, we
can compute s/d for S with the following rules:

s = s1 + s2

d = min(d1, s1 + d2)

where s1/d1 is the effect of S1, and s2/d2 the effect
of S2.

4.2 Control-flow
In this section we discuss the conceptual treatment
of control-flow. In the Section 5.2 we discuss prac-
tical considerations.

On unconditional branches (ahead, again), the
stack depth computation follows the control flow.

On conditional branches (if, until), first the
stack effect −1/ − 1 of the word itself is appended
to the previous sequence. Then the the stack depth
computation follows both directions. I.e., for the
fall-through path it works as for straight-line code,
whereas for the taken branch it works like for the
unconditional branch.

On control-flow joins (then, begin), the current
stack depths of the two joining control flows have to
be equal (otherwise the stack depth checker should
report a stack depth mistake). The deepest stack
depth is the deeper of the two joining stack depths.

A then or begin at a place that is sequentially
unreachable (e.g., in ahead [1 cs-roll] then3)
is not a control-flow join; it only continues the con-
trol flow on the other path.

While the present section treats control flow as
if the direction of control-flow edges was impor-
tant, we see in Section 5.4 that the checker can fol-
low control-flow edges in any direction (e.g., always
downwards).

4.3 Statically unknown stack effects
For some words the static stack effect is unknown,
either because of incomplete knowledge, or because
the word can have an arbitrary stack effect at run-
time, e.g., execute. A stack checker that is in-
tended to work for existing Forth programs has to
deal with the occurence of such words. In order to
avoid false alarms, it has to assume that the actual
stack effect of the word with the unknown stack
effect is such that the stack effect is balanced, if
possible.

Assuming a checker that processes words left-to-
right top-to-bottom, we can achieve this by having
a new anchor for the stack depth after the unkown-
effect word. If there is a control-flow join with code
that uses the old anchor, the anchors can by syn-
chronized. E.g. for

if execute over else 2drop then

the stack effects of the subsequences are:
sequence s d

if a− 1 a− 1
if execute b + 0 b + 0

if execute over b + 1 b− 2
if 2drop a− 3 a− 3

When processing the then, the two anchors can
be synchronized to avoid a stack-depth mismatch:

3Else does this internally

Ertl Static Stack Checker

b = a−4. As a result the overall stack effect of this
sequence is −3/− 6.

This approach allows reporting stack-depth er-
rors in known-depth islands isolated from the rest
by words with unknown stack effects, e.g.:

execute if drop then execute

In this example both control flows at the then
use the same anchor, and the checker can notice
and report the depth mismatch.

4.4 Matching and Synchronization
The rest of this paper repeatedly uses terms like
matching control flows or synchronizing anchors.
This always refers to the same basic operation,
which happens when two control flows meet in one
place, e.g., a then.
If the two control flows have the same anchor or

anchors that have been (transitively) synchronized
already, we have to compare the stack depths rela-
tive to these anchors; e.g., if b = a+2 and the stack
depth is s1 = b+1 at one control flow and s2 = a+3
at the other, then the stack depths match (because
s1 = b + 1 = a + 2 + 1 = a + 3 = s2). If they do not
match, the checker should warn of a stack depth
imbalance, and the currently-defined word should
probably be marked as having an unknown stack
effect to avoid getting warnings in places where the
word is called.
If the two control flows have anchors that have

not been synchronized yet, they are synchronized
based on the assumption that the two control flows
match (we want to avoid reporting false positives).
E.g., if a and b are not already synchronized, and we
have s1 = b+1 and s2 = a+3, then we synchronize
a and b by setting s1 = s2, i.e., b + 1 = a + 3, i.e.,
b = a + 2.

4.5 Multiple Stacks
In the rest of this paper, I write only about the
data stack, but we can do the same static check-
ing for the floating-point and return stack as well
(and more, if a system has more, e.g., a vector stack
[Ert17a]), with the same principles, and appropri-
ately extended data structures.

5 Implementation issues

5.1 Deepest stack access
The deepest stack access d is only used for checks
against stack effect comments. However, for exist-
ing code there is probably too much variety in stack

effect notation to make such checks practical. Nev-
ertheless, I include the maximum depth in the fol-
lowing discussions; it can be useful for code written
to a stack comment standard.

