Forth - The New Synthesis

progress report
dlsaggregating the stacks and memory

EuroForth'21 conference 2021-09-12
Ulrich Hoffmann

Forth the New Synthesis

Forth disaggregating synthesizing

Latest work

« investigate 1In input and output
« connection between host and target

« communicating commands between host and target

» Screens
 do not need to be 1kB BLOCKSs form-feed separated flles
e bnl list load can work as usual

Current work
« playing with unicode

« disaggregating stacks

 dlsaggregating memory

playing with Unlcode

e Browsing mathematical Unicode symbols, maybe arrows are nice:

SYNONYM - TO 5 VALUE x 42 - X X emit
SYNONYM S-D S=>D 42 S-D D.

SYNONYM %- 2/ line-width %

SYNONYM -BODY >BODY ' eggs -BODY ...

e Greek letters:

100 CONSTANT At . n s At ms

e Or single symbols where we now have symbol sequences:

SYNONYM = <= aue X0 = IFE wak
SYNONYM # <> ..xx X 45 # IF ...

But in general | think you have to be careful using symbols as they best need to have a commony accepted meaning.

playing with Unlcode

As a counter example, | find symbols for control structures interesting but eventually misleading:

e doubtful

SYNONYM » OF
SYNONYM <« ENDOF
SYNONYM [CASE
SYNONYM 5 ENDCASE

casetest (n —)
F

O » ." no'" «

1 » ." one" «

2 » ." two" =
" many"

]

items" ;

Disaggregating the Stacks

 data stack and return stack are used for different purposes 1in
different situations.

« disaggregating the stacks means separating these purposes and
look at them in 1solation.

Disaggregating the Stacks

Data Stack

Return Stack

Interpreting
parameter passing
(unsigned) integers
characters
floats

addresses

internal return addresses

Compiling

control flow
compliler security

constant folding

return addresses

Executing

parameter passing

(unsigned) integers

characters
floats

addresses

return addresses
temporary storage
loop parameters
exception frames

locals

comment

BEGIN IF

>R R> R-ALLOT
DO LOOP
CATCH THROW

>X X X!

Disaggregating the Stacks

 data stack and return stack are used for different purposes 1in
different situations.

« disaggregating the stacks means separating these purposes and
look at them in 1solation.

Disaggregating the Stacks

— interferences of the the different purposes lead to
restrictions such as:

- no passing of parameters to definitions at compile time
(interference of control flow/compiler security and parameter
passing)

- no use of >R R> across DO-LOOP-boundaries (interference
of temporary storage usage and loop parameters)

- no use of >R R> across deflnitions (interference of
temporary storage and return addressses).

- speclalized stack operators to deal with floating point
numbers on the return stack (FDUP, FSWAP, swap cell and float)

Disaggregating the Stacks

Separate stacks for each purpose
Possible disaggregations are

- split data stack into

- a separate stack for parameter passing that holds
(unsigned) integers, characters and also addresses

- a separate floating point stack for holding floating polint
numbers (the route Forth-200x went)

- a separate control flow stack for managing control
structures

- a seperate obJject stack for handling references to data
structures and objects

- split the return stack 1into

- a seperate stack for return addreses
seperate stack for temporary data (>R R> R-ALLOT)
seperate stack for loop parameters (DO LOOP)
seperate stack for exception handling (CATCH THROW)
seperate stack for local variables

P O P

Disaggregating the Memory

: Buffer: (u --)

Create allot ;

: Buffer: (u --)
here swap allot \ RAM { cO0 | ... | cu-1}
Create , \ ROM { 'rom }
Does> -—- addr @
| () | (,\»93
A~
: Buffer: (u --)

here swap allot \ RAM
Constant \ ROM

Questions?