5.2 Single-pass implementation
For implementation simplicity, we want to process
the words of a colon definition in a single pass from
the first to the last word, without requiring to build
a control-flow graph and, e.g., performing an itera-
tive analysis until a fixed point is reached [ASU86].
Can we do this for stack-depth checking? Fortu-
nately, we can:

Deepest stack access

The access depth s1 +d2 at any particular place has
no influence on other access depths, so we can just
compute the minimum (in our formulation) of all
access depths, without needing to track the deepest
stack item through control flow.

The existence of multiple anchors is a complica-
tion: Access depths are relative to their anchors.
So we compute the deepest stack item relative to
each anchor. When an anchor is (possibly transi-
tively) synchronized with the word-entry anchor, we
can incorporate knowledge about its deepest stack
access into the knowledge about the deepest stack
access for the word. If there are anchors left at the
end that are not synchronized with the word-entry
anchor, we are out of luck and cannot guarantee
that the deepest stack access for the word-entry an-
chor is the deepest stack access for the word. This
is due to the unknown stack effects and cannot be
solved with more sophisticated analysis unless this
analysis makes the stack effects less unknown.

Stack depth change

By contrast, computing the current stack depth re-
quires dealing with control flow, not just with the
anchors. Fortunately, the direction of a control-flow
edge does not play a role: We just want to match
the current stack depths at one end of a control-
flow edge with that at the other end, and the direc-
tion does not play a role. So for a backwards edge
(represented by a dest or do-sys) the word push-
ing the dest/do-sys can put the anchor and current
depth in the dest/do-sys; and the word consuming
the dest/do-sys them performs the match. Likewise
for origs.

This allows us to do the analysis in a single pass.

5.3 Data structures
This means that we need the following data struc-
tures:

For each completed word: s and d.

Ertl Static Stack Checker

For each word currently analysed4, we need a set
of anchors, a current anchor, a current stack depth
relative to the anchor, and an exit anchor and stack
depth.
The set of anchors of a word is partitioned into

subsets; each anchor starts as a singleton subset,
and synchronization unites the subsets of the in-
volved anchors. One way to implement this is as
a parent-pointer tree: each anchor may point to a
parent anchor, and the common ancestor represents
the subset. We also need to store the current-depth
difference of an anchor a to its parent b in a. When
trying to match depths, follow each anchor to its
root and compute the sum of the current-depth dif-
ferences along this path.
For each orig, dest, or do-sys, we need to store an

anchor and a current stack depth relative to that
anchor. We also need this information for every
leave.
In a given Forth system, we can extend exist-

ing data structures such as headers and control-flow
stack items with these data. This requires changes
to core data structures, which has certain costs.
Alternatively, we can keep these data separate.

E.g., a separate lookup table xt→ s, d, an addi-
tional control-flow stack, and an additional stack
for storing one definition’s incomplete anchor and
depth data while processing a quotation. This ap-
proach is more complex (mainly thanks to memory
allocation), but has the advantage of being easier
to work as an add-on.
Gforth has used three-cell control-flow stack

items for a long time [Ert94]; for the stack checker
the control-flow stack items grew a fourth cell,
which (if the checker is active) points to a larger
anchored stack effect structure that resides in a sep-
arate section [Ert16]. Because of the size of the
control-flow stack items, Gforth has already em-
ployed a separate leave stack, and it continues to
do so.
The current stack checker stores the stack effect

for a colon definition or primitive as created word
in a table (case-sensitive wordlist), using the xt of
the colon definition as the name. The entries for
colon definitions are in a separate section to avoid
any interference with the ordinary memory alloca-
tion.

5.4 Control-flow words
This section explains how the control-flow words
work with the data structures.
First, let’s consider the effect on straight-line

code:
For unconditional control-flow words (ahead,

again, exit, and non-zero throw), the following
4Due to quotations, multiple words can be analysed at

the same time.

code is unreachable. One way of dealing with this
is to mark the following code as unreachable until
a control-flow join (begin, then) is compiled, but
that needs a special handling of unreachable code
in control-flow words. A simpler way is to introduce
a new anchor right after the unconditional control-
flow; if there is ever a join with a control flow coming
from reachable code, the end result is the same.

For the other control-flow words (if, then,
begin, until, ?do, do, loop, +loop), control flow
can flow from before to after the word, so the an-
chor is the same after the word as before, and the
current depth is changed as indicated by the stack
effect of the word.

Concerning the effect on the control-flow stack
items:

Words that push control-flow stack items (if,
ahead, begin, ?do, do) push the current anchor and
the current stack depth (after applying the stack ef-
fect of the word).

For words that consume control-flow stack items
(then, again, until, loop, +loop) the checker ap-
plies the stack effect of the word, then tries to match
the current anchor and stack depth with the anchor
and stack depth of the incoming control-flow stack
item, as outlined above.

Exit can be analysed like an unconditional
branch to the end of the definition. We use the
exit anchor and stack depth for that: Every exit is
matched with that. At the end of the definition (;,
does>, or ;code) we match the current stack depth
with the exit stack depth. Then we compare the
exit stack depth to the entry stack depth: if the an-
chors have the same ancestor, we can compute the
stack effect of the definition, store it for the defi-
nition, and possibly compare it to the stack effect
comment.

E.g., if the min example was instead written as

: min (n1 n2 -- n)
2dup < if drop exit then nip ;

the checker would work much in the same way as be-
fore, with the stack effect at the exit being matched
against the stack effect at the ;.

Leave is basically an unconditional forward
branch like ahead, but it does not leave an orig
on the control-flow stack. So it’s not enough to just
enhance control-flow stack items or implement an-
other control-flow stack. One way to deal with this
is to store the additional information in a lookup ta-
ble indexed by the address of the branch (for origs)
or branch target (for dests); it may be necessary to
distinguish between origs and dests in some other
way if they can have the same address.

If an additional control-flow stack is used,
cs-roll and other control-flow stack manipulation
words need to be enhanced to deal with it.

Ertl Static Stack Checker

If you miss else, while, and repeat in this dis-
cussion, it’s because they are composed from the
other words [Bad90].

5.5 Recursion
The simplest way to treat recurse (and recursive
calls by name) is as a word with unknown stack
depth. This way is probably good enough, because
recursion is significantly rarer than other sources of
unknown stack effects, but it is possible to perform
better checking in many cases:
One way to do it would be to check again once

the stack effect of the word is known (through the
base-case path), but this means using a second pass
through the word.
Another way computes the stack-depth change s

of the recursive call by looking at the stack depth
before and after the recursive call once the anchors
involved have been synchronized, and checks if it is
equal to the s derived from the base-case path.
Concerning the maximum depth d: In the usual

case the maxiumum depth is determined from the
base case, but if there is a deeper access in the recur-
sive case, the maximum depth depends on the re-
cursion depth and cannot be determined statically.
However, the usual case for recursive calls is to ac-
cess at most as deeply as the base case, so it may
be advisable to produce a warning if the recursive
call performs a deeper access.

5.6 ?Dup

We have to deal with ?dup, because we want to
process existing code, and existing code uses ?dup
often enough that it would be a significant source
of false postives. E.g., in:

?dup if . then

the if . then is unbalanced and a stack checker
that does not take the ?dup into consideration re-
ports this. But this unbalance rebalances the un-
balanced stack effect of the ?dup, so the whole is
balanced, and the stack checker ideally should rec-
ognize this.
The common cases of correct ?dup usage are ?dup

followed possibly by 0= followed by a conditional
branch, and this can be dealt with by setting a flag
when encountering ?dup, modifying it on 0=, and
the conditional branch having appropriately differ-
ent stack depths on the branch-taken and the fall-
through paths (and resetting the flag). If any other
word encounters the ?dup flag, it’s probably ok to
report a stack-depth mismatch.5

5I have seen only two cases that do not follow this pattern:
one was a bug, and one was a usage of ?dup at the end of
a word, resulting in a word with a ?dup-like stack effect and
usage limitations.

6 Status and Further Work
An early stage of a stack checker for Gforth exists.
At the moment it can check sequences and control
structures where only a single anchor is involved; it
does not even support else yet. It checks the data,
FP, and return stack. The stack effect of most prim-
itives is known, while the stack effect of pre-defined
colon definitions is unknown. The stack effect of
successfully checked colon definitions is known.

In the future the checker will be able to also work
on code with multiple anchors. In the long run the
plan is to also (optionally) use stack effect com-
ments for checking and to use the stack effect com-
ments of pre-defined colon definitions to allow more
checks.

Finally, the checker needs to be evaluated by ap-
plying it to real-world programs. Because these pro-
grams are presumably correct, any mismatches are
probably false positives, so this kind of evaluation
will tell us the false-positive rate. We will also mea-
sure how often we match already-synchronized an-
chors, giving an idea of the number of actual checks
we do perform. And we can compare that to the
number of total matches and the proportion of code
outside control flow, giving a rough idea what pro-
portion of code is not checked; but note that, e.g.,
a colon definition without control flow is often still
checked if it is used inside control flow in another
colon definition.

For checking against stack effect comments, we
will probably have to update the stack effect syntax
in some Forth programs and can then check against
the stack effects specified there.

7 Related work
A simpler way to check the stack depth is to do it
at run-time. Hoffmann [Hof91] proposes checking
the stack depth on entry to a word and on exit
from a word against the stack effect comment. The
disadvantage of run-time checking is that one needs
to run the word with test cases that cover all the
code in the word in order to catch errors. No run-
time stack-checking scheme has seen wide usage.

Instead, John Hayes’ tester framework has seen
wide (although by far not universal) usage. The
programmer specifies test cases and expected re-
sults and tests not only the stack depth, but also
the stack contents. The disadvantage is that the
bugs are only reported when the tests are run. Still,
Forth programmers are used to catch bugs through
testing (including less formalized testing method-
ologies), which may contribute to the lack of popu-
larity of run-time and compile-time stack-depth and
type checking. There are, however, programs deal-
ing with complex data structures where a significant

Ertl Static Stack Checker

amount of code is necessary for performing testing,
and a checker can help to find bugs in that testing
code, and find bugs early in the application code.
Reasearchers have been working on compile-time

checking for a long time, sometimes as a by-product
of other goals:
Tevet [Tev89] uses named data stack items (re-

sulting in a feature similar to locals), and accesses
them by compiling pick for read accesses and stick
for writes. In order to do this, his compiler keeps
track of the stack depth and reports an error when
the compiler cannot determine the stack depth (e.g.,
because of a stack imbalance at a control-flow join).
Tevet’s work is close to the present work in limit-
ing itself to stack-depth checking, but differs by re-
quiring a statically known stack depth, while the
present work can deal with unknown stack effects,
and only reports an imbalance on a statically known
imbalance.
Similarly, Ertl requires a statically known stack

depth in the Forth dialect PAF [Ert13]; this work
does not describe how the stack is checked, and, for
now, is only a paper design.
The work that focusses on checking generally

also requires complete knowledge of the stack depth
in order to work and typically assumes complete
knowledge of the stack effects of called words. By
contrast, the present work assumes that component
words with unknown stack effects are used correctly
(to avoid false positives), and only warns in cases
where the stack effects derived from words with
known stack effects do not agree.
Most of the static checking work has been on type

checking, but Hoffmann [Hof93] attacks stack depth
checking, the same topic as the present paper; he
works out the rules for computing the stack effects
of Forth code more explicitly than the present work,
but without (explicit) anchors.
On the type checking front, Pöial worked out

a stack effect calculus with types in a series of
papers [Pöi90, Pöi91, Pöi94] and later described
[Pöi02, Pöi06] and implemented [Pöi08] a prototype
of a type checker for Forth. This type checker does
not deal with unknown stack effects, and the work
did not make it out of the prototype stage.
Stoddart and Knaggs [SK91] also work out a

typed stack algebra, and also discuss considerations
such as @ and !, structured data types, immediate
words, and execute, but, as usual, assume a total
knowledge of the types.
Riegler [Rie15] builds on the work of Pöial, Stod-

dart and Knaggs, and enhances it with configura-
tion options and pluggable types.
Pfitzenmaier sketches his ideas about type check-

ing Forth [Pfi09], but did not follow it up with an
implementation.
In addition to the work on type checking (legacy)

Forth, which have not resulted in a widely-used

checker, there has also been work on creating
new, statically type-checked programming langu-
gaes, and they have sometimes resulted in usable
systems:

StrongForth6 is a system for a statically type-
checked dialect of Forth. It does not accept legacy
Forth programs, but requires writing programs to
conform with its typing rules.

Factor [PEG10] is a Forth-like high-level language
with a mixture of static and dynamic type-checking,
so it also solves the problem of static stack-depth
checking, but again it prefers to err on the side of
overreporting rather than underreporting mistakes.

Kleffner [Kle17] attacks the type checking prob-
lem by designing a typed concatenative language
(including the execute-like call) and a static type
system for it, but this work has not been followed
up with an implementation.

8 Conclusion
A practical stack-depth checker for code that con-
tains significant legacy code cannot rely on stack-
effect comments and must produce no or very few
false positives, even in the presence of words with
statically unknown stack effects. To have something
to check against, such a checker can check that the
stack effects of two joining control flows agree. It
can treat words with statically unknown stack ef-
fects as blanks by introducing a new stack-depth
anchor when processing such words. The use of an-
chors is also helpful for performing the checking in
a single pass.

References
[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D.

Ullman. Compilers. Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.
5.2

[Bad90] Wil Baden. Virtual rheology. In
FORML’90 Proceedings, 1990. 5.4

[Ert94] M. Anton Ertl. Automatic scoping of
local variables. In EuroForth ’94 Con-
ference Proceedings, pages 31–37, Winch-
ester, UK, 1994. 5.3

[Ert13] M. Anton Ertl. PAF: A portable assembly
language. In 29th EuroForth Conference,
pages 30–38, 2013. 1, 7

[Ert16] M. Anton Ertl. Sections. In 32nd Euro-
Forth Conference, pages 55–57, 2016. 5.3

6https://www.stephan-becher.de/strongforth/

https://www.stephan-becher.de/strongforth/

Ertl Static Stack Checker

[Ert17a] M. Anton Ertl. SIMD and vectors. In
33rd EuroForth Conference, pages 25–36,
2017. 4.5

[Ert17b] M. Anton Ertl. Statische Typüberprü-
fung. Vortrag bei der Forth-Tagung 2017,
2017. 1

[Hof91] U. Hoffmann. Stack checking - A debug-
ging aid. In euroFORML ’91 Conference
Proccedings, 1991. 7

[Hof93] Ulrich Hoffmann. Static stack effect anal-
ysis. In EuroFORTH ’93 conference pro-
ceedings, Mariánské Láznè (Marienbad),
1993. 7

[Kle17] Robert Kleffner. A foundation for typed
concatenative languages. Master’s thesis,
Northeastern University, 2017. 7

[PEG10] Sviatoslav Pestov, Daniel Ehrenberg, and
Joe Groff. Factor: a dynamic stack-based
programming language. In William D.
Clinger, editor, Proceedings of the 6th
Symposium on Dynamic Languages, DLS
2010, October 18, 2010, Reno, Nevada,
USA, pages 43–58. ACM, 2010. 7

[Pfi09] Jürgen Pfitzenmaier. Forth type checker.
In 25th EuroForth Conference, pages 60–
67, 2009. 7

[Pöi90] Jaanus Pöial. Algebraic specification
of stack-effects for Forth programs. In
euroFORML’90 Conference Proceedings,
1990. 7

[Pöi91] Jaanus Pöial. Multiple stack-effects of
Forth-programs. In euroFORML ’91
Conference Proccedings, 1991. 7

[Pöi94] Jaanus Pöial. Forth and formal language
theory. In EuroForth ’94 Conference Pro-
ceedings, pages 47–52, Winchester, UK,
1994. 7

[Pöi02] Jaanus Pöial. Stack effect calculus with
typed wildcards, polymorphism and in-
heritance. In M. Anton Ertl, editor, 18th
EuroForth Conference, page 38, 2002. Ab-
stract in hardcopy proceedings. 7

[Pöi06] Jaanus Pöial. Typing tools for typeless
stack languages. In 22nd EuroForth Con-
ference, pages 40–46, 2006. 7

[Pöi08] Jaanus Pöial. Java framework for static
analysis of Forth programs. In 24th Euro-
Forth Conference, pages 20–24, 2008. 7

[Rie15] Gregor Riegler. Evaluation and imple-
mentation of an optional, pluggable type
system for Forth. Master’s thesis, Tech-
nische Universität Wien, 2015. 7

[SK91] Bill Stoddart and Peter J. Knaggs. Type
inference in stack based languages. In
euroFORML ’91 Conference Proccedings,
1991. 7

[Tev89] Adin Tevet. Symbolic stack address-
ing. Journal of Forth Application and Re-
search, 5(3):365–379, 1989. 7

	Introduction
	Example
	Time levels
	Immediate
	Compilation
	Higher levels
	Checking at which level?

	Principles
	Straight-line code
	Control-flow
	Statically unknown stack effects
	Matching and Synchronization
	Multiple Stacks

	Implementation issues
	Deepest stack access
	Single-pass implementation
	Deepest stack access
	Stack depth change

	Data structures
	Control-flow words
	Recursion
	?Dup

	Status and Further Work
	Related work
	Conclusion

